blob: 1a0f1243dae92e622ae5125d75a0939c2574a075 [file] [log] [blame]
#ifndef _X86_PROCESSOR_H_
#define _X86_PROCESSOR_H_
#include "libcflat.h"
#include "desc.h"
#include "msr.h"
#include <bitops.h>
#include <stdint.h>
#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
#ifdef __x86_64__
# define R "r"
# define W "q"
# define S "8"
#else
# define R "e"
# define W "l"
# define S "4"
#endif
#define DE_VECTOR 0
#define DB_VECTOR 1
#define NMI_VECTOR 2
#define BP_VECTOR 3
#define OF_VECTOR 4
#define BR_VECTOR 5
#define UD_VECTOR 6
#define NM_VECTOR 7
#define DF_VECTOR 8
#define TS_VECTOR 10
#define NP_VECTOR 11
#define SS_VECTOR 12
#define GP_VECTOR 13
#define PF_VECTOR 14
#define MF_VECTOR 16
#define AC_VECTOR 17
#define MC_VECTOR 18
#define XM_VECTOR 19
#define XF_VECTOR XM_VECTOR /* AMD */
#define VE_VECTOR 20 /* Intel only */
#define CP_VECTOR 21
#define HV_VECTOR 28 /* AMD only */
#define VC_VECTOR 29 /* AMD only */
#define SX_VECTOR 30 /* AMD only */
#define X86_CR0_PE_BIT (0)
#define X86_CR0_PE BIT(X86_CR0_PE_BIT)
#define X86_CR0_MP_BIT (1)
#define X86_CR0_MP BIT(X86_CR0_MP_BIT)
#define X86_CR0_EM_BIT (2)
#define X86_CR0_EM BIT(X86_CR0_EM_BIT)
#define X86_CR0_TS_BIT (3)
#define X86_CR0_TS BIT(X86_CR0_TS_BIT)
#define X86_CR0_ET_BIT (4)
#define X86_CR0_ET BIT(X86_CR0_ET_BIT)
#define X86_CR0_NE_BIT (5)
#define X86_CR0_NE BIT(X86_CR0_NE_BIT)
#define X86_CR0_WP_BIT (16)
#define X86_CR0_WP BIT(X86_CR0_WP_BIT)
#define X86_CR0_AM_BIT (18)
#define X86_CR0_AM BIT(X86_CR0_AM_BIT)
#define X86_CR0_NW_BIT (29)
#define X86_CR0_NW BIT(X86_CR0_NW_BIT)
#define X86_CR0_CD_BIT (30)
#define X86_CR0_CD BIT(X86_CR0_CD_BIT)
#define X86_CR0_PG_BIT (31)
#define X86_CR0_PG BIT(X86_CR0_PG_BIT)
#define X86_CR3_PCID_MASK GENMASK(11, 0)
#define X86_CR4_VME_BIT (0)
#define X86_CR4_VME BIT(X86_CR4_VME_BIT)
#define X86_CR4_PVI_BIT (1)
#define X86_CR4_PVI BIT(X86_CR4_PVI_BIT)
#define X86_CR4_TSD_BIT (2)
#define X86_CR4_TSD BIT(X86_CR4_TSD_BIT)
#define X86_CR4_DE_BIT (3)
#define X86_CR4_DE BIT(X86_CR4_DE_BIT)
#define X86_CR4_PSE_BIT (4)
#define X86_CR4_PSE BIT(X86_CR4_PSE_BIT)
#define X86_CR4_PAE_BIT (5)
#define X86_CR4_PAE BIT(X86_CR4_PAE_BIT)
#define X86_CR4_MCE_BIT (6)
#define X86_CR4_MCE BIT(X86_CR4_MCE_BIT)
#define X86_CR4_PGE_BIT (7)
#define X86_CR4_PGE BIT(X86_CR4_PGE_BIT)
#define X86_CR4_PCE_BIT (8)
#define X86_CR4_PCE BIT(X86_CR4_PCE_BIT)
#define X86_CR4_OSFXSR_BIT (9)
#define X86_CR4_OSFXSR BIT(X86_CR4_OSFXSR_BIT)
#define X86_CR4_OSXMMEXCPT_BIT (10)
#define X86_CR4_OSXMMEXCPT BIT(X86_CR4_OSXMMEXCPT_BIT)
#define X86_CR4_UMIP_BIT (11)
#define X86_CR4_UMIP BIT(X86_CR4_UMIP_BIT)
#define X86_CR4_LA57_BIT (12)
#define X86_CR4_LA57 BIT(X86_CR4_LA57_BIT)
#define X86_CR4_VMXE_BIT (13)
#define X86_CR4_VMXE BIT(X86_CR4_VMXE_BIT)
#define X86_CR4_SMXE_BIT (14)
#define X86_CR4_SMXE BIT(X86_CR4_SMXE_BIT)
/* UNUSED (15) */
#define X86_CR4_FSGSBASE_BIT (16)
#define X86_CR4_FSGSBASE BIT(X86_CR4_FSGSBASE_BIT)
#define X86_CR4_PCIDE_BIT (17)
#define X86_CR4_PCIDE BIT(X86_CR4_PCIDE_BIT)
#define X86_CR4_OSXSAVE_BIT (18)
#define X86_CR4_OSXSAVE BIT(X86_CR4_OSXSAVE_BIT)
#define X86_CR4_KL_BIT (19)
#define X86_CR4_KL BIT(X86_CR4_KL_BIT)
#define X86_CR4_SMEP_BIT (20)
#define X86_CR4_SMEP BIT(X86_CR4_SMEP_BIT)
#define X86_CR4_SMAP_BIT (21)
#define X86_CR4_SMAP BIT(X86_CR4_SMAP_BIT)
#define X86_CR4_PKE_BIT (22)
#define X86_CR4_PKE BIT(X86_CR4_PKE_BIT)
#define X86_CR4_CET_BIT (23)
#define X86_CR4_CET BIT(X86_CR4_CET_BIT)
#define X86_CR4_PKS_BIT (24)
#define X86_CR4_PKS BIT(X86_CR4_PKS_BIT)
#define X86_EFLAGS_CF_BIT (0)
#define X86_EFLAGS_CF BIT(X86_EFLAGS_CF_BIT)
#define X86_EFLAGS_FIXED_BIT (1)
#define X86_EFLAGS_FIXED BIT(X86_EFLAGS_FIXED_BIT)
#define X86_EFLAGS_PF_BIT (2)
#define X86_EFLAGS_PF BIT(X86_EFLAGS_PF_BIT)
/* RESERVED 0 (3) */
#define X86_EFLAGS_AF_BIT (4)
#define X86_EFLAGS_AF BIT(X86_EFLAGS_AF_BIT)
/* RESERVED 0 (5) */
#define X86_EFLAGS_ZF_BIT (6)
#define X86_EFLAGS_ZF BIT(X86_EFLAGS_ZF_BIT)
#define X86_EFLAGS_SF_BIT (7)
#define X86_EFLAGS_SF BIT(X86_EFLAGS_SF_BIT)
#define X86_EFLAGS_TF_BIT (8)
#define X86_EFLAGS_TF BIT(X86_EFLAGS_TF_BIT)
#define X86_EFLAGS_IF_BIT (9)
#define X86_EFLAGS_IF BIT(X86_EFLAGS_IF_BIT)
#define X86_EFLAGS_DF_BIT (10)
#define X86_EFLAGS_DF BIT(X86_EFLAGS_DF_BIT)
#define X86_EFLAGS_OF_BIT (11)
#define X86_EFLAGS_OF BIT(X86_EFLAGS_OF_BIT)
#define X86_EFLAGS_IOPL GENMASK(13, 12)
#define X86_EFLAGS_NT_BIT (14)
#define X86_EFLAGS_NT BIT(X86_EFLAGS_NT_BIT)
/* RESERVED 0 (15) */
#define X86_EFLAGS_RF_BIT (16)
#define X86_EFLAGS_RF BIT(X86_EFLAGS_RF_BIT)
#define X86_EFLAGS_VM_BIT (17)
#define X86_EFLAGS_VM BIT(X86_EFLAGS_VM_BIT)
#define X86_EFLAGS_AC_BIT (18)
#define X86_EFLAGS_AC BIT(X86_EFLAGS_AC_BIT)
#define X86_EFLAGS_VIF_BIT (19)
#define X86_EFLAGS_VIF BIT(X86_EFLAGS_VIF_BIT)
#define X86_EFLAGS_VIP_BIT (20)
#define X86_EFLAGS_VIP BIT(X86_EFLAGS_VIP_BIT)
#define X86_EFLAGS_ID_BIT (21)
#define X86_EFLAGS_ID BIT(X86_EFLAGS_ID_BIT)
#define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)
/*
* CPU features
*/
enum cpuid_output_regs {
EAX,
EBX,
ECX,
EDX
};
struct cpuid { u32 a, b, c, d; };
static inline struct cpuid raw_cpuid(u32 function, u32 index)
{
struct cpuid r;
asm volatile ("cpuid"
: "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d)
: "0"(function), "2"(index));
return r;
}
static inline struct cpuid cpuid_indexed(u32 function, u32 index)
{
u32 level = raw_cpuid(function & 0xf0000000, 0).a;
if (level < function)
return (struct cpuid) { 0, 0, 0, 0 };
return raw_cpuid(function, index);
}
static inline struct cpuid cpuid(u32 function)
{
return cpuid_indexed(function, 0);
}
static inline u8 cpuid_maxphyaddr(void)
{
if (raw_cpuid(0x80000000, 0).a < 0x80000008)
return 36;
return raw_cpuid(0x80000008, 0).a & 0xff;
}
static inline bool is_intel(void)
{
struct cpuid c = cpuid(0);
u32 name[4] = {c.b, c.d, c.c };
return strcmp((char *)name, "GenuineIntel") == 0;
}
#define CPUID(a, b, c, d) ((((unsigned long long) a) << 32) | (b << 16) | \
(c << 8) | d)
/*
* Each X86_FEATURE_XXX definition is 64-bit and contains the following
* CPUID meta-data:
*
* [63:32] : input value for EAX
* [31:16] : input value for ECX
* [15:8] : output register
* [7:0] : bit position in output register
*/
/*
* Basic Leafs, a.k.a. Intel defined
*/
#define X86_FEATURE_MWAIT (CPUID(0x1, 0, ECX, 3))
#define X86_FEATURE_VMX (CPUID(0x1, 0, ECX, 5))
#define X86_FEATURE_PDCM (CPUID(0x1, 0, ECX, 15))
#define X86_FEATURE_PCID (CPUID(0x1, 0, ECX, 17))
#define X86_FEATURE_X2APIC (CPUID(0x1, 0, ECX, 21))
#define X86_FEATURE_MOVBE (CPUID(0x1, 0, ECX, 22))
#define X86_FEATURE_TSC_DEADLINE_TIMER (CPUID(0x1, 0, ECX, 24))
#define X86_FEATURE_XSAVE (CPUID(0x1, 0, ECX, 26))
#define X86_FEATURE_OSXSAVE (CPUID(0x1, 0, ECX, 27))
#define X86_FEATURE_RDRAND (CPUID(0x1, 0, ECX, 30))
#define X86_FEATURE_MCE (CPUID(0x1, 0, EDX, 7))
#define X86_FEATURE_APIC (CPUID(0x1, 0, EDX, 9))
#define X86_FEATURE_CLFLUSH (CPUID(0x1, 0, EDX, 19))
#define X86_FEATURE_XMM (CPUID(0x1, 0, EDX, 25))
#define X86_FEATURE_XMM2 (CPUID(0x1, 0, EDX, 26))
#define X86_FEATURE_TSC_ADJUST (CPUID(0x7, 0, EBX, 1))
#define X86_FEATURE_HLE (CPUID(0x7, 0, EBX, 4))
#define X86_FEATURE_SMEP (CPUID(0x7, 0, EBX, 7))
#define X86_FEATURE_INVPCID (CPUID(0x7, 0, EBX, 10))
#define X86_FEATURE_RTM (CPUID(0x7, 0, EBX, 11))
#define X86_FEATURE_SMAP (CPUID(0x7, 0, EBX, 20))
#define X86_FEATURE_PCOMMIT (CPUID(0x7, 0, EBX, 22))
#define X86_FEATURE_CLFLUSHOPT (CPUID(0x7, 0, EBX, 23))
#define X86_FEATURE_CLWB (CPUID(0x7, 0, EBX, 24))
#define X86_FEATURE_UMIP (CPUID(0x7, 0, ECX, 2))
#define X86_FEATURE_PKU (CPUID(0x7, 0, ECX, 3))
#define X86_FEATURE_LA57 (CPUID(0x7, 0, ECX, 16))
#define X86_FEATURE_RDPID (CPUID(0x7, 0, ECX, 22))
#define X86_FEATURE_SHSTK (CPUID(0x7, 0, ECX, 7))
#define X86_FEATURE_IBT (CPUID(0x7, 0, EDX, 20))
#define X86_FEATURE_SPEC_CTRL (CPUID(0x7, 0, EDX, 26))
#define X86_FEATURE_FLUSH_L1D (CPUID(0x7, 0, EDX, 28))
#define X86_FEATURE_ARCH_CAPABILITIES (CPUID(0x7, 0, EDX, 29))
#define X86_FEATURE_PKS (CPUID(0x7, 0, ECX, 31))
/*
* KVM defined leafs
*/
#define KVM_FEATURE_ASYNC_PF (CPUID(0x40000001, 0, EAX, 4))
#define KVM_FEATURE_ASYNC_PF_INT (CPUID(0x40000001, 0, EAX, 14))
/*
* Extended Leafs, a.k.a. AMD defined
*/
#define X86_FEATURE_SVM (CPUID(0x80000001, 0, ECX, 2))
#define X86_FEATURE_PERFCTR_CORE (CPUID(0x80000001, 0, ECX, 23))
#define X86_FEATURE_NX (CPUID(0x80000001, 0, EDX, 20))
#define X86_FEATURE_GBPAGES (CPUID(0x80000001, 0, EDX, 26))
#define X86_FEATURE_RDTSCP (CPUID(0x80000001, 0, EDX, 27))
#define X86_FEATURE_LM (CPUID(0x80000001, 0, EDX, 29))
#define X86_FEATURE_RDPRU (CPUID(0x80000008, 0, EBX, 4))
#define X86_FEATURE_AMD_IBPB (CPUID(0x80000008, 0, EBX, 12))
#define X86_FEATURE_NPT (CPUID(0x8000000A, 0, EDX, 0))
#define X86_FEATURE_LBRV (CPUID(0x8000000A, 0, EDX, 1))
#define X86_FEATURE_NRIPS (CPUID(0x8000000A, 0, EDX, 3))
#define X86_FEATURE_TSCRATEMSR (CPUID(0x8000000A, 0, EDX, 4))
#define X86_FEATURE_PAUSEFILTER (CPUID(0x8000000A, 0, EDX, 10))
#define X86_FEATURE_PFTHRESHOLD (CPUID(0x8000000A, 0, EDX, 12))
#define X86_FEATURE_VGIF (CPUID(0x8000000A, 0, EDX, 16))
#define X86_FEATURE_VNMI (CPUID(0x8000000A, 0, EDX, 25))
#define X86_FEATURE_AMD_PMU_V2 (CPUID(0x80000022, 0, EAX, 0))
static inline bool this_cpu_has(u64 feature)
{
u32 input_eax = feature >> 32;
u32 input_ecx = (feature >> 16) & 0xffff;
u32 output_reg = (feature >> 8) & 0xff;
u8 bit = feature & 0xff;
struct cpuid c;
u32 *tmp;
c = cpuid_indexed(input_eax, input_ecx);
tmp = (u32 *)&c;
return ((*(tmp + (output_reg % 32))) & (1 << bit));
}
struct far_pointer32 {
u32 offset;
u16 selector;
} __attribute__((packed));
struct descriptor_table_ptr {
u16 limit;
ulong base;
} __attribute__((packed));
static inline void clac(void)
{
asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory");
}
static inline void stac(void)
{
asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory");
}
static inline u16 read_cs(void)
{
unsigned val;
asm volatile ("mov %%cs, %0" : "=mr"(val));
return val;
}
static inline u16 read_ds(void)
{
unsigned val;
asm volatile ("mov %%ds, %0" : "=mr"(val));
return val;
}
static inline u16 read_es(void)
{
unsigned val;
asm volatile ("mov %%es, %0" : "=mr"(val));
return val;
}
static inline u16 read_ss(void)
{
unsigned val;
asm volatile ("mov %%ss, %0" : "=mr"(val));
return val;
}
static inline u16 read_fs(void)
{
unsigned val;
asm volatile ("mov %%fs, %0" : "=mr"(val));
return val;
}
static inline u16 read_gs(void)
{
unsigned val;
asm volatile ("mov %%gs, %0" : "=mr"(val));
return val;
}
static inline unsigned long read_rflags(void)
{
unsigned long f;
asm volatile ("pushf; pop %0\n\t" : "=rm"(f));
return f;
}
static inline void write_ds(unsigned val)
{
asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory");
}
static inline void write_es(unsigned val)
{
asm volatile ("mov %0, %%es" : : "rm"(val) : "memory");
}
static inline void write_ss(unsigned val)
{
asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory");
}
static inline void write_fs(unsigned val)
{
asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory");
}
static inline void write_gs(unsigned val)
{
asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory");
}
static inline void write_rflags(unsigned long f)
{
asm volatile ("push %0; popf\n\t" : : "rm"(f));
}
static inline void set_iopl(int iopl)
{
unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL;
flags |= iopl * (X86_EFLAGS_IOPL / 3);
write_rflags(flags);
}
/*
* Don't use the safe variants for rdmsr() or wrmsr(). The exception fixup
* infrastructure uses per-CPU data and thus consumes GS.base. Various tests
* temporarily modify MSR_GS_BASE and will explode when trying to determine
* whether or not RDMSR/WRMSR faulted.
*/
static inline u64 rdmsr(u32 index)
{
u32 a, d;
asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory");
return a | ((u64)d << 32);
}
static inline void wrmsr(u32 index, u64 val)
{
u32 a = val, d = val >> 32;
asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory");
}
#define rdreg64_safe(insn, index, val) \
({ \
uint32_t a, d; \
int vector; \
\
vector = asm_safe_out2(insn, "=a"(a), "=d"(d), "c"(index)); \
\
if (vector) \
*(val) = 0; \
else \
*(val) = (uint64_t)a | ((uint64_t)d << 32); \
vector; \
})
#define wrreg64_safe(insn, index, val) \
({ \
uint32_t eax = (val), edx = (val) >> 32; \
\
asm_safe(insn, "a" (eax), "d" (edx), "c" (index)); \
})
static inline int rdmsr_safe(u32 index, uint64_t *val)
{
return rdreg64_safe("rdmsr", index, val);
}
static inline int wrmsr_safe(u32 index, u64 val)
{
return wrreg64_safe("wrmsr", index, val);
}
static inline int rdpmc_safe(u32 index, uint64_t *val)
{
return rdreg64_safe("rdpmc", index, val);
}
static inline uint64_t rdpmc(uint32_t index)
{
uint64_t val;
int vector = rdpmc_safe(index, &val);
assert_msg(!vector, "Unexpected %s on RDPMC(%" PRId32 ")",
exception_mnemonic(vector), index);
return val;
}
static inline int xgetbv_safe(u32 index, u64 *result)
{
return rdreg64_safe(".byte 0x0f,0x01,0xd0", index, result);
}
static inline int xsetbv_safe(u32 index, u64 value)
{
return wrreg64_safe(".byte 0x0f,0x01,0xd1", index, value);
}
static inline int write_cr0_safe(ulong val)
{
return asm_safe("mov %0,%%cr0", "r" (val));
}
static inline void write_cr0(ulong val)
{
int vector = write_cr0_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx",
vector, val);
}
static inline ulong read_cr0(void)
{
ulong val;
asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory");
return val;
}
static inline void write_cr2(ulong val)
{
asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory");
}
static inline ulong read_cr2(void)
{
ulong val;
asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory");
return val;
}
static inline int write_cr3_safe(ulong val)
{
return asm_safe("mov %0,%%cr3", "r" (val));
}
static inline void write_cr3(ulong val)
{
int vector = write_cr3_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx",
vector, val);
}
static inline ulong read_cr3(void)
{
ulong val;
asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory");
return val;
}
static inline void update_cr3(void *cr3)
{
write_cr3((ulong)cr3);
}
static inline int write_cr4_safe(ulong val)
{
return asm_safe("mov %0,%%cr4", "r" (val));
}
static inline void write_cr4(ulong val)
{
int vector = write_cr4_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx",
vector, val);
}
static inline ulong read_cr4(void)
{
ulong val;
asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory");
return val;
}
static inline void write_cr8(ulong val)
{
asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory");
}
static inline ulong read_cr8(void)
{
ulong val;
asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory");
return val;
}
static inline void lgdt(const struct descriptor_table_ptr *ptr)
{
asm volatile ("lgdt %0" : : "m"(*ptr));
}
static inline void sgdt(struct descriptor_table_ptr *ptr)
{
asm volatile ("sgdt %0" : "=m"(*ptr));
}
static inline void lidt(const struct descriptor_table_ptr *ptr)
{
asm volatile ("lidt %0" : : "m"(*ptr));
}
static inline void sidt(struct descriptor_table_ptr *ptr)
{
asm volatile ("sidt %0" : "=m"(*ptr));
}
static inline void lldt(u16 val)
{
asm volatile ("lldt %0" : : "rm"(val));
}
static inline u16 sldt(void)
{
u16 val;
asm volatile ("sldt %0" : "=rm"(val));
return val;
}
static inline void ltr(u16 val)
{
asm volatile ("ltr %0" : : "rm"(val));
}
static inline u16 str(void)
{
u16 val;
asm volatile ("str %0" : "=rm"(val));
return val;
}
static inline void write_dr0(void *val)
{
asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory");
}
static inline void write_dr1(void *val)
{
asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory");
}
static inline void write_dr2(void *val)
{
asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory");
}
static inline void write_dr3(void *val)
{
asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory");
}
static inline void write_dr6(ulong val)
{
asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory");
}
static inline ulong read_dr6(void)
{
ulong val;
asm volatile ("mov %%dr6, %0" : "=r"(val));
return val;
}
static inline void write_dr7(ulong val)
{
asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory");
}
static inline ulong read_dr7(void)
{
ulong val;
asm volatile ("mov %%dr7, %0" : "=r"(val));
return val;
}
static inline void pause(void)
{
asm volatile ("pause");
}
static inline void cli(void)
{
asm volatile ("cli");
}
/*
* See also safe_halt().
*/
static inline void sti(void)
{
asm volatile ("sti");
}
/*
* Enable interrupts and ensure that interrupts are evaluated upon return from
* this function, i.e. execute a nop to consume the STi interrupt shadow.
*/
static inline void sti_nop(void)
{
asm volatile ("sti; nop");
}
/*
* Enable interrupts for one instruction (nop), to allow the CPU to process all
* interrupts that are already pending.
*/
static inline void sti_nop_cli(void)
{
asm volatile ("sti; nop; cli");
}
static inline unsigned long long rdrand(void)
{
long long r;
asm volatile("rdrand %0\n\t"
"jc 1f\n\t"
"mov $0, %0\n\t"
"1:\n\t" : "=r" (r));
return r;
}
static inline unsigned long long rdtsc(void)
{
long long r;
#ifdef __x86_64__
unsigned a, d;
asm volatile ("rdtsc" : "=a"(a), "=d"(d));
r = a | ((long long)d << 32);
#else
asm volatile ("rdtsc" : "=A"(r));
#endif
return r;
}
/*
* Per the advice in the SDM, volume 2, the sequence "mfence; lfence"
* executed immediately before rdtsc ensures that rdtsc will be
* executed only after all previous instructions have executed and all
* previous loads and stores are globally visible. In addition, the
* lfence immediately after rdtsc ensures that rdtsc will be executed
* prior to the execution of any subsequent instruction.
*/
static inline unsigned long long fenced_rdtsc(void)
{
unsigned long long tsc;
#ifdef __x86_64__
unsigned int eax, edx;
asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
tsc = eax | ((unsigned long long)edx << 32);
#else
asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc));
#endif
return tsc;
}
static inline unsigned long long rdtscp(u32 *aux)
{
long long r;
#ifdef __x86_64__
unsigned a, d;
asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux));
r = a | ((long long)d << 32);
#else
asm volatile ("rdtscp" : "=A"(r), "=c"(*aux));
#endif
return r;
}
static inline void wrtsc(u64 tsc)
{
wrmsr(MSR_IA32_TSC, tsc);
}
static inline void invlpg(volatile void *va)
{
asm volatile("invlpg (%0)" ::"r" (va) : "memory");
}
static inline int invpcid_safe(unsigned long type, void *desc)
{
/* invpcid (%rax), %rbx */
return asm_safe(".byte 0x66,0x0f,0x38,0x82,0x18", "a" (desc), "b" (type));
}
/*
* Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
* intended to be a wake event arrives *after* HLT is executed. Modern CPUs,
* except for a few oddballs that KVM is unlikely to run on, block IRQs for one
* instruction after STI, *if* RFLAGS.IF=0 before STI. Note, Intel CPUs may
* block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
*/
static inline void safe_halt(void)
{
asm volatile("sti; hlt");
}
static inline u32 read_pkru(void)
{
unsigned int eax, edx;
unsigned int ecx = 0;
unsigned int pkru;
asm volatile(".byte 0x0f,0x01,0xee\n\t"
: "=a" (eax), "=d" (edx)
: "c" (ecx));
pkru = eax;
return pkru;
}
static inline void write_pkru(u32 pkru)
{
unsigned int eax = pkru;
unsigned int ecx = 0;
unsigned int edx = 0;
asm volatile(".byte 0x0f,0x01,0xef\n\t"
: : "a" (eax), "c" (ecx), "d" (edx));
}
static inline bool is_canonical(u64 addr)
{
int va_width = (raw_cpuid(0x80000008, 0).a & 0xff00) >> 8;
int shift_amt = 64 - va_width;
return (s64)(addr << shift_amt) >> shift_amt == addr;
}
static inline void clear_bit(int bit, u8 *addr)
{
__asm__ __volatile__("btr %1, %0"
: "+m" (*addr) : "Ir" (bit) : "cc", "memory");
}
static inline void set_bit(int bit, u8 *addr)
{
__asm__ __volatile__("bts %1, %0"
: "+m" (*addr) : "Ir" (bit) : "cc", "memory");
}
static inline void flush_tlb(void)
{
ulong cr4;
cr4 = read_cr4();
write_cr4(cr4 ^ X86_CR4_PGE);
write_cr4(cr4);
}
static inline void generate_non_canonical_gp(void)
{
*(volatile u64 *)NONCANONICAL = 0;
}
static inline void generate_ud(void)
{
asm volatile ("ud2");
}
static inline void generate_de(void)
{
asm volatile (
"xor %%eax, %%eax\n\t"
"xor %%ebx, %%ebx\n\t"
"xor %%edx, %%edx\n\t"
"idiv %%ebx\n\t"
::: "eax", "ebx", "edx");
}
static inline void generate_bp(void)
{
asm volatile ("int3");
}
static inline void generate_single_step_db(void)
{
write_rflags(read_rflags() | X86_EFLAGS_TF);
asm volatile("nop");
}
static inline uint64_t generate_usermode_ac(void)
{
/*
* Trigger an #AC by writing 8 bytes to a 4-byte aligned address.
* Disclaimer: It is assumed that the stack pointer is aligned
* on a 16-byte boundary as x86_64 stacks should be.
*/
asm volatile("movq $0, -0x4(%rsp)");
return 0;
}
/*
* Switch from 64-bit to 32-bit mode and generate #OF via INTO. Note, if RIP
* or RSP holds a 64-bit value, this helper will NOT generate #OF.
*/
static inline void generate_of(void)
{
struct far_pointer32 fp = {
.offset = (uintptr_t)&&into,
.selector = KERNEL_CS32,
};
uintptr_t rsp;
asm volatile ("mov %%rsp, %0" : "=r"(rsp));
if (fp.offset != (uintptr_t)&&into) {
printf("Code address too high.\n");
return;
}
if ((u32)rsp != rsp) {
printf("Stack address too high.\n");
return;
}
asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
return;
into:
asm volatile (".code32;"
"movl $0x7fffffff, %eax;"
"addl %eax, %eax;"
"into;"
"lret;"
".code64");
__builtin_unreachable();
}
static inline void fnop(void)
{
asm volatile("fnop");
}
/* If CR0.TS is set in L2, #NM is generated. */
static inline void generate_cr0_ts_nm(void)
{
write_cr0((read_cr0() & ~X86_CR0_EM) | X86_CR0_TS);
fnop();
}
/* If CR0.TS is cleared and CR0.EM is set, #NM is generated. */
static inline void generate_cr0_em_nm(void)
{
write_cr0((read_cr0() & ~X86_CR0_TS) | X86_CR0_EM);
fnop();
}
#endif