blob: 6cd02af915ef3804546e43e6cec754c872ae8aed [file] [log] [blame] [edit]
#include "linux/sizes.h"
#include "kvm/irq.h"
#include "kvm/kvm.h"
#include "kvm/kvm-cpu.h"
#include "kvm/vfio.h"
#include <assert.h>
#include <sys/ioctl.h>
#include <sys/eventfd.h>
#include <sys/resource.h>
#include <sys/time.h>
/* Some distros don't have the define. */
#ifndef PCI_CAP_EXP_RC_ENDPOINT_SIZEOF_V1
#define PCI_CAP_EXP_RC_ENDPOINT_SIZEOF_V1 12
#endif
#define msi_is_enabled(state) ((state) & VFIO_PCI_MSI_STATE_ENABLED)
#define msi_is_masked(state) ((state) & VFIO_PCI_MSI_STATE_MASKED)
#define msi_is_empty(state) ((state) & VFIO_PCI_MSI_STATE_EMPTY)
#define msi_update_state(state, val, bit) \
(state) = (val) ? (state) | bit : (state) & ~bit;
#define msi_set_enabled(state, val) \
msi_update_state(state, val, VFIO_PCI_MSI_STATE_ENABLED)
#define msi_set_masked(state, val) \
msi_update_state(state, val, VFIO_PCI_MSI_STATE_MASKED)
#define msi_set_empty(state, val) \
msi_update_state(state, val, VFIO_PCI_MSI_STATE_EMPTY)
static void vfio_pci_disable_intx(struct kvm *kvm, struct vfio_device *vdev);
static int vfio_pci_enable_intx(struct kvm *kvm, struct vfio_device *vdev);
static int vfio_pci_enable_msis(struct kvm *kvm, struct vfio_device *vdev,
bool msix)
{
size_t i;
int ret = 0;
int *eventfds;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_pci_msi_common *msis = msix ? &pdev->msix : &pdev->msi;
union vfio_irq_eventfd single = {
.irq = {
.argsz = sizeof(single),
.flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER,
.index = msis->info.index,
.count = 1,
},
};
if (!msi_is_enabled(msis->virt_state))
return 0;
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_INTX)
/*
* PCI (and VFIO) forbids enabling INTx, MSI or MSIX at the same
* time. Since INTx has to be enabled from the start (we don't
* have a reliable way to know when the guest starts using it),
* disable it now.
*/
vfio_pci_disable_intx(kvm, vdev);
eventfds = (void *)msis->irq_set + sizeof(struct vfio_irq_set);
/*
* Initial registration of the full range. This enables the physical
* MSI/MSI-X capability, which might have desired side effects. For
* instance when assigning virtio legacy devices, enabling the MSI
* capability modifies the config space layout!
*
* As an optimization, only update MSIs when guest unmasks the
* capability. This greatly reduces the initialization time for Linux
* guest with 2048+ MSIs. Linux guest starts by enabling the MSI-X cap
* masked, then fills individual vectors, then unmasks the whole
* function. So we only do one VFIO ioctl when enabling for the first
* time, and then one when unmasking.
*
* phys_state is empty when it is enabled but no vector has been
* registered via SET_IRQS yet.
*/
if (!msi_is_enabled(msis->phys_state) ||
(!msi_is_masked(msis->virt_state) &&
msi_is_empty(msis->phys_state))) {
bool empty = true;
for (i = 0; i < msis->nr_entries; i++) {
eventfds[i] = msis->entries[i].gsi >= 0 ?
msis->entries[i].eventfd : -1;
if (eventfds[i] >= 0)
empty = false;
}
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, msis->irq_set);
if (ret < 0) {
perror("VFIO_DEVICE_SET_IRQS(multi)");
return ret;
}
msi_set_enabled(msis->phys_state, true);
msi_set_empty(msis->phys_state, empty);
return 0;
}
if (msi_is_masked(msis->virt_state)) {
/* TODO: if phys_state is not empty nor masked, mask all vectors */
return 0;
}
/* Update individual vectors to avoid breaking those in use */
for (i = 0; i < msis->nr_entries; i++) {
struct vfio_pci_msi_entry *entry = &msis->entries[i];
int fd = entry->gsi >= 0 ? entry->eventfd : -1;
if (fd == eventfds[i])
continue;
single.irq.start = i;
set_vfio_irq_eventd_payload(&single, fd);
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &single);
if (ret < 0) {
perror("VFIO_DEVICE_SET_IRQS(single)");
break;
}
eventfds[i] = fd;
if (msi_is_empty(msis->phys_state) && fd >= 0)
msi_set_empty(msis->phys_state, false);
}
return ret;
}
static int vfio_pci_disable_msis(struct kvm *kvm, struct vfio_device *vdev,
bool msix)
{
int ret;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_pci_msi_common *msis = msix ? &pdev->msix : &pdev->msi;
struct vfio_irq_set irq_set = {
.argsz = sizeof(irq_set),
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
.index = msis->info.index,
.start = 0,
.count = 0,
};
if (!msi_is_enabled(msis->phys_state))
return 0;
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
if (ret < 0) {
perror("VFIO_DEVICE_SET_IRQS(NONE)");
return ret;
}
msi_set_enabled(msis->phys_state, false);
msi_set_empty(msis->phys_state, true);
/*
* When MSI or MSIX is disabled, this might be called when
* PCI driver detects the MSI interrupt failure and wants to
* rollback to INTx mode. Thus enable INTx if the device
* supports INTx mode in this case.
*/
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_INTX)
ret = vfio_pci_enable_intx(kvm, vdev);
return ret >= 0 ? 0 : ret;
}
static int vfio_pci_update_msi_entry(struct kvm *kvm, struct vfio_device *vdev,
struct vfio_pci_msi_entry *entry)
{
int ret;
if (entry->eventfd < 0) {
entry->eventfd = eventfd(0, 0);
if (entry->eventfd < 0) {
ret = -errno;
vfio_dev_err(vdev, "cannot create eventfd");
return ret;
}
}
/* Allocate IRQ if necessary */
if (entry->gsi < 0) {
int ret = irq__add_msix_route(kvm, &entry->config.msg,
vdev->dev_hdr.dev_num << 3);
if (ret < 0) {
vfio_dev_err(vdev, "cannot create MSI-X route");
return ret;
}
entry->gsi = ret;
} else {
irq__update_msix_route(kvm, entry->gsi, &entry->config.msg);
}
/*
* MSI masking is unimplemented in VFIO, so we have to handle it by
* disabling/enabling IRQ route instead. We do it on the KVM side rather
* than VFIO, because:
* - it is 8x faster
* - it allows to decouple masking logic from capability state.
* - in masked state, after removing irqfd route, we could easily plug
* the eventfd in a local handler, in order to serve Pending Bit reads
* to the guest.
*
* So entry->phys_state is masked when there is no active irqfd route.
*/
if (msi_is_masked(entry->virt_state) == msi_is_masked(entry->phys_state))
return 0;
if (msi_is_masked(entry->phys_state)) {
ret = irq__add_irqfd(kvm, entry->gsi, entry->eventfd, -1);
if (ret < 0) {
vfio_dev_err(vdev, "cannot setup irqfd");
return ret;
}
} else {
irq__del_irqfd(kvm, entry->gsi, entry->eventfd);
}
msi_set_masked(entry->phys_state, msi_is_masked(entry->virt_state));
return 0;
}
static void vfio_pci_msix_pba_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
u32 len, u8 is_write, void *ptr)
{
struct vfio_pci_device *pdev = ptr;
struct vfio_pci_msix_pba *pba = &pdev->msix_pba;
u64 offset = addr - pba->guest_phys_addr;
struct vfio_device *vdev = container_of(pdev, struct vfio_device, pci);
if (offset >= pba->size) {
vfio_dev_err(vdev, "access outside of the MSIX PBA");
return;
}
if (is_write)
return;
/*
* TODO: emulate PBA. Hardware MSI-X is never masked, so reading the PBA
* is completely useless here. Note that Linux doesn't use PBA.
*/
if (pread(vdev->fd, data, len, pba->fd_offset + offset) != (ssize_t)len)
vfio_dev_err(vdev, "cannot access MSIX PBA\n");
}
static void vfio_pci_msix_table_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
u32 len, u8 is_write, void *ptr)
{
struct kvm *kvm = vcpu->kvm;
struct vfio_pci_msi_entry *entry;
struct vfio_pci_device *pdev = ptr;
struct vfio_device *vdev = container_of(pdev, struct vfio_device, pci);
u64 offset = addr - pdev->msix_table.guest_phys_addr;
if (offset >= pdev->msix_table.size) {
vfio_dev_err(vdev, "access outside of the MSI-X table");
return;
}
size_t vector = offset / PCI_MSIX_ENTRY_SIZE;
off_t field = offset % PCI_MSIX_ENTRY_SIZE;
/*
* PCI spec says that software must use aligned 4 or 8 bytes accesses
* for the MSI-X tables.
*/
if ((len != 4 && len != 8) || addr & (len - 1)) {
vfio_dev_warn(vdev, "invalid MSI-X table access");
return;
}
entry = &pdev->msix.entries[vector];
mutex_lock(&pdev->msix.mutex);
if (!is_write) {
memcpy(data, (void *)&entry->config + field, len);
goto out_unlock;
}
memcpy((void *)&entry->config + field, data, len);
/*
* Check if access touched the vector control register, which is at the
* end of the MSI-X entry.
*/
if (field + len <= PCI_MSIX_ENTRY_VECTOR_CTRL)
goto out_unlock;
msi_set_masked(entry->virt_state, entry->config.ctrl &
PCI_MSIX_ENTRY_CTRL_MASKBIT);
if (vfio_pci_update_msi_entry(kvm, vdev, entry) < 0)
/* Not much we can do here. */
vfio_dev_err(vdev, "failed to configure MSIX vector %zu", vector);
/* Update the physical capability if necessary */
if (vfio_pci_enable_msis(kvm, vdev, true))
vfio_dev_err(vdev, "cannot enable MSIX");
out_unlock:
mutex_unlock(&pdev->msix.mutex);
}
static void vfio_pci_msix_cap_write(struct kvm *kvm,
struct vfio_device *vdev, u16 off,
void *data, int sz)
{
struct vfio_pci_device *pdev = &vdev->pci;
off_t enable_pos = PCI_MSIX_FLAGS + 1;
bool enable;
u16 flags;
off -= pdev->msix.pos;
/* Check if access intersects with the MSI-X Enable bit */
if (off > enable_pos || off + sz <= enable_pos)
return;
/* Read byte that contains the Enable bit */
flags = *(u8 *)(data + enable_pos - off) << 8;
mutex_lock(&pdev->msix.mutex);
msi_set_masked(pdev->msix.virt_state, flags & PCI_MSIX_FLAGS_MASKALL);
enable = flags & PCI_MSIX_FLAGS_ENABLE;
msi_set_enabled(pdev->msix.virt_state, enable);
if (enable && vfio_pci_enable_msis(kvm, vdev, true))
vfio_dev_err(vdev, "cannot enable MSIX");
else if (!enable && vfio_pci_disable_msis(kvm, vdev, true))
vfio_dev_err(vdev, "cannot disable MSIX");
mutex_unlock(&pdev->msix.mutex);
}
static int vfio_pci_msi_vector_write(struct kvm *kvm, struct vfio_device *vdev,
u16 off, u8 *data, u32 sz)
{
size_t i;
u32 mask = 0;
size_t mask_pos, start, limit;
struct vfio_pci_msi_entry *entry;
struct vfio_pci_device *pdev = &vdev->pci;
struct msi_cap_64 *msi_cap_64 = PCI_CAP(&pdev->hdr, pdev->msi.pos);
if (!(msi_cap_64->ctrl & PCI_MSI_FLAGS_MASKBIT))
return 0;
if (msi_cap_64->ctrl & PCI_MSI_FLAGS_64BIT)
mask_pos = PCI_MSI_MASK_64;
else
mask_pos = PCI_MSI_MASK_32;
if (off >= mask_pos + 4 || off + sz <= mask_pos)
return 0;
/* Set mask to current state */
for (i = 0; i < pdev->msi.nr_entries; i++) {
entry = &pdev->msi.entries[i];
mask |= !!msi_is_masked(entry->virt_state) << i;
}
/* Update mask following the intersection of access and register */
start = max_t(size_t, off, mask_pos);
limit = min_t(size_t, off + sz, mask_pos + 4);
memcpy((void *)&mask + start - mask_pos, data + start - off,
limit - start);
/* Update states if necessary */
for (i = 0; i < pdev->msi.nr_entries; i++) {
bool masked = mask & (1 << i);
entry = &pdev->msi.entries[i];
if (masked != msi_is_masked(entry->virt_state)) {
msi_set_masked(entry->virt_state, masked);
vfio_pci_update_msi_entry(kvm, vdev, entry);
}
}
return 1;
}
static void vfio_pci_msi_cap_write(struct kvm *kvm, struct vfio_device *vdev,
u16 off, u8 *data, u32 sz)
{
u8 ctrl;
struct msi_msg msg;
size_t i, nr_vectors;
struct vfio_pci_msi_entry *entry;
struct vfio_pci_device *pdev = &vdev->pci;
struct msi_cap_64 *msi_cap_64 = PCI_CAP(&pdev->hdr, pdev->msi.pos);
off -= pdev->msi.pos;
mutex_lock(&pdev->msi.mutex);
/* Check if the guest is trying to update mask bits */
if (vfio_pci_msi_vector_write(kvm, vdev, off, data, sz))
goto out_unlock;
/* Only modify routes when guest pokes the enable bit */
if (off > PCI_MSI_FLAGS || off + sz <= PCI_MSI_FLAGS)
goto out_unlock;
ctrl = *(u8 *)(data + PCI_MSI_FLAGS - off);
msi_set_enabled(pdev->msi.virt_state, ctrl & PCI_MSI_FLAGS_ENABLE);
if (!msi_is_enabled(pdev->msi.virt_state)) {
vfio_pci_disable_msis(kvm, vdev, false);
goto out_unlock;
}
/* Create routes for the requested vectors */
nr_vectors = 1 << ((ctrl & PCI_MSI_FLAGS_QSIZE) >> 4);
msg.address_lo = msi_cap_64->address_lo;
if (msi_cap_64->ctrl & PCI_MSI_FLAGS_64BIT) {
msg.address_hi = msi_cap_64->address_hi;
msg.data = msi_cap_64->data;
} else {
struct msi_cap_32 *msi_cap_32 = (void *)msi_cap_64;
msg.address_hi = 0;
msg.data = msi_cap_32->data;
}
for (i = 0; i < nr_vectors; i++) {
entry = &pdev->msi.entries[i];
/*
* Set the MSI data value as required by the PCI local
* bus specifications, MSI capability, "Message Data".
*/
msg.data &= ~(nr_vectors - 1);
msg.data |= i;
entry->config.msg = msg;
vfio_pci_update_msi_entry(kvm, vdev, entry);
}
/* Update the physical capability if necessary */
if (vfio_pci_enable_msis(kvm, vdev, false))
vfio_dev_err(vdev, "cannot enable MSI");
out_unlock:
mutex_unlock(&pdev->msi.mutex);
}
static int vfio_pci_bar_activate(struct kvm *kvm,
struct pci_device_header *pci_hdr,
int bar_num, void *data)
{
struct vfio_device *vdev = data;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_pci_msix_pba *pba = &pdev->msix_pba;
struct vfio_pci_msix_table *table = &pdev->msix_table;
struct vfio_region *region;
u32 bar_addr;
bool has_msix;
int ret;
assert((u32)bar_num < vdev->info.num_regions);
region = &vdev->regions[bar_num];
has_msix = pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX;
bar_addr = pci__bar_address(pci_hdr, bar_num);
if (pci__bar_is_io(pci_hdr, bar_num))
region->port_base = bar_addr;
else
region->guest_phys_addr = bar_addr;
if (has_msix && (u32)bar_num == table->bar) {
table->guest_phys_addr = region->guest_phys_addr;
ret = kvm__register_mmio(kvm, table->guest_phys_addr,
table->size, false,
vfio_pci_msix_table_access, pdev);
/*
* The MSIX table and the PBA structure can share the same BAR,
* but for convenience we register different regions for mmio
* emulation. We want to we update both if they share the same
* BAR.
*/
if (ret < 0 || table->bar != pba->bar)
goto out;
}
if (has_msix && (u32)bar_num == pba->bar) {
if (pba->bar == table->bar)
pba->guest_phys_addr = table->guest_phys_addr + pba->bar_offset;
else
pba->guest_phys_addr = region->guest_phys_addr;
ret = kvm__register_mmio(kvm, pba->guest_phys_addr,
pba->size, false,
vfio_pci_msix_pba_access, pdev);
goto out;
}
ret = vfio_map_region(kvm, vdev, region);
out:
return ret;
}
static int vfio_pci_bar_deactivate(struct kvm *kvm,
struct pci_device_header *pci_hdr,
int bar_num, void *data)
{
struct vfio_device *vdev = data;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_pci_msix_pba *pba = &pdev->msix_pba;
struct vfio_pci_msix_table *table = &pdev->msix_table;
struct vfio_region *region;
bool has_msix, success;
int ret;
assert((u32)bar_num < vdev->info.num_regions);
region = &vdev->regions[bar_num];
has_msix = pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX;
if (has_msix && (u32)bar_num == table->bar) {
success = kvm__deregister_mmio(kvm, table->guest_phys_addr);
/* kvm__deregister_mmio fails when the region is not found. */
ret = (success ? 0 : -ENOENT);
/* See vfio_pci_bar_activate(). */
if (ret < 0 || table->bar!= pba->bar)
goto out;
}
if (has_msix && (u32)bar_num == pba->bar) {
success = kvm__deregister_mmio(kvm, pba->guest_phys_addr);
ret = (success ? 0 : -ENOENT);
goto out;
}
vfio_unmap_region(kvm, region);
ret = 0;
out:
return ret;
}
static void vfio_pci_cfg_read(struct kvm *kvm, struct pci_device_header *pci_hdr,
u16 offset, void *data, int sz)
{
struct vfio_region_info *info;
struct vfio_pci_device *pdev;
struct vfio_device *vdev;
char base[sz];
pdev = container_of(pci_hdr, struct vfio_pci_device, hdr);
vdev = container_of(pdev, struct vfio_device, pci);
info = &vdev->regions[VFIO_PCI_CONFIG_REGION_INDEX].info;
/* Dummy read in case of side-effects */
if (pread(vdev->fd, base, sz, info->offset + offset) != sz)
vfio_dev_warn(vdev, "failed to read %d bytes from Configuration Space at 0x%x",
sz, offset);
}
static void vfio_pci_cfg_write(struct kvm *kvm, struct pci_device_header *pci_hdr,
u16 offset, void *data, int sz)
{
struct vfio_region_info *info;
struct vfio_pci_device *pdev;
struct vfio_device *vdev;
u32 tmp;
/* Make sure a larger size will not overrun tmp on the stack. */
assert(sz <= 4);
if (offset == PCI_ROM_ADDRESS)
return;
pdev = container_of(pci_hdr, struct vfio_pci_device, hdr);
vdev = container_of(pdev, struct vfio_device, pci);
info = &vdev->regions[VFIO_PCI_CONFIG_REGION_INDEX].info;
if (pwrite(vdev->fd, data, sz, info->offset + offset) != sz)
vfio_dev_warn(vdev, "Failed to write %d bytes to Configuration Space at 0x%x",
sz, offset);
/* Handle MSI write now, since it might update the hardware capability */
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX)
vfio_pci_msix_cap_write(kvm, vdev, offset, data, sz);
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSI)
vfio_pci_msi_cap_write(kvm, vdev, offset, data, sz);
if (pread(vdev->fd, &tmp, sz, info->offset + offset) != sz)
vfio_dev_warn(vdev, "Failed to read %d bytes from Configuration Space at 0x%x",
sz, offset);
}
static ssize_t vfio_pci_msi_cap_size(struct msi_cap_64 *cap_hdr)
{
size_t size = 10;
if (cap_hdr->ctrl & PCI_MSI_FLAGS_64BIT)
size += 4;
if (cap_hdr->ctrl & PCI_MSI_FLAGS_MASKBIT)
size += 10;
return size;
}
static ssize_t vfio_pci_cap_size(struct pci_cap_hdr *cap_hdr)
{
switch (cap_hdr->type) {
case PCI_CAP_ID_MSIX:
return PCI_CAP_MSIX_SIZEOF;
case PCI_CAP_ID_MSI:
return vfio_pci_msi_cap_size((void *)cap_hdr);
case PCI_CAP_ID_EXP:
/*
* We don't emulate any of the link, slot and root complex
* properties, so ignore them.
*/
return PCI_CAP_EXP_RC_ENDPOINT_SIZEOF_V1;
default:
pr_err("unknown PCI capability 0x%x", cap_hdr->type);
return 0;
}
}
static int vfio_pci_add_cap(struct vfio_device *vdev, u8 *virt_hdr,
struct pci_cap_hdr *cap, off_t pos)
{
struct pci_cap_hdr *last;
struct pci_device_header *hdr = &vdev->pci.hdr;
cap->next = 0;
if (!hdr->capabilities) {
hdr->capabilities = pos;
hdr->status |= PCI_STATUS_CAP_LIST;
} else {
last = PCI_CAP(virt_hdr, hdr->capabilities);
while (last->next)
last = PCI_CAP(virt_hdr, last->next);
last->next = pos;
}
memcpy(virt_hdr + pos, cap, vfio_pci_cap_size(cap));
return 0;
}
static int vfio_pci_parse_caps(struct vfio_device *vdev)
{
int ret;
size_t size;
u16 pos, next;
struct pci_cap_hdr *cap;
u8 virt_hdr[PCI_DEV_CFG_SIZE_LEGACY];
struct vfio_pci_device *pdev = &vdev->pci;
if (!(pdev->hdr.status & PCI_STATUS_CAP_LIST))
return 0;
memset(virt_hdr, 0, PCI_DEV_CFG_SIZE_LEGACY);
pos = pdev->hdr.capabilities & ~3;
pdev->hdr.status &= ~PCI_STATUS_CAP_LIST;
pdev->hdr.capabilities = 0;
for (; pos; pos = next) {
cap = PCI_CAP(&pdev->hdr, pos);
next = cap->next;
switch (cap->type) {
case PCI_CAP_ID_MSIX:
ret = vfio_pci_add_cap(vdev, virt_hdr, cap, pos);
if (ret)
return ret;
pdev->msix.pos = pos;
pdev->irq_modes |= VFIO_PCI_IRQ_MODE_MSIX;
break;
case PCI_CAP_ID_MSI:
ret = vfio_pci_add_cap(vdev, virt_hdr, cap, pos);
if (ret)
return ret;
pdev->msi.pos = pos;
pdev->irq_modes |= VFIO_PCI_IRQ_MODE_MSI;
break;
case PCI_CAP_ID_EXP:
if (!arch_has_pci_exp())
continue;
ret = vfio_pci_add_cap(vdev, virt_hdr, cap, pos);
if (ret)
return ret;
break;
}
}
/* Wipe remaining capabilities */
pos = PCI_STD_HEADER_SIZEOF;
size = PCI_DEV_CFG_SIZE_LEGACY - PCI_STD_HEADER_SIZEOF;
memcpy((void *)&pdev->hdr + pos, virt_hdr + pos, size);
return 0;
}
static int vfio_pci_parse_cfg_space(struct vfio_device *vdev)
{
ssize_t sz = PCI_DEV_CFG_SIZE_LEGACY;
struct vfio_region_info *info;
struct vfio_pci_device *pdev = &vdev->pci;
if (vdev->info.num_regions < VFIO_PCI_CONFIG_REGION_INDEX) {
vfio_dev_err(vdev, "Config Space not found");
return -ENODEV;
}
info = &vdev->regions[VFIO_PCI_CONFIG_REGION_INDEX].info;
*info = (struct vfio_region_info) {
.argsz = sizeof(*info),
.index = VFIO_PCI_CONFIG_REGION_INDEX,
};
ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, info);
if (!info->size) {
vfio_dev_err(vdev, "Config Space has size zero?!");
return -EINVAL;
}
/* Read standard headers and capabilities */
if (pread(vdev->fd, &pdev->hdr, sz, info->offset) != sz) {
vfio_dev_err(vdev, "failed to read %zd bytes of Config Space", sz);
return -EIO;
}
/* Strip bit 7, that indicates multifunction */
pdev->hdr.header_type &= 0x7f;
if (pdev->hdr.header_type != PCI_HEADER_TYPE_NORMAL) {
vfio_dev_err(vdev, "unsupported header type %u",
pdev->hdr.header_type);
return -EOPNOTSUPP;
}
if (pdev->hdr.irq_pin)
pdev->irq_modes |= VFIO_PCI_IRQ_MODE_INTX;
vfio_pci_parse_caps(vdev);
return 0;
}
static int vfio_pci_fixup_cfg_space(struct vfio_device *vdev)
{
int i;
u64 base;
ssize_t hdr_sz;
struct msix_cap *msix;
struct vfio_region_info *info;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_region *region;
/* Initialise the BARs */
for (i = VFIO_PCI_BAR0_REGION_INDEX; i <= VFIO_PCI_BAR5_REGION_INDEX; ++i) {
if ((u32)i == vdev->info.num_regions)
break;
region = &vdev->regions[i];
/* Construct a fake reg to match what we've mapped. */
if (region->is_ioport) {
base = (region->port_base & PCI_BASE_ADDRESS_IO_MASK) |
PCI_BASE_ADDRESS_SPACE_IO;
} else {
base = (region->guest_phys_addr &
PCI_BASE_ADDRESS_MEM_MASK) |
PCI_BASE_ADDRESS_SPACE_MEMORY;
}
pdev->hdr.bar[i] = base;
if (!base)
continue;
pdev->hdr.bar_size[i] = region->info.size;
}
/* I really can't be bothered to support cardbus. */
pdev->hdr.card_bus = 0;
/*
* Nuke the expansion ROM for now. If we want to do this properly,
* we need to save its size somewhere and map into the guest.
*/
pdev->hdr.exp_rom_bar = 0;
/* Plumb in our fake MSI-X capability, if we have it. */
msix = pci_find_cap(&pdev->hdr, PCI_CAP_ID_MSIX);
if (msix) {
/* Add a shortcut to the PBA region for the MMIO handler */
int pba_index = VFIO_PCI_BAR0_REGION_INDEX + pdev->msix_pba.bar;
u32 pba_bar_offset = msix->pba_offset & PCI_MSIX_PBA_OFFSET;
pdev->msix_pba.fd_offset = vdev->regions[pba_index].info.offset +
pba_bar_offset;
/* Tidy up the capability */
msix->table_offset &= PCI_MSIX_TABLE_BIR;
if (pdev->msix_table.bar == pdev->msix_pba.bar) {
/* Keep the same offset as the MSIX cap. */
pdev->msix_pba.bar_offset = pba_bar_offset;
} else {
/* PBA is at the start of the BAR. */
msix->pba_offset &= PCI_MSIX_PBA_BIR;
pdev->msix_pba.bar_offset = 0;
}
}
/* Install our fake Configuration Space */
info = &vdev->regions[VFIO_PCI_CONFIG_REGION_INDEX].info;
/*
* We don't touch the extended configuration space, let's be cautious
* and not overwrite it all with zeros, or bad things might happen.
*/
hdr_sz = PCI_DEV_CFG_SIZE_LEGACY;
if (pwrite(vdev->fd, &pdev->hdr, hdr_sz, info->offset) != hdr_sz) {
vfio_dev_err(vdev, "failed to write %zd bytes to Config Space",
hdr_sz);
return -EIO;
}
/* Register callbacks for cfg accesses */
pdev->hdr.cfg_ops = (struct pci_config_operations) {
.read = vfio_pci_cfg_read,
.write = vfio_pci_cfg_write,
};
pdev->hdr.irq_type = IRQ_TYPE_LEVEL_HIGH;
return 0;
}
static int vfio_pci_get_region_info(struct vfio_device *vdev, u32 index,
struct vfio_region_info *info)
{
int ret;
*info = (struct vfio_region_info) {
.argsz = sizeof(*info),
.index = index,
};
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, info);
if (ret) {
ret = -errno;
vfio_dev_err(vdev, "cannot get info for BAR %u", index);
return ret;
}
if (info->size && !is_power_of_two(info->size)) {
vfio_dev_err(vdev, "region is not power of two: 0x%llx",
info->size);
return -EINVAL;
}
return 0;
}
static int vfio_pci_create_msix_table(struct kvm *kvm, struct vfio_device *vdev)
{
int ret;
size_t i;
size_t map_size;
size_t nr_entries;
struct vfio_pci_msi_entry *entries;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_pci_msix_pba *pba = &pdev->msix_pba;
struct vfio_pci_msix_table *table = &pdev->msix_table;
struct msix_cap *msix = PCI_CAP(&pdev->hdr, pdev->msix.pos);
struct vfio_region_info info;
table->bar = msix->table_offset & PCI_MSIX_TABLE_BIR;
pba->bar = msix->pba_offset & PCI_MSIX_TABLE_BIR;
nr_entries = (msix->ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
/* MSIX table and PBA must support QWORD accesses. */
table->size = ALIGN(nr_entries * PCI_MSIX_ENTRY_SIZE, 8);
pba->size = ALIGN(DIV_ROUND_UP(nr_entries, 64), 8);
entries = calloc(nr_entries, sizeof(struct vfio_pci_msi_entry));
if (!entries)
return -ENOMEM;
for (i = 0; i < nr_entries; i++)
entries[i].config.ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
ret = vfio_pci_get_region_info(vdev, table->bar, &info);
if (ret)
return ret;
if (!info.size)
return -EINVAL;
map_size = ALIGN(info.size, MAX_PAGE_SIZE);
table->guest_phys_addr = pci_get_mmio_block(map_size);
if (!table->guest_phys_addr) {
pr_err("cannot allocate MMIO space");
ret = -ENOMEM;
goto out_free;
}
/*
* We could map the physical PBA directly into the guest, but it's
* likely smaller than a page, and we can only hand full pages to the
* guest. Even though the PCI spec disallows sharing a page used for
* MSI-X with any other resource, it allows to share the same page
* between MSI-X table and PBA. For the sake of isolation, create a
* virtual PBA.
*/
if (table->bar == pba->bar) {
u32 pba_bar_offset = msix->pba_offset & PCI_MSIX_PBA_OFFSET;
/* Sanity checks. */
if (table->size > pba_bar_offset)
die("MSIX table overlaps with PBA");
if (pba_bar_offset + pba->size > info.size)
die("PBA exceeds the size of the region");
pba->guest_phys_addr = table->guest_phys_addr + pba_bar_offset;
} else {
ret = vfio_pci_get_region_info(vdev, pba->bar, &info);
if (ret)
return ret;
if (!info.size)
return -EINVAL;
map_size = ALIGN(info.size, MAX_PAGE_SIZE);
pba->guest_phys_addr = pci_get_mmio_block(map_size);
if (!pba->guest_phys_addr) {
pr_err("cannot allocate MMIO space");
ret = -ENOMEM;
goto out_free;
}
}
pdev->msix.entries = entries;
pdev->msix.nr_entries = nr_entries;
return 0;
out_free:
free(entries);
return ret;
}
static int vfio_pci_create_msi_cap(struct kvm *kvm, struct vfio_pci_device *pdev)
{
struct msi_cap_64 *cap = PCI_CAP(&pdev->hdr, pdev->msi.pos);
pdev->msi.nr_entries = 1 << ((cap->ctrl & PCI_MSI_FLAGS_QMASK) >> 1),
pdev->msi.entries = calloc(pdev->msi.nr_entries,
sizeof(struct vfio_pci_msi_entry));
if (!pdev->msi.entries)
return -ENOMEM;
return 0;
}
static int vfio_pci_configure_bar(struct kvm *kvm, struct vfio_device *vdev,
size_t nr)
{
int ret;
u32 bar;
size_t map_size;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_region *region;
if (nr >= vdev->info.num_regions)
return 0;
region = &vdev->regions[nr];
bar = pdev->hdr.bar[nr];
region->vdev = vdev;
region->is_ioport = !!(bar & PCI_BASE_ADDRESS_SPACE_IO);
ret = vfio_pci_get_region_info(vdev, nr, &region->info);
if (ret)
return ret;
/* Ignore invalid or unimplemented regions */
if (!region->info.size)
return 0;
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX) {
/* Trap and emulate MSI-X table */
if (nr == pdev->msix_table.bar) {
region->guest_phys_addr = pdev->msix_table.guest_phys_addr;
return 0;
} else if (nr == pdev->msix_pba.bar) {
region->guest_phys_addr = pdev->msix_pba.guest_phys_addr;
return 0;
}
}
if (region->is_ioport) {
region->port_base = pci_get_io_port_block(region->info.size);
} else {
/* Grab some MMIO space in the guest */
map_size = ALIGN(region->info.size, PAGE_SIZE);
region->guest_phys_addr = pci_get_mmio_block(map_size);
}
return 0;
}
static int vfio_pci_configure_dev_regions(struct kvm *kvm,
struct vfio_device *vdev)
{
int ret;
u32 bar;
size_t i;
bool is_64bit = false;
struct vfio_pci_device *pdev = &vdev->pci;
ret = vfio_pci_parse_cfg_space(vdev);
if (ret)
return ret;
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX) {
ret = vfio_pci_create_msix_table(kvm, vdev);
if (ret)
return ret;
}
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSI) {
ret = vfio_pci_create_msi_cap(kvm, pdev);
if (ret)
return ret;
}
for (i = VFIO_PCI_BAR0_REGION_INDEX; i <= VFIO_PCI_BAR5_REGION_INDEX; ++i) {
/* Ignore top half of 64-bit BAR */
if (is_64bit) {
is_64bit = false;
continue;
}
ret = vfio_pci_configure_bar(kvm, vdev, i);
if (ret)
return ret;
bar = pdev->hdr.bar[i];
is_64bit = (bar & PCI_BASE_ADDRESS_SPACE) ==
PCI_BASE_ADDRESS_SPACE_MEMORY &&
bar & PCI_BASE_ADDRESS_MEM_TYPE_64;
}
/* We've configured the BARs, fake up a Configuration Space */
ret = vfio_pci_fixup_cfg_space(vdev);
if (ret)
return ret;
return pci__register_bar_regions(kvm, &pdev->hdr, vfio_pci_bar_activate,
vfio_pci_bar_deactivate, vdev);
}
/*
* Attempt to update the FD limit, if opening an eventfd for each IRQ vector
* would hit the limit. Which is likely to happen when a device uses 2048 MSIs.
*/
static int vfio_pci_reserve_irq_fds(size_t num)
{
/*
* I counted around 27 fds under normal load. Let's add 100 for good
* measure.
*/
static size_t needed = 128;
struct rlimit fd_limit, new_limit;
needed += num;
if (getrlimit(RLIMIT_NOFILE, &fd_limit)) {
perror("getrlimit(RLIMIT_NOFILE)");
return 0;
}
if (fd_limit.rlim_cur >= needed)
return 0;
new_limit.rlim_cur = needed;
if (fd_limit.rlim_max < needed)
/* Try to bump hard limit (root only) */
new_limit.rlim_max = needed;
else
new_limit.rlim_max = fd_limit.rlim_max;
if (setrlimit(RLIMIT_NOFILE, &new_limit)) {
perror("setrlimit(RLIMIT_NOFILE)");
pr_warning("not enough FDs for full MSI-X support (estimated need: %zu)",
(size_t)(needed - fd_limit.rlim_cur));
}
return 0;
}
static int vfio_pci_init_msis(struct kvm *kvm, struct vfio_device *vdev,
struct vfio_pci_msi_common *msis)
{
int ret;
size_t i;
int *eventfds;
size_t irq_set_size;
struct vfio_pci_msi_entry *entry;
size_t nr_entries = msis->nr_entries;
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_IRQ_INFO, &msis->info);
if (ret || msis->info.count == 0) {
vfio_dev_err(vdev, "no MSI reported by VFIO");
return -ENODEV;
}
if (!(msis->info.flags & VFIO_IRQ_INFO_EVENTFD)) {
vfio_dev_err(vdev, "interrupt not EVENTFD capable");
return -EINVAL;
}
if (msis->info.count != nr_entries) {
vfio_dev_err(vdev, "invalid number of MSIs reported by VFIO");
return -EINVAL;
}
mutex_init(&msis->mutex);
vfio_pci_reserve_irq_fds(nr_entries);
irq_set_size = sizeof(struct vfio_irq_set) + nr_entries * sizeof(int);
msis->irq_set = malloc(irq_set_size);
if (!msis->irq_set)
return -ENOMEM;
*msis->irq_set = (struct vfio_irq_set) {
.argsz = irq_set_size,
.flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER,
.index = msis->info.index,
.start = 0,
.count = nr_entries,
};
eventfds = (void *)msis->irq_set + sizeof(struct vfio_irq_set);
for (i = 0; i < nr_entries; i++) {
entry = &msis->entries[i];
entry->gsi = -1;
entry->eventfd = -1;
msi_set_masked(entry->virt_state, true);
msi_set_masked(entry->phys_state, true);
eventfds[i] = -1;
}
return 0;
}
static void vfio_pci_disable_intx(struct kvm *kvm, struct vfio_device *vdev)
{
struct vfio_pci_device *pdev = &vdev->pci;
int gsi = pdev->intx_gsi;
struct vfio_irq_set irq_set = {
.argsz = sizeof(irq_set),
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
.index = VFIO_PCI_INTX_IRQ_INDEX,
};
if (pdev->intx_fd == -1)
return;
pr_debug("user requested MSI, disabling INTx %d", gsi);
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
irq__del_irqfd(kvm, gsi, pdev->intx_fd);
close(pdev->intx_fd);
close(pdev->unmask_fd);
pdev->intx_fd = -1;
}
static int vfio_pci_enable_intx(struct kvm *kvm, struct vfio_device *vdev)
{
int ret;
int trigger_fd, unmask_fd;
union vfio_irq_eventfd trigger;
union vfio_irq_eventfd unmask;
struct vfio_pci_device *pdev = &vdev->pci;
int gsi = pdev->intx_gsi;
if (pdev->intx_fd != -1)
return 0;
/*
* PCI IRQ is level-triggered, so we use two eventfds. trigger_fd
* signals an interrupt from host to guest, and unmask_fd signals the
* deassertion of the line from guest to host.
*/
trigger_fd = eventfd(0, 0);
if (trigger_fd < 0) {
vfio_dev_err(vdev, "failed to create trigger eventfd");
return trigger_fd;
}
unmask_fd = eventfd(0, 0);
if (unmask_fd < 0) {
vfio_dev_err(vdev, "failed to create unmask eventfd");
close(trigger_fd);
return unmask_fd;
}
ret = irq__add_irqfd(kvm, gsi, trigger_fd, unmask_fd);
if (ret)
goto err_close;
trigger.irq = (struct vfio_irq_set) {
.argsz = sizeof(trigger),
.flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER,
.index = VFIO_PCI_INTX_IRQ_INDEX,
.start = 0,
.count = 1,
};
set_vfio_irq_eventd_payload(&trigger, trigger_fd);
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &trigger);
if (ret < 0) {
vfio_dev_err(vdev, "failed to setup VFIO IRQ");
goto err_delete_line;
}
unmask.irq = (struct vfio_irq_set) {
.argsz = sizeof(unmask),
.flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK,
.index = VFIO_PCI_INTX_IRQ_INDEX,
.start = 0,
.count = 1,
};
set_vfio_irq_eventd_payload(&unmask, unmask_fd);
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &unmask);
if (ret < 0) {
vfio_dev_err(vdev, "failed to setup unmask IRQ");
goto err_remove_event;
}
pdev->intx_fd = trigger_fd;
pdev->unmask_fd = unmask_fd;
return 0;
err_remove_event:
/* Remove trigger event */
trigger.irq.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER;
trigger.irq.count = 0;
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &trigger);
err_delete_line:
irq__del_irqfd(kvm, gsi, trigger_fd);
err_close:
close(trigger_fd);
close(unmask_fd);
return ret;
}
static int vfio_pci_init_intx(struct kvm *kvm, struct vfio_device *vdev)
{
int ret;
struct vfio_pci_device *pdev = &vdev->pci;
struct vfio_irq_info irq_info = {
.argsz = sizeof(irq_info),
.index = VFIO_PCI_INTX_IRQ_INDEX,
};
vfio_pci_reserve_irq_fds(2);
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
if (ret || irq_info.count == 0) {
vfio_dev_err(vdev, "no INTx reported by VFIO");
return -ENODEV;
}
if (!(irq_info.flags & VFIO_IRQ_INFO_EVENTFD)) {
vfio_dev_err(vdev, "interrupt not eventfd capable");
return -EINVAL;
}
if (!(irq_info.flags & VFIO_IRQ_INFO_AUTOMASKED)) {
vfio_dev_err(vdev, "INTx interrupt not AUTOMASKED");
return -EINVAL;
}
/* Guest is going to ovewrite our irq_line... */
pdev->intx_gsi = pdev->hdr.irq_line - KVM_IRQ_OFFSET;
pdev->intx_fd = -1;
return 0;
}
static int vfio_pci_configure_dev_irqs(struct kvm *kvm, struct vfio_device *vdev)
{
int ret = 0;
struct vfio_pci_device *pdev = &vdev->pci;
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSIX) {
pdev->msix.info = (struct vfio_irq_info) {
.argsz = sizeof(pdev->msix.info),
.index = VFIO_PCI_MSIX_IRQ_INDEX,
};
ret = vfio_pci_init_msis(kvm, vdev, &pdev->msix);
if (ret)
return ret;
}
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_MSI) {
pdev->msi.info = (struct vfio_irq_info) {
.argsz = sizeof(pdev->msi.info),
.index = VFIO_PCI_MSI_IRQ_INDEX,
};
ret = vfio_pci_init_msis(kvm, vdev, &pdev->msi);
if (ret)
return ret;
}
if (pdev->irq_modes & VFIO_PCI_IRQ_MODE_INTX) {
pci__assign_irq(&vdev->pci.hdr);
ret = vfio_pci_init_intx(kvm, vdev);
if (ret)
return ret;
ret = vfio_pci_enable_intx(kvm, vdev);
}
return ret;
}
int vfio_pci_setup_device(struct kvm *kvm, struct vfio_device *vdev)
{
int ret;
ret = vfio_pci_configure_dev_regions(kvm, vdev);
if (ret) {
vfio_dev_err(vdev, "failed to configure regions");
return ret;
}
vdev->dev_hdr = (struct device_header) {
.bus_type = DEVICE_BUS_PCI,
.data = &vdev->pci.hdr,
};
ret = device__register(&vdev->dev_hdr);
if (ret) {
vfio_dev_err(vdev, "failed to register VFIO device");
return ret;
}
ret = vfio_pci_configure_dev_irqs(kvm, vdev);
if (ret) {
vfio_dev_err(vdev, "failed to configure IRQs");
return ret;
}
return 0;
}
void vfio_pci_teardown_device(struct kvm *kvm, struct vfio_device *vdev)
{
size_t i;
struct vfio_pci_device *pdev = &vdev->pci;
for (i = 0; i < vdev->info.num_regions; i++)
vfio_unmap_region(kvm, &vdev->regions[i]);
device__unregister(&vdev->dev_hdr);
free(pdev->msix.irq_set);
free(pdev->msix.entries);
free(pdev->msi.irq_set);
free(pdev->msi.entries);
}