| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * x86 SMP booting functions |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> |
| * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| * Copyright 2001 Andi Kleen, SuSE Labs. |
| * |
| * Much of the core SMP work is based on previous work by Thomas Radke, to |
| * whom a great many thanks are extended. |
| * |
| * Thanks to Intel for making available several different Pentium, |
| * Pentium Pro and Pentium-II/Xeon MP machines. |
| * Original development of Linux SMP code supported by Caldera. |
| * |
| * Fixes |
| * Felix Koop : NR_CPUS used properly |
| * Jose Renau : Handle single CPU case. |
| * Alan Cox : By repeated request 8) - Total BogoMIPS report. |
| * Greg Wright : Fix for kernel stacks panic. |
| * Erich Boleyn : MP v1.4 and additional changes. |
| * Matthias Sattler : Changes for 2.1 kernel map. |
| * Michel Lespinasse : Changes for 2.1 kernel map. |
| * Michael Chastain : Change trampoline.S to gnu as. |
| * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| * Ingo Molnar : Added APIC timers, based on code |
| * from Jose Renau |
| * Ingo Molnar : various cleanups and rewrites |
| * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| * Andi Kleen : Changed for SMP boot into long mode. |
| * Martin J. Bligh : Added support for multi-quad systems |
| * Dave Jones : Report invalid combinations of Athlon CPUs. |
| * Rusty Russell : Hacked into shape for new "hotplug" boot process. |
| * Andi Kleen : Converted to new state machine. |
| * Ashok Raj : CPU hotplug support |
| * Glauber Costa : i386 and x86_64 integration |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/sched/topology.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/percpu.h> |
| #include <linux/memblock.h> |
| #include <linux/err.h> |
| #include <linux/nmi.h> |
| #include <linux/tboot.h> |
| #include <linux/gfp.h> |
| #include <linux/cpuidle.h> |
| #include <linux/kexec.h> |
| #include <linux/numa.h> |
| #include <linux/pgtable.h> |
| #include <linux/overflow.h> |
| #include <linux/stackprotector.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/acpi.h> |
| |
| #include <asm/acpi.h> |
| #include <asm/cacheinfo.h> |
| #include <asm/desc.h> |
| #include <asm/nmi.h> |
| #include <asm/irq.h> |
| #include <asm/realmode.h> |
| #include <asm/cpu.h> |
| #include <asm/numa.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mtrr.h> |
| #include <asm/mwait.h> |
| #include <asm/apic.h> |
| #include <asm/io_apic.h> |
| #include <asm/fpu/api.h> |
| #include <asm/setup.h> |
| #include <asm/uv/uv.h> |
| #include <asm/microcode.h> |
| #include <asm/i8259.h> |
| #include <asm/misc.h> |
| #include <asm/qspinlock.h> |
| #include <asm/intel-family.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/hw_irq.h> |
| #include <asm/stackprotector.h> |
| #include <asm/sev.h> |
| #include <asm/spec-ctrl.h> |
| |
| /* representing HT siblings of each logical CPU */ |
| DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| |
| /* representing HT and core siblings of each logical CPU */ |
| DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
| |
| /* representing HT, core, and die siblings of each logical CPU */ |
| DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_die_map); |
| |
| /* CPUs which are the primary SMT threads */ |
| struct cpumask __cpu_primary_thread_mask __read_mostly; |
| |
| /* Representing CPUs for which sibling maps can be computed */ |
| static cpumask_var_t cpu_sibling_setup_mask; |
| |
| struct mwait_cpu_dead { |
| unsigned int control; |
| unsigned int status; |
| }; |
| |
| #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF |
| #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD |
| |
| /* |
| * Cache line aligned data for mwait_play_dead(). Separate on purpose so |
| * that it's unlikely to be touched by other CPUs. |
| */ |
| static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); |
| |
| /* Maximum number of SMT threads on any online core */ |
| int __read_mostly __max_smt_threads = 1; |
| |
| /* Flag to indicate if a complete sched domain rebuild is required */ |
| bool x86_topology_update; |
| |
| int arch_update_cpu_topology(void) |
| { |
| int retval = x86_topology_update; |
| |
| x86_topology_update = false; |
| return retval; |
| } |
| |
| static unsigned int smpboot_warm_reset_vector_count; |
| |
| static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| if (!smpboot_warm_reset_vector_count++) { |
| CMOS_WRITE(0xa, 0xf); |
| *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4; |
| *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf; |
| } |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| } |
| |
| static inline void smpboot_restore_warm_reset_vector(void) |
| { |
| unsigned long flags; |
| |
| /* |
| * Paranoid: Set warm reset code and vector here back |
| * to default values. |
| */ |
| spin_lock_irqsave(&rtc_lock, flags); |
| if (!--smpboot_warm_reset_vector_count) { |
| CMOS_WRITE(0, 0xf); |
| *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; |
| } |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| } |
| |
| /* Run the next set of setup steps for the upcoming CPU */ |
| static void ap_starting(void) |
| { |
| int cpuid = smp_processor_id(); |
| |
| /* Mop up eventual mwait_play_dead() wreckage */ |
| this_cpu_write(mwait_cpu_dead.status, 0); |
| this_cpu_write(mwait_cpu_dead.control, 0); |
| |
| /* |
| * If woken up by an INIT in an 82489DX configuration the alive |
| * synchronization guarantees that the CPU does not reach this |
| * point before an INIT_deassert IPI reaches the local APIC, so it |
| * is now safe to touch the local APIC. |
| * |
| * Set up this CPU, first the APIC, which is probably redundant on |
| * most boards. |
| */ |
| apic_ap_setup(); |
| |
| /* Save the processor parameters. */ |
| smp_store_cpu_info(cpuid); |
| |
| /* |
| * The topology information must be up to date before |
| * notify_cpu_starting(). |
| */ |
| set_cpu_sibling_map(cpuid); |
| |
| ap_init_aperfmperf(); |
| |
| pr_debug("Stack at about %p\n", &cpuid); |
| |
| wmb(); |
| |
| /* |
| * This runs the AP through all the cpuhp states to its target |
| * state CPUHP_ONLINE. |
| */ |
| notify_cpu_starting(cpuid); |
| } |
| |
| static void ap_calibrate_delay(void) |
| { |
| /* |
| * Calibrate the delay loop and update loops_per_jiffy in cpu_data. |
| * smp_store_cpu_info() stored a value that is close but not as |
| * accurate as the value just calculated. |
| * |
| * As this is invoked after the TSC synchronization check, |
| * calibrate_delay_is_known() will skip the calibration routine |
| * when TSC is synchronized across sockets. |
| */ |
| calibrate_delay(); |
| cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy; |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| static void notrace start_secondary(void *unused) |
| { |
| /* |
| * Don't put *anything* except direct CPU state initialization |
| * before cpu_init(), SMP booting is too fragile that we want to |
| * limit the things done here to the most necessary things. |
| */ |
| cr4_init(); |
| |
| /* |
| * 32-bit specific. 64-bit reaches this code with the correct page |
| * table established. Yet another historical divergence. |
| */ |
| if (IS_ENABLED(CONFIG_X86_32)) { |
| /* switch away from the initial page table */ |
| load_cr3(swapper_pg_dir); |
| __flush_tlb_all(); |
| } |
| |
| cpu_init_exception_handling(false); |
| |
| /* |
| * Load the microcode before reaching the AP alive synchronization |
| * point below so it is not part of the full per CPU serialized |
| * bringup part when "parallel" bringup is enabled. |
| * |
| * That's even safe when hyperthreading is enabled in the CPU as |
| * the core code starts the primary threads first and leaves the |
| * secondary threads waiting for SIPI. Loading microcode on |
| * physical cores concurrently is a safe operation. |
| * |
| * This covers both the Intel specific issue that concurrent |
| * microcode loading on SMT siblings must be prohibited and the |
| * vendor independent issue`that microcode loading which changes |
| * CPUID, MSRs etc. must be strictly serialized to maintain |
| * software state correctness. |
| */ |
| load_ucode_ap(); |
| |
| /* |
| * Synchronization point with the hotplug core. Sets this CPUs |
| * synchronization state to ALIVE and spin-waits for the control CPU to |
| * release this CPU for further bringup. |
| */ |
| cpuhp_ap_sync_alive(); |
| |
| cpu_init(); |
| fpu__init_cpu(); |
| rcutree_report_cpu_starting(raw_smp_processor_id()); |
| x86_cpuinit.early_percpu_clock_init(); |
| |
| ap_starting(); |
| |
| /* Check TSC synchronization with the control CPU. */ |
| check_tsc_sync_target(); |
| |
| /* |
| * Calibrate the delay loop after the TSC synchronization check. |
| * This allows to skip the calibration when TSC is synchronized |
| * across sockets. |
| */ |
| ap_calibrate_delay(); |
| |
| speculative_store_bypass_ht_init(); |
| |
| /* |
| * Lock vector_lock, set CPU online and bring the vector |
| * allocator online. Online must be set with vector_lock held |
| * to prevent a concurrent irq setup/teardown from seeing a |
| * half valid vector space. |
| */ |
| lock_vector_lock(); |
| set_cpu_online(smp_processor_id(), true); |
| lapic_online(); |
| unlock_vector_lock(); |
| x86_platform.nmi_init(); |
| |
| /* enable local interrupts */ |
| local_irq_enable(); |
| |
| x86_cpuinit.setup_percpu_clockev(); |
| |
| wmb(); |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| void smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(id); |
| |
| /* Copy boot_cpu_data only on the first bringup */ |
| if (!c->initialized) |
| *c = boot_cpu_data; |
| c->cpu_index = id; |
| /* |
| * During boot time, CPU0 has this setup already. Save the info when |
| * bringing up an AP. |
| */ |
| identify_secondary_cpu(c); |
| c->initialized = true; |
| } |
| |
| static bool |
| topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| int cpu1 = c->cpu_index, cpu2 = o->cpu_index; |
| |
| return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); |
| } |
| |
| static bool |
| topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) |
| { |
| int cpu1 = c->cpu_index, cpu2 = o->cpu_index; |
| |
| return !WARN_ONCE(!topology_same_node(c, o), |
| "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " |
| "[node: %d != %d]. Ignoring dependency.\n", |
| cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); |
| } |
| |
| #define link_mask(mfunc, c1, c2) \ |
| do { \ |
| cpumask_set_cpu((c1), mfunc(c2)); \ |
| cpumask_set_cpu((c2), mfunc(c1)); \ |
| } while (0) |
| |
| static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| int cpu1 = c->cpu_index, cpu2 = o->cpu_index; |
| |
| if (c->topo.pkg_id == o->topo.pkg_id && |
| c->topo.die_id == o->topo.die_id && |
| c->topo.amd_node_id == o->topo.amd_node_id && |
| per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) { |
| if (c->topo.core_id == o->topo.core_id) |
| return topology_sane(c, o, "smt"); |
| |
| if ((c->topo.cu_id != 0xff) && |
| (o->topo.cu_id != 0xff) && |
| (c->topo.cu_id == o->topo.cu_id)) |
| return topology_sane(c, o, "smt"); |
| } |
| |
| } else if (c->topo.pkg_id == o->topo.pkg_id && |
| c->topo.die_id == o->topo.die_id && |
| c->topo.core_id == o->topo.core_id) { |
| return topology_sane(c, o, "smt"); |
| } |
| |
| return false; |
| } |
| |
| static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id) |
| return false; |
| |
| if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1) |
| return c->topo.amd_node_id == o->topo.amd_node_id; |
| |
| return true; |
| } |
| |
| static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| int cpu1 = c->cpu_index, cpu2 = o->cpu_index; |
| |
| /* If the arch didn't set up l2c_id, fall back to SMT */ |
| if (per_cpu_l2c_id(cpu1) == BAD_APICID) |
| return match_smt(c, o); |
| |
| /* Do not match if L2 cache id does not match: */ |
| if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2)) |
| return false; |
| |
| return topology_sane(c, o, "l2c"); |
| } |
| |
| /* |
| * Unlike the other levels, we do not enforce keeping a |
| * multicore group inside a NUMA node. If this happens, we will |
| * discard the MC level of the topology later. |
| */ |
| static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| if (c->topo.pkg_id == o->topo.pkg_id) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. |
| * |
| * Any Intel CPU that has multiple nodes per package and does not |
| * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. |
| * |
| * When in SNC mode, these CPUs enumerate an LLC that is shared |
| * by multiple NUMA nodes. The LLC is shared for off-package data |
| * access but private to the NUMA node (half of the package) for |
| * on-package access. CPUID (the source of the information about |
| * the LLC) can only enumerate the cache as shared or unshared, |
| * but not this particular configuration. |
| */ |
| |
| static const struct x86_cpu_id intel_cod_cpu[] = { |
| X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */ |
| X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */ |
| X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */ |
| {} |
| }; |
| |
| static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) |
| { |
| const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); |
| int cpu1 = c->cpu_index, cpu2 = o->cpu_index; |
| bool intel_snc = id && id->driver_data; |
| |
| /* Do not match if we do not have a valid APICID for cpu: */ |
| if (per_cpu_llc_id(cpu1) == BAD_APICID) |
| return false; |
| |
| /* Do not match if LLC id does not match: */ |
| if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2)) |
| return false; |
| |
| /* |
| * Allow the SNC topology without warning. Return of false |
| * means 'c' does not share the LLC of 'o'. This will be |
| * reflected to userspace. |
| */ |
| if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) |
| return false; |
| |
| return topology_sane(c, o, "llc"); |
| } |
| |
| |
| static inline int x86_sched_itmt_flags(void) |
| { |
| return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; |
| } |
| |
| #ifdef CONFIG_SCHED_MC |
| static int x86_core_flags(void) |
| { |
| return cpu_core_flags() | x86_sched_itmt_flags(); |
| } |
| #endif |
| #ifdef CONFIG_SCHED_SMT |
| static int x86_smt_flags(void) |
| { |
| return cpu_smt_flags(); |
| } |
| #endif |
| #ifdef CONFIG_SCHED_CLUSTER |
| static int x86_cluster_flags(void) |
| { |
| return cpu_cluster_flags() | x86_sched_itmt_flags(); |
| } |
| #endif |
| |
| static int x86_die_flags(void) |
| { |
| if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) |
| return x86_sched_itmt_flags(); |
| |
| return 0; |
| } |
| |
| /* |
| * Set if a package/die has multiple NUMA nodes inside. |
| * AMD Magny-Cours, Intel Cluster-on-Die, and Intel |
| * Sub-NUMA Clustering have this. |
| */ |
| static bool x86_has_numa_in_package; |
| |
| static struct sched_domain_topology_level x86_topology[6]; |
| |
| static void __init build_sched_topology(void) |
| { |
| int i = 0; |
| |
| #ifdef CONFIG_SCHED_SMT |
| x86_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) |
| }; |
| #endif |
| #ifdef CONFIG_SCHED_CLUSTER |
| x86_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) |
| }; |
| #endif |
| #ifdef CONFIG_SCHED_MC |
| x86_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) |
| }; |
| #endif |
| /* |
| * When there is NUMA topology inside the package skip the PKG domain |
| * since the NUMA domains will auto-magically create the right spanning |
| * domains based on the SLIT. |
| */ |
| if (!x86_has_numa_in_package) { |
| x86_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG) |
| }; |
| } |
| |
| /* |
| * There must be one trailing NULL entry left. |
| */ |
| BUG_ON(i >= ARRAY_SIZE(x86_topology)-1); |
| |
| set_sched_topology(x86_topology); |
| } |
| |
| void set_cpu_sibling_map(int cpu) |
| { |
| bool has_smt = __max_threads_per_core > 1; |
| bool has_mp = has_smt || topology_num_cores_per_package() > 1; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| struct cpuinfo_x86 *o; |
| int i, threads; |
| |
| cpumask_set_cpu(cpu, cpu_sibling_setup_mask); |
| |
| if (!has_mp) { |
| cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); |
| cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); |
| cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); |
| cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); |
| cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); |
| c->booted_cores = 1; |
| return; |
| } |
| |
| for_each_cpu(i, cpu_sibling_setup_mask) { |
| o = &cpu_data(i); |
| |
| if (match_pkg(c, o) && !topology_same_node(c, o)) |
| x86_has_numa_in_package = true; |
| |
| if ((i == cpu) || (has_smt && match_smt(c, o))) |
| link_mask(topology_sibling_cpumask, cpu, i); |
| |
| if ((i == cpu) || (has_mp && match_llc(c, o))) |
| link_mask(cpu_llc_shared_mask, cpu, i); |
| |
| if ((i == cpu) || (has_mp && match_l2c(c, o))) |
| link_mask(cpu_l2c_shared_mask, cpu, i); |
| |
| if ((i == cpu) || (has_mp && match_die(c, o))) |
| link_mask(topology_die_cpumask, cpu, i); |
| } |
| |
| threads = cpumask_weight(topology_sibling_cpumask(cpu)); |
| if (threads > __max_smt_threads) |
| __max_smt_threads = threads; |
| |
| for_each_cpu(i, topology_sibling_cpumask(cpu)) |
| cpu_data(i).smt_active = threads > 1; |
| |
| /* |
| * This needs a separate iteration over the cpus because we rely on all |
| * topology_sibling_cpumask links to be set-up. |
| */ |
| for_each_cpu(i, cpu_sibling_setup_mask) { |
| o = &cpu_data(i); |
| |
| if ((i == cpu) || (has_mp && match_pkg(c, o))) { |
| link_mask(topology_core_cpumask, cpu, i); |
| |
| /* |
| * Does this new cpu bringup a new core? |
| */ |
| if (threads == 1) { |
| /* |
| * for each core in package, increment |
| * the booted_cores for this new cpu |
| */ |
| if (cpumask_first( |
| topology_sibling_cpumask(i)) == i) |
| c->booted_cores++; |
| /* |
| * increment the core count for all |
| * the other cpus in this package |
| */ |
| if (i != cpu) |
| cpu_data(i).booted_cores++; |
| } else if (i != cpu && !c->booted_cores) |
| c->booted_cores = cpu_data(i).booted_cores; |
| } |
| } |
| } |
| |
| /* maps the cpu to the sched domain representing multi-core */ |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| return cpu_llc_shared_mask(cpu); |
| } |
| |
| const struct cpumask *cpu_clustergroup_mask(int cpu) |
| { |
| return cpu_l2c_shared_mask(cpu); |
| } |
| EXPORT_SYMBOL_GPL(cpu_clustergroup_mask); |
| |
| static void impress_friends(void) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| /* |
| * Allow the user to impress friends. |
| */ |
| pr_debug("Before bogomips\n"); |
| for_each_online_cpu(cpu) |
| bogosum += cpu_data(cpu).loops_per_jiffy; |
| |
| pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", |
| num_online_cpus(), |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| |
| pr_debug("Before bogocount - setting activated=1\n"); |
| } |
| |
| /* |
| * The Multiprocessor Specification 1.4 (1997) example code suggests |
| * that there should be a 10ms delay between the BSP asserting INIT |
| * and de-asserting INIT, when starting a remote processor. |
| * But that slows boot and resume on modern processors, which include |
| * many cores and don't require that delay. |
| * |
| * Cmdline "init_cpu_udelay=" is available to over-ride this delay. |
| * Modern processor families are quirked to remove the delay entirely. |
| */ |
| #define UDELAY_10MS_DEFAULT 10000 |
| |
| static unsigned int init_udelay = UINT_MAX; |
| |
| static int __init cpu_init_udelay(char *str) |
| { |
| get_option(&str, &init_udelay); |
| |
| return 0; |
| } |
| early_param("cpu_init_udelay", cpu_init_udelay); |
| |
| static void __init smp_quirk_init_udelay(void) |
| { |
| /* if cmdline changed it from default, leave it alone */ |
| if (init_udelay != UINT_MAX) |
| return; |
| |
| /* if modern processor, use no delay */ |
| if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || |
| ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || |
| ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { |
| init_udelay = 0; |
| return; |
| } |
| /* else, use legacy delay */ |
| init_udelay = UDELAY_10MS_DEFAULT; |
| } |
| |
| /* |
| * Wake up AP by INIT, INIT, STARTUP sequence. |
| */ |
| static void send_init_sequence(u32 phys_apicid) |
| { |
| int maxlvt = lapic_get_maxlvt(); |
| |
| /* Be paranoid about clearing APIC errors. */ |
| if (APIC_INTEGRATED(boot_cpu_apic_version)) { |
| /* Due to the Pentium erratum 3AP. */ |
| if (maxlvt > 3) |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| /* Assert INIT on the target CPU */ |
| apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid); |
| safe_apic_wait_icr_idle(); |
| |
| udelay(init_udelay); |
| |
| /* Deassert INIT on the target CPU */ |
| apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); |
| safe_apic_wait_icr_idle(); |
| } |
| |
| /* |
| * Wake up AP by INIT, INIT, STARTUP sequence. |
| */ |
| static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status = 0, accept_status = 0; |
| int num_starts, j, maxlvt; |
| |
| preempt_disable(); |
| maxlvt = lapic_get_maxlvt(); |
| send_init_sequence(phys_apicid); |
| |
| mb(); |
| |
| /* |
| * Should we send STARTUP IPIs ? |
| * |
| * Determine this based on the APIC version. |
| * If we don't have an integrated APIC, don't send the STARTUP IPIs. |
| */ |
| if (APIC_INTEGRATED(boot_cpu_apic_version)) |
| num_starts = 2; |
| else |
| num_starts = 0; |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| pr_debug("#startup loops: %d\n", num_starts); |
| |
| for (j = 1; j <= num_starts; j++) { |
| pr_debug("Sending STARTUP #%d\n", j); |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| pr_debug("After apic_write\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), |
| phys_apicid); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| if (init_udelay == 0) |
| udelay(10); |
| else |
| udelay(300); |
| |
| pr_debug("Startup point 1\n"); |
| |
| pr_debug("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| if (init_udelay == 0) |
| udelay(10); |
| else |
| udelay(200); |
| |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| pr_debug("After Startup\n"); |
| |
| if (send_status) |
| pr_err("APIC never delivered???\n"); |
| if (accept_status) |
| pr_err("APIC delivery error (%lx)\n", accept_status); |
| |
| preempt_enable(); |
| return (send_status | accept_status); |
| } |
| |
| /* reduce the number of lines printed when booting a large cpu count system */ |
| static void announce_cpu(int cpu, int apicid) |
| { |
| static int width, node_width, first = 1; |
| static int current_node = NUMA_NO_NODE; |
| int node = early_cpu_to_node(cpu); |
| |
| if (!width) |
| width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ |
| |
| if (!node_width) |
| node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ |
| |
| if (system_state < SYSTEM_RUNNING) { |
| if (first) |
| pr_info("x86: Booting SMP configuration:\n"); |
| |
| if (node != current_node) { |
| if (current_node > (-1)) |
| pr_cont("\n"); |
| current_node = node; |
| |
| printk(KERN_INFO ".... node %*s#%d, CPUs: ", |
| node_width - num_digits(node), " ", node); |
| } |
| |
| /* Add padding for the BSP */ |
| if (first) |
| pr_cont("%*s", width + 1, " "); |
| first = 0; |
| |
| pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); |
| } else |
| pr_info("Booting Node %d Processor %d APIC 0x%x\n", |
| node, cpu, apicid); |
| } |
| |
| int common_cpu_up(unsigned int cpu, struct task_struct *idle) |
| { |
| int ret; |
| |
| /* Just in case we booted with a single CPU. */ |
| alternatives_enable_smp(); |
| |
| per_cpu(pcpu_hot.current_task, cpu) = idle; |
| cpu_init_stack_canary(cpu, idle); |
| |
| /* Initialize the interrupt stack(s) */ |
| ret = irq_init_percpu_irqstack(cpu); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_X86_32 |
| /* Stack for startup_32 can be just as for start_secondary onwards */ |
| per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad |
| * (ie clustered apic addressing mode), this is a LOGICAL apic ID. |
| * Returns zero if startup was successfully sent, else error code from |
| * ->wakeup_secondary_cpu. |
| */ |
| static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle) |
| { |
| unsigned long start_ip = real_mode_header->trampoline_start; |
| int ret; |
| |
| #ifdef CONFIG_X86_64 |
| /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ |
| if (apic->wakeup_secondary_cpu_64) |
| start_ip = real_mode_header->trampoline_start64; |
| #endif |
| idle->thread.sp = (unsigned long)task_pt_regs(idle); |
| initial_code = (unsigned long)start_secondary; |
| |
| if (IS_ENABLED(CONFIG_X86_32)) { |
| early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); |
| initial_stack = idle->thread.sp; |
| } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) { |
| smpboot_control = cpu; |
| } |
| |
| /* Enable the espfix hack for this CPU */ |
| init_espfix_ap(cpu); |
| |
| /* So we see what's up */ |
| announce_cpu(cpu, apicid); |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| if (x86_platform.legacy.warm_reset) { |
| |
| pr_debug("Setting warm reset code and vector.\n"); |
| |
| smpboot_setup_warm_reset_vector(start_ip); |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(boot_cpu_apic_version)) { |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| } |
| |
| smp_mb(); |
| |
| /* |
| * Wake up a CPU in difference cases: |
| * - Use a method from the APIC driver if one defined, with wakeup |
| * straight to 64-bit mode preferred over wakeup to RM. |
| * Otherwise, |
| * - Use an INIT boot APIC message |
| */ |
| if (apic->wakeup_secondary_cpu_64) |
| ret = apic->wakeup_secondary_cpu_64(apicid, start_ip); |
| else if (apic->wakeup_secondary_cpu) |
| ret = apic->wakeup_secondary_cpu(apicid, start_ip); |
| else |
| ret = wakeup_secondary_cpu_via_init(apicid, start_ip); |
| |
| /* If the wakeup mechanism failed, cleanup the warm reset vector */ |
| if (ret) |
| arch_cpuhp_cleanup_kick_cpu(cpu); |
| return ret; |
| } |
| |
| int native_kick_ap(unsigned int cpu, struct task_struct *tidle) |
| { |
| u32 apicid = apic->cpu_present_to_apicid(cpu); |
| int err; |
| |
| lockdep_assert_irqs_enabled(); |
| |
| pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); |
| |
| if (apicid == BAD_APICID || !apic_id_valid(apicid)) { |
| pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid); |
| return -EINVAL; |
| } |
| |
| if (!test_bit(apicid, phys_cpu_present_map)) { |
| pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid); |
| return -EINVAL; |
| } |
| |
| /* |
| * Save current MTRR state in case it was changed since early boot |
| * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: |
| */ |
| mtrr_save_state(); |
| |
| /* the FPU context is blank, nobody can own it */ |
| per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; |
| |
| err = common_cpu_up(cpu, tidle); |
| if (err) |
| return err; |
| |
| err = do_boot_cpu(apicid, cpu, tidle); |
| if (err) |
| pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); |
| |
| return err; |
| } |
| |
| int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle) |
| { |
| return smp_ops.kick_ap_alive(cpu, tidle); |
| } |
| |
| void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) |
| { |
| /* Cleanup possible dangling ends... */ |
| if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset) |
| smpboot_restore_warm_reset_vector(); |
| } |
| |
| void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) |
| { |
| if (smp_ops.cleanup_dead_cpu) |
| smp_ops.cleanup_dead_cpu(cpu); |
| |
| if (system_state == SYSTEM_RUNNING) |
| pr_info("CPU %u is now offline\n", cpu); |
| } |
| |
| void arch_cpuhp_sync_state_poll(void) |
| { |
| if (smp_ops.poll_sync_state) |
| smp_ops.poll_sync_state(); |
| } |
| |
| /** |
| * arch_disable_smp_support() - Disables SMP support for x86 at boottime |
| */ |
| void __init arch_disable_smp_support(void) |
| { |
| disable_ioapic_support(); |
| } |
| |
| /* |
| * Fall back to non SMP mode after errors. |
| * |
| * RED-PEN audit/test this more. I bet there is more state messed up here. |
| */ |
| static __init void disable_smp(void) |
| { |
| pr_info("SMP disabled\n"); |
| |
| disable_ioapic_support(); |
| topology_reset_possible_cpus_up(); |
| |
| cpumask_set_cpu(0, topology_sibling_cpumask(0)); |
| cpumask_set_cpu(0, topology_core_cpumask(0)); |
| cpumask_set_cpu(0, topology_die_cpumask(0)); |
| } |
| |
| void __init smp_prepare_cpus_common(void) |
| { |
| unsigned int cpu, node; |
| |
| /* Mark all except the boot CPU as hotpluggable */ |
| for_each_possible_cpu(cpu) { |
| if (cpu) |
| per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| node = cpu_to_node(cpu); |
| |
| zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node); |
| zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node); |
| zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node); |
| zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node); |
| zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node); |
| } |
| |
| set_cpu_sibling_map(0); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| smp_ops.smp_prepare_boot_cpu(); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* Establish whether parallel bringup can be supported. */ |
| bool __init arch_cpuhp_init_parallel_bringup(void) |
| { |
| if (!x86_cpuinit.parallel_bringup) { |
| pr_info("Parallel CPU startup disabled by the platform\n"); |
| return false; |
| } |
| |
| smpboot_control = STARTUP_READ_APICID; |
| pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control); |
| return true; |
| } |
| #endif |
| |
| /* |
| * Prepare for SMP bootup. |
| * @max_cpus: configured maximum number of CPUs, It is a legacy parameter |
| * for common interface support. |
| */ |
| void __init native_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| smp_prepare_cpus_common(); |
| |
| switch (apic_intr_mode) { |
| case APIC_PIC: |
| case APIC_VIRTUAL_WIRE_NO_CONFIG: |
| disable_smp(); |
| return; |
| case APIC_SYMMETRIC_IO_NO_ROUTING: |
| disable_smp(); |
| /* Setup local timer */ |
| x86_init.timers.setup_percpu_clockev(); |
| return; |
| case APIC_VIRTUAL_WIRE: |
| case APIC_SYMMETRIC_IO: |
| break; |
| } |
| |
| /* Setup local timer */ |
| x86_init.timers.setup_percpu_clockev(); |
| |
| pr_info("CPU0: "); |
| print_cpu_info(&cpu_data(0)); |
| |
| uv_system_init(); |
| |
| smp_quirk_init_udelay(); |
| |
| speculative_store_bypass_ht_init(); |
| |
| snp_set_wakeup_secondary_cpu(); |
| } |
| |
| void arch_thaw_secondary_cpus_begin(void) |
| { |
| set_cache_aps_delayed_init(true); |
| } |
| |
| void arch_thaw_secondary_cpus_end(void) |
| { |
| cache_aps_init(); |
| } |
| |
| /* |
| * Early setup to make printk work. |
| */ |
| void __init native_smp_prepare_boot_cpu(void) |
| { |
| int me = smp_processor_id(); |
| |
| /* SMP handles this from setup_per_cpu_areas() */ |
| if (!IS_ENABLED(CONFIG_SMP)) |
| switch_gdt_and_percpu_base(me); |
| |
| native_pv_lock_init(); |
| } |
| |
| void __init native_smp_cpus_done(unsigned int max_cpus) |
| { |
| pr_debug("Boot done\n"); |
| |
| build_sched_topology(); |
| nmi_selftest(); |
| impress_friends(); |
| cache_aps_init(); |
| } |
| |
| /* correctly size the local cpu masks */ |
| void __init setup_cpu_local_masks(void) |
| { |
| alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* Recompute SMT state for all CPUs on offline */ |
| static void recompute_smt_state(void) |
| { |
| int max_threads, cpu; |
| |
| max_threads = 0; |
| for_each_online_cpu (cpu) { |
| int threads = cpumask_weight(topology_sibling_cpumask(cpu)); |
| |
| if (threads > max_threads) |
| max_threads = threads; |
| } |
| __max_smt_threads = max_threads; |
| } |
| |
| static void remove_siblinginfo(int cpu) |
| { |
| int sibling; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| for_each_cpu(sibling, topology_core_cpumask(cpu)) { |
| cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); |
| /*/ |
| * last thread sibling in this cpu core going down |
| */ |
| if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) |
| cpu_data(sibling).booted_cores--; |
| } |
| |
| for_each_cpu(sibling, topology_die_cpumask(cpu)) |
| cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); |
| |
| for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { |
| cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); |
| if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) |
| cpu_data(sibling).smt_active = false; |
| } |
| |
| for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) |
| cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); |
| for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) |
| cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); |
| cpumask_clear(cpu_llc_shared_mask(cpu)); |
| cpumask_clear(cpu_l2c_shared_mask(cpu)); |
| cpumask_clear(topology_sibling_cpumask(cpu)); |
| cpumask_clear(topology_core_cpumask(cpu)); |
| cpumask_clear(topology_die_cpumask(cpu)); |
| c->topo.core_id = 0; |
| c->booted_cores = 0; |
| cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); |
| recompute_smt_state(); |
| } |
| |
| static void remove_cpu_from_maps(int cpu) |
| { |
| set_cpu_online(cpu, false); |
| numa_remove_cpu(cpu); |
| } |
| |
| void cpu_disable_common(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| remove_siblinginfo(cpu); |
| |
| /* It's now safe to remove this processor from the online map */ |
| lock_vector_lock(); |
| remove_cpu_from_maps(cpu); |
| unlock_vector_lock(); |
| fixup_irqs(); |
| lapic_offline(); |
| } |
| |
| int native_cpu_disable(void) |
| { |
| int ret; |
| |
| ret = lapic_can_unplug_cpu(); |
| if (ret) |
| return ret; |
| |
| cpu_disable_common(); |
| |
| /* |
| * Disable the local APIC. Otherwise IPI broadcasts will reach |
| * it. It still responds normally to INIT, NMI, SMI, and SIPI |
| * messages. |
| * |
| * Disabling the APIC must happen after cpu_disable_common() |
| * which invokes fixup_irqs(). |
| * |
| * Disabling the APIC preserves already set bits in IRR, but |
| * an interrupt arriving after disabling the local APIC does not |
| * set the corresponding IRR bit. |
| * |
| * fixup_irqs() scans IRR for set bits so it can raise a not |
| * yet handled interrupt on the new destination CPU via an IPI |
| * but obviously it can't do so for IRR bits which are not set. |
| * IOW, interrupts arriving after disabling the local APIC will |
| * be lost. |
| */ |
| apic_soft_disable(); |
| |
| return 0; |
| } |
| |
| void play_dead_common(void) |
| { |
| idle_task_exit(); |
| |
| cpuhp_ap_report_dead(); |
| |
| local_irq_disable(); |
| } |
| |
| /* |
| * We need to flush the caches before going to sleep, lest we have |
| * dirty data in our caches when we come back up. |
| */ |
| static inline void mwait_play_dead(void) |
| { |
| struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); |
| unsigned int eax, ebx, ecx, edx; |
| unsigned int highest_cstate = 0; |
| unsigned int highest_subcstate = 0; |
| int i; |
| |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || |
| boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) |
| return; |
| if (!this_cpu_has(X86_FEATURE_MWAIT)) |
| return; |
| if (!this_cpu_has(X86_FEATURE_CLFLUSH)) |
| return; |
| if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) |
| return; |
| |
| eax = CPUID_MWAIT_LEAF; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| /* |
| * eax will be 0 if EDX enumeration is not valid. |
| * Initialized below to cstate, sub_cstate value when EDX is valid. |
| */ |
| if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { |
| eax = 0; |
| } else { |
| edx >>= MWAIT_SUBSTATE_SIZE; |
| for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
| if (edx & MWAIT_SUBSTATE_MASK) { |
| highest_cstate = i; |
| highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
| } |
| } |
| eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
| (highest_subcstate - 1); |
| } |
| |
| /* Set up state for the kexec() hack below */ |
| md->status = CPUDEAD_MWAIT_WAIT; |
| md->control = CPUDEAD_MWAIT_WAIT; |
| |
| wbinvd(); |
| |
| while (1) { |
| /* |
| * The CLFLUSH is a workaround for erratum AAI65 for |
| * the Xeon 7400 series. It's not clear it is actually |
| * needed, but it should be harmless in either case. |
| * The WBINVD is insufficient due to the spurious-wakeup |
| * case where we return around the loop. |
| */ |
| mb(); |
| clflush(md); |
| mb(); |
| __monitor(md, 0, 0); |
| mb(); |
| __mwait(eax, 0); |
| |
| if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) { |
| /* |
| * Kexec is about to happen. Don't go back into mwait() as |
| * the kexec kernel might overwrite text and data including |
| * page tables and stack. So mwait() would resume when the |
| * monitor cache line is written to and then the CPU goes |
| * south due to overwritten text, page tables and stack. |
| * |
| * Note: This does _NOT_ protect against a stray MCE, NMI, |
| * SMI. They will resume execution at the instruction |
| * following the HLT instruction and run into the problem |
| * which this is trying to prevent. |
| */ |
| WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT); |
| while(1) |
| native_halt(); |
| } |
| } |
| } |
| |
| /* |
| * Kick all "offline" CPUs out of mwait on kexec(). See comment in |
| * mwait_play_dead(). |
| */ |
| void smp_kick_mwait_play_dead(void) |
| { |
| u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT; |
| struct mwait_cpu_dead *md; |
| unsigned int cpu, i; |
| |
| for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) { |
| md = per_cpu_ptr(&mwait_cpu_dead, cpu); |
| |
| /* Does it sit in mwait_play_dead() ? */ |
| if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT) |
| continue; |
| |
| /* Wait up to 5ms */ |
| for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) { |
| /* Bring it out of mwait */ |
| WRITE_ONCE(md->control, newstate); |
| udelay(5); |
| } |
| |
| if (READ_ONCE(md->status) != newstate) |
| pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu); |
| } |
| } |
| |
| void __noreturn hlt_play_dead(void) |
| { |
| if (__this_cpu_read(cpu_info.x86) >= 4) |
| wbinvd(); |
| |
| while (1) |
| native_halt(); |
| } |
| |
| /* |
| * native_play_dead() is essentially a __noreturn function, but it can't |
| * be marked as such as the compiler may complain about it. |
| */ |
| void native_play_dead(void) |
| { |
| if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) |
| __update_spec_ctrl(0); |
| |
| play_dead_common(); |
| tboot_shutdown(TB_SHUTDOWN_WFS); |
| |
| mwait_play_dead(); |
| if (cpuidle_play_dead()) |
| hlt_play_dead(); |
| } |
| |
| #else /* ... !CONFIG_HOTPLUG_CPU */ |
| int native_cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| void native_play_dead(void) |
| { |
| BUG(); |
| } |
| |
| #endif |