| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include "xe_device.h" |
| |
| #include <linux/delay.h> |
| #include <linux/units.h> |
| |
| #include <drm/drm_aperture.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_client.h> |
| #include <drm/drm_gem_ttm_helper.h> |
| #include <drm/drm_ioctl.h> |
| #include <drm/drm_managed.h> |
| #include <drm/drm_print.h> |
| #include <uapi/drm/xe_drm.h> |
| |
| #include "display/xe_display.h" |
| #include "instructions/xe_gpu_commands.h" |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_regs.h" |
| #include "xe_bo.h" |
| #include "xe_debugfs.h" |
| #include "xe_devcoredump.h" |
| #include "xe_dma_buf.h" |
| #include "xe_drm_client.h" |
| #include "xe_drv.h" |
| #include "xe_exec.h" |
| #include "xe_exec_queue.h" |
| #include "xe_force_wake.h" |
| #include "xe_ggtt.h" |
| #include "xe_gsc_proxy.h" |
| #include "xe_gt.h" |
| #include "xe_gt_mcr.h" |
| #include "xe_gt_printk.h" |
| #include "xe_gt_sriov_vf.h" |
| #include "xe_guc.h" |
| #include "xe_hw_engine_group.h" |
| #include "xe_hwmon.h" |
| #include "xe_irq.h" |
| #include "xe_memirq.h" |
| #include "xe_mmio.h" |
| #include "xe_module.h" |
| #include "xe_observation.h" |
| #include "xe_pat.h" |
| #include "xe_pcode.h" |
| #include "xe_pm.h" |
| #include "xe_query.h" |
| #include "xe_sriov.h" |
| #include "xe_tile.h" |
| #include "xe_ttm_stolen_mgr.h" |
| #include "xe_ttm_sys_mgr.h" |
| #include "xe_vm.h" |
| #include "xe_vram.h" |
| #include "xe_wait_user_fence.h" |
| #include "xe_wa.h" |
| |
| #include <generated/xe_wa_oob.h> |
| |
| static int xe_file_open(struct drm_device *dev, struct drm_file *file) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| struct xe_drm_client *client; |
| struct xe_file *xef; |
| int ret = -ENOMEM; |
| struct task_struct *task = NULL; |
| |
| xef = kzalloc(sizeof(*xef), GFP_KERNEL); |
| if (!xef) |
| return ret; |
| |
| client = xe_drm_client_alloc(); |
| if (!client) { |
| kfree(xef); |
| return ret; |
| } |
| |
| xef->drm = file; |
| xef->client = client; |
| xef->xe = xe; |
| |
| mutex_init(&xef->vm.lock); |
| xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); |
| |
| mutex_init(&xef->exec_queue.lock); |
| xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); |
| |
| spin_lock(&xe->clients.lock); |
| xe->clients.count++; |
| spin_unlock(&xe->clients.lock); |
| |
| file->driver_priv = xef; |
| kref_init(&xef->refcount); |
| |
| task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); |
| if (task) { |
| xef->process_name = kstrdup(task->comm, GFP_KERNEL); |
| xef->pid = task->pid; |
| put_task_struct(task); |
| } |
| |
| return 0; |
| } |
| |
| static void xe_file_destroy(struct kref *ref) |
| { |
| struct xe_file *xef = container_of(ref, struct xe_file, refcount); |
| struct xe_device *xe = xef->xe; |
| |
| xa_destroy(&xef->exec_queue.xa); |
| mutex_destroy(&xef->exec_queue.lock); |
| xa_destroy(&xef->vm.xa); |
| mutex_destroy(&xef->vm.lock); |
| |
| spin_lock(&xe->clients.lock); |
| xe->clients.count--; |
| spin_unlock(&xe->clients.lock); |
| |
| xe_drm_client_put(xef->client); |
| kfree(xef->process_name); |
| kfree(xef); |
| } |
| |
| /** |
| * xe_file_get() - Take a reference to the xe file object |
| * @xef: Pointer to the xe file |
| * |
| * Anyone with a pointer to xef must take a reference to the xe file |
| * object using this call. |
| * |
| * Return: xe file pointer |
| */ |
| struct xe_file *xe_file_get(struct xe_file *xef) |
| { |
| kref_get(&xef->refcount); |
| return xef; |
| } |
| |
| /** |
| * xe_file_put() - Drop a reference to the xe file object |
| * @xef: Pointer to the xe file |
| * |
| * Used to drop reference to the xef object |
| */ |
| void xe_file_put(struct xe_file *xef) |
| { |
| kref_put(&xef->refcount, xe_file_destroy); |
| } |
| |
| static void xe_file_close(struct drm_device *dev, struct drm_file *file) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| struct xe_file *xef = file->driver_priv; |
| struct xe_vm *vm; |
| struct xe_exec_queue *q; |
| unsigned long idx; |
| |
| xe_pm_runtime_get(xe); |
| |
| /* |
| * No need for exec_queue.lock here as there is no contention for it |
| * when FD is closing as IOCTLs presumably can't be modifying the |
| * xarray. Taking exec_queue.lock here causes undue dependency on |
| * vm->lock taken during xe_exec_queue_kill(). |
| */ |
| xa_for_each(&xef->exec_queue.xa, idx, q) { |
| if (q->vm && q->hwe->hw_engine_group) |
| xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); |
| xe_exec_queue_kill(q); |
| xe_exec_queue_put(q); |
| } |
| xa_for_each(&xef->vm.xa, idx, vm) |
| xe_vm_close_and_put(vm); |
| |
| xe_file_put(xef); |
| |
| xe_pm_runtime_put(xe); |
| } |
| |
| static const struct drm_ioctl_desc xe_ioctls[] = { |
| DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, |
| DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, |
| DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, |
| DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, |
| DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, |
| DRM_RENDER_ALLOW), |
| DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), |
| }; |
| |
| static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct drm_file *file_priv = file->private_data; |
| struct xe_device *xe = to_xe_device(file_priv->minor->dev); |
| long ret; |
| |
| if (xe_device_wedged(xe)) |
| return -ECANCELED; |
| |
| ret = xe_pm_runtime_get_ioctl(xe); |
| if (ret >= 0) |
| ret = drm_ioctl(file, cmd, arg); |
| xe_pm_runtime_put(xe); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct drm_file *file_priv = file->private_data; |
| struct xe_device *xe = to_xe_device(file_priv->minor->dev); |
| long ret; |
| |
| if (xe_device_wedged(xe)) |
| return -ECANCELED; |
| |
| ret = xe_pm_runtime_get_ioctl(xe); |
| if (ret >= 0) |
| ret = drm_compat_ioctl(file, cmd, arg); |
| xe_pm_runtime_put(xe); |
| |
| return ret; |
| } |
| #else |
| /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ |
| #define xe_drm_compat_ioctl NULL |
| #endif |
| |
| static const struct file_operations xe_driver_fops = { |
| .owner = THIS_MODULE, |
| .open = drm_open, |
| .release = drm_release_noglobal, |
| .unlocked_ioctl = xe_drm_ioctl, |
| .mmap = drm_gem_mmap, |
| .poll = drm_poll, |
| .read = drm_read, |
| .compat_ioctl = xe_drm_compat_ioctl, |
| .llseek = noop_llseek, |
| #ifdef CONFIG_PROC_FS |
| .show_fdinfo = drm_show_fdinfo, |
| #endif |
| .fop_flags = FOP_UNSIGNED_OFFSET, |
| }; |
| |
| static struct drm_driver driver = { |
| /* Don't use MTRRs here; the Xserver or userspace app should |
| * deal with them for Intel hardware. |
| */ |
| .driver_features = |
| DRIVER_GEM | |
| DRIVER_RENDER | DRIVER_SYNCOBJ | |
| DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, |
| .open = xe_file_open, |
| .postclose = xe_file_close, |
| |
| .gem_prime_import = xe_gem_prime_import, |
| |
| .dumb_create = xe_bo_dumb_create, |
| .dumb_map_offset = drm_gem_ttm_dumb_map_offset, |
| #ifdef CONFIG_PROC_FS |
| .show_fdinfo = xe_drm_client_fdinfo, |
| #endif |
| .ioctls = xe_ioctls, |
| .num_ioctls = ARRAY_SIZE(xe_ioctls), |
| .fops = &xe_driver_fops, |
| .name = DRIVER_NAME, |
| .desc = DRIVER_DESC, |
| .date = DRIVER_DATE, |
| .major = DRIVER_MAJOR, |
| .minor = DRIVER_MINOR, |
| .patchlevel = DRIVER_PATCHLEVEL, |
| }; |
| |
| static void xe_device_destroy(struct drm_device *dev, void *dummy) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| |
| if (xe->preempt_fence_wq) |
| destroy_workqueue(xe->preempt_fence_wq); |
| |
| if (xe->ordered_wq) |
| destroy_workqueue(xe->ordered_wq); |
| |
| if (xe->unordered_wq) |
| destroy_workqueue(xe->unordered_wq); |
| |
| if (xe->destroy_wq) |
| destroy_workqueue(xe->destroy_wq); |
| |
| ttm_device_fini(&xe->ttm); |
| } |
| |
| struct xe_device *xe_device_create(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct xe_device *xe; |
| int err; |
| |
| xe_display_driver_set_hooks(&driver); |
| |
| err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); |
| if (err) |
| return ERR_PTR(err); |
| |
| xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); |
| if (IS_ERR(xe)) |
| return xe; |
| |
| err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, |
| xe->drm.anon_inode->i_mapping, |
| xe->drm.vma_offset_manager, false, false); |
| if (WARN_ON(err)) |
| goto err; |
| |
| err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); |
| if (err) |
| goto err; |
| |
| xe->info.devid = pdev->device; |
| xe->info.revid = pdev->revision; |
| xe->info.force_execlist = xe_modparam.force_execlist; |
| |
| spin_lock_init(&xe->irq.lock); |
| spin_lock_init(&xe->clients.lock); |
| |
| init_waitqueue_head(&xe->ufence_wq); |
| |
| init_rwsem(&xe->usm.lock); |
| |
| xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); |
| |
| if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { |
| /* Trigger a large asid and an early asid wrap. */ |
| u32 asid; |
| |
| BUILD_BUG_ON(XE_MAX_ASID < 2); |
| err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, |
| XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), |
| &xe->usm.next_asid, GFP_KERNEL); |
| drm_WARN_ON(&xe->drm, err); |
| if (err >= 0) |
| xa_erase(&xe->usm.asid_to_vm, asid); |
| } |
| |
| spin_lock_init(&xe->pinned.lock); |
| INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); |
| INIT_LIST_HEAD(&xe->pinned.external_vram); |
| INIT_LIST_HEAD(&xe->pinned.evicted); |
| |
| xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); |
| xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); |
| xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); |
| xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); |
| if (!xe->ordered_wq || !xe->unordered_wq || |
| !xe->preempt_fence_wq || !xe->destroy_wq) { |
| /* |
| * Cleanup done in xe_device_destroy via |
| * drmm_add_action_or_reset register above |
| */ |
| drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); |
| err = -ENOMEM; |
| goto err; |
| } |
| |
| err = xe_display_create(xe); |
| if (WARN_ON(err)) |
| goto err; |
| |
| return xe; |
| |
| err: |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * The driver-initiated FLR is the highest level of reset that we can trigger |
| * from within the driver. It is different from the PCI FLR in that it doesn't |
| * fully reset the SGUnit and doesn't modify the PCI config space and therefore |
| * it doesn't require a re-enumeration of the PCI BARs. However, the |
| * driver-initiated FLR does still cause a reset of both GT and display and a |
| * memory wipe of local and stolen memory, so recovery would require a full HW |
| * re-init and saving/restoring (or re-populating) the wiped memory. Since we |
| * perform the FLR as the very last action before releasing access to the HW |
| * during the driver release flow, we don't attempt recovery at all, because |
| * if/when a new instance of i915 is bound to the device it will do a full |
| * re-init anyway. |
| */ |
| static void xe_driver_flr(struct xe_device *xe) |
| { |
| const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| int ret; |
| |
| if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { |
| drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); |
| return; |
| } |
| |
| drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); |
| |
| /* |
| * Make sure any pending FLR requests have cleared by waiting for the |
| * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS |
| * to make sure it's not still set from a prior attempt (it's a write to |
| * clear bit). |
| * Note that we should never be in a situation where a previous attempt |
| * is still pending (unless the HW is totally dead), but better to be |
| * safe in case something unexpected happens |
| */ |
| ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); |
| if (ret) { |
| drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); |
| return; |
| } |
| xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); |
| |
| /* Trigger the actual Driver-FLR */ |
| xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); |
| |
| /* Wait for hardware teardown to complete */ |
| ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); |
| if (ret) { |
| drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); |
| return; |
| } |
| |
| /* Wait for hardware/firmware re-init to complete */ |
| ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, |
| flr_timeout, NULL, false); |
| if (ret) { |
| drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); |
| return; |
| } |
| |
| /* Clear sticky completion status */ |
| xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); |
| } |
| |
| static void xe_driver_flr_fini(void *arg) |
| { |
| struct xe_device *xe = arg; |
| |
| if (xe->needs_flr_on_fini) |
| xe_driver_flr(xe); |
| } |
| |
| static void xe_device_sanitize(void *arg) |
| { |
| struct xe_device *xe = arg; |
| struct xe_gt *gt; |
| u8 id; |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_sanitize(gt); |
| } |
| |
| static int xe_set_dma_info(struct xe_device *xe) |
| { |
| unsigned int mask_size = xe->info.dma_mask_size; |
| int err; |
| |
| dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); |
| |
| err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); |
| if (err) |
| goto mask_err; |
| |
| err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); |
| if (err) |
| goto mask_err; |
| |
| return 0; |
| |
| mask_err: |
| drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); |
| return err; |
| } |
| |
| static bool verify_lmem_ready(struct xe_gt *gt) |
| { |
| u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT; |
| |
| return !!val; |
| } |
| |
| static int wait_for_lmem_ready(struct xe_device *xe) |
| { |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| unsigned long timeout, start; |
| |
| if (!IS_DGFX(xe)) |
| return 0; |
| |
| if (IS_SRIOV_VF(xe)) |
| return 0; |
| |
| if (verify_lmem_ready(gt)) |
| return 0; |
| |
| drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); |
| |
| start = jiffies; |
| timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ |
| |
| do { |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| /* |
| * The boot firmware initializes local memory and |
| * assesses its health. If memory training fails, |
| * the punit will have been instructed to keep the GT powered |
| * down.we won't be able to communicate with it |
| * |
| * If the status check is done before punit updates the register, |
| * it can lead to the system being unusable. |
| * use a timeout and defer the probe to prevent this. |
| */ |
| if (time_after(jiffies, timeout)) { |
| drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); |
| return -EPROBE_DEFER; |
| } |
| |
| msleep(20); |
| |
| } while (!verify_lmem_ready(gt)); |
| |
| drm_dbg(&xe->drm, "lmem ready after %ums", |
| jiffies_to_msecs(jiffies - start)); |
| |
| return 0; |
| } |
| |
| static void update_device_info(struct xe_device *xe) |
| { |
| /* disable features that are not available/applicable to VFs */ |
| if (IS_SRIOV_VF(xe)) { |
| xe->info.probe_display = 0; |
| xe->info.has_heci_gscfi = 0; |
| xe->info.skip_guc_pc = 1; |
| xe->info.skip_pcode = 1; |
| } |
| } |
| |
| /** |
| * xe_device_probe_early: Device early probe |
| * @xe: xe device instance |
| * |
| * Initialize MMIO resources that don't require any |
| * knowledge about tile count. Also initialize pcode and |
| * check vram initialization on root tile. |
| * |
| * Return: 0 on success, error code on failure |
| */ |
| int xe_device_probe_early(struct xe_device *xe) |
| { |
| int err; |
| |
| err = xe_mmio_init(xe); |
| if (err) |
| return err; |
| |
| xe_sriov_probe_early(xe); |
| |
| update_device_info(xe); |
| |
| err = xe_pcode_probe_early(xe); |
| if (err) |
| return err; |
| |
| err = wait_for_lmem_ready(xe); |
| if (err) |
| return err; |
| |
| xe->wedged.mode = xe_modparam.wedged_mode; |
| |
| return 0; |
| } |
| |
| static int xe_device_set_has_flat_ccs(struct xe_device *xe) |
| { |
| u32 reg; |
| int err; |
| |
| if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) |
| return 0; |
| |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| |
| err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); |
| if (err) |
| return err; |
| |
| reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); |
| xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); |
| |
| if (!xe->info.has_flat_ccs) |
| drm_dbg(&xe->drm, |
| "Flat CCS has been disabled in bios, May lead to performance impact"); |
| |
| return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); |
| } |
| |
| int xe_device_probe(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| struct xe_gt *gt; |
| int err; |
| u8 last_gt; |
| u8 id; |
| |
| xe_pat_init_early(xe); |
| |
| err = xe_sriov_init(xe); |
| if (err) |
| return err; |
| |
| xe->info.mem_region_mask = 1; |
| err = xe_display_init_nommio(xe); |
| if (err) |
| return err; |
| |
| err = xe_set_dma_info(xe); |
| if (err) |
| return err; |
| |
| err = xe_mmio_probe_tiles(xe); |
| if (err) |
| return err; |
| |
| xe_ttm_sys_mgr_init(xe); |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_init_early(gt); |
| if (err) |
| return err; |
| } |
| |
| for_each_tile(tile, xe, id) { |
| if (IS_SRIOV_VF(xe)) { |
| xe_guc_comm_init_early(&tile->primary_gt->uc.guc); |
| err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); |
| if (err) |
| return err; |
| err = xe_gt_sriov_vf_query_config(tile->primary_gt); |
| if (err) |
| return err; |
| } |
| err = xe_ggtt_init_early(tile->mem.ggtt); |
| if (err) |
| return err; |
| if (IS_SRIOV_VF(xe)) { |
| err = xe_memirq_init(&tile->sriov.vf.memirq); |
| if (err) |
| return err; |
| } |
| } |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_init_hwconfig(gt); |
| if (err) |
| return err; |
| } |
| |
| err = xe_devcoredump_init(xe); |
| if (err) |
| return err; |
| err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); |
| if (err) |
| return err; |
| |
| err = xe_display_init_noirq(xe); |
| if (err) |
| return err; |
| |
| err = xe_irq_install(xe); |
| if (err) |
| goto err; |
| |
| err = xe_device_set_has_flat_ccs(xe); |
| if (err) |
| goto err; |
| |
| err = xe_vram_probe(xe); |
| if (err) |
| goto err; |
| |
| for_each_tile(tile, xe, id) { |
| err = xe_tile_init_noalloc(tile); |
| if (err) |
| goto err; |
| } |
| |
| /* Allocate and map stolen after potential VRAM resize */ |
| xe_ttm_stolen_mgr_init(xe); |
| |
| /* |
| * Now that GT is initialized (TTM in particular), |
| * we can try to init display, and inherit the initial fb. |
| * This is the reason the first allocation needs to be done |
| * inside display. |
| */ |
| err = xe_display_init_noaccel(xe); |
| if (err) |
| goto err; |
| |
| for_each_gt(gt, xe, id) { |
| last_gt = id; |
| |
| err = xe_gt_init(gt); |
| if (err) |
| goto err_fini_gt; |
| } |
| |
| xe_heci_gsc_init(xe); |
| |
| err = xe_oa_init(xe); |
| if (err) |
| goto err_fini_gt; |
| |
| err = xe_display_init(xe); |
| if (err) |
| goto err_fini_oa; |
| |
| err = drm_dev_register(&xe->drm, 0); |
| if (err) |
| goto err_fini_display; |
| |
| xe_display_register(xe); |
| |
| xe_oa_register(xe); |
| |
| xe_debugfs_register(xe); |
| |
| xe_hwmon_register(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_sanitize_freq(gt); |
| |
| return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); |
| |
| err_fini_display: |
| xe_display_driver_remove(xe); |
| |
| err_fini_oa: |
| xe_oa_fini(xe); |
| |
| err_fini_gt: |
| for_each_gt(gt, xe, id) { |
| if (id < last_gt) |
| xe_gt_remove(gt); |
| else |
| break; |
| } |
| |
| err: |
| xe_display_fini(xe); |
| return err; |
| } |
| |
| static void xe_device_remove_display(struct xe_device *xe) |
| { |
| xe_display_unregister(xe); |
| |
| drm_dev_unplug(&xe->drm); |
| xe_display_driver_remove(xe); |
| } |
| |
| void xe_device_remove(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| |
| xe_oa_unregister(xe); |
| |
| xe_device_remove_display(xe); |
| |
| xe_display_fini(xe); |
| |
| xe_oa_fini(xe); |
| |
| xe_heci_gsc_fini(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_remove(gt); |
| } |
| |
| void xe_device_shutdown(struct xe_device *xe) |
| { |
| } |
| |
| /** |
| * xe_device_wmb() - Device specific write memory barrier |
| * @xe: the &xe_device |
| * |
| * While wmb() is sufficient for a barrier if we use system memory, on discrete |
| * platforms with device memory we additionally need to issue a register write. |
| * Since it doesn't matter which register we write to, use the read-only VF_CAP |
| * register that is also marked as accessible by the VFs. |
| */ |
| void xe_device_wmb(struct xe_device *xe) |
| { |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| |
| wmb(); |
| if (IS_DGFX(xe)) |
| xe_mmio_write32(gt, VF_CAP_REG, 0); |
| } |
| |
| /** |
| * xe_device_td_flush() - Flush transient L3 cache entries |
| * @xe: The device |
| * |
| * Display engine has direct access to memory and is never coherent with L3/L4 |
| * caches (or CPU caches), however KMD is responsible for specifically flushing |
| * transient L3 GPU cache entries prior to the flip sequence to ensure scanout |
| * can happen from such a surface without seeing corruption. |
| * |
| * Display surfaces can be tagged as transient by mapping it using one of the |
| * various L3:XD PAT index modes on Xe2. |
| * |
| * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed |
| * at the end of each submission via PIPE_CONTROL for compute/render, since SA |
| * Media is not coherent with L3 and we want to support render-vs-media |
| * usescases. For other engines like copy/blt the HW internally forces uncached |
| * behaviour, hence why we can skip the TDF on such platforms. |
| */ |
| void xe_device_td_flush(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| |
| if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) |
| return; |
| |
| if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { |
| xe_device_l2_flush(xe); |
| return; |
| } |
| |
| for_each_gt(gt, xe, id) { |
| if (xe_gt_is_media_type(gt)) |
| continue; |
| |
| if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) |
| return; |
| |
| xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); |
| /* |
| * FIXME: We can likely do better here with our choice of |
| * timeout. Currently we just assume the worst case, i.e. 150us, |
| * which is believed to be sufficient to cover the worst case |
| * scenario on current platforms if all cache entries are |
| * transient and need to be flushed.. |
| */ |
| if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, |
| 150, NULL, false)) |
| xe_gt_err_once(gt, "TD flush timeout\n"); |
| |
| xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); |
| } |
| } |
| |
| void xe_device_l2_flush(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| int err; |
| |
| gt = xe_root_mmio_gt(xe); |
| |
| if (!XE_WA(gt, 16023588340)) |
| return; |
| |
| err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); |
| if (err) |
| return; |
| |
| spin_lock(>->global_invl_lock); |
| xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1); |
| |
| if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) |
| xe_gt_err_once(gt, "Global invalidation timeout\n"); |
| spin_unlock(>->global_invl_lock); |
| |
| xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); |
| } |
| |
| u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) |
| { |
| return xe_device_has_flat_ccs(xe) ? |
| DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; |
| } |
| |
| /** |
| * xe_device_assert_mem_access - Inspect the current runtime_pm state. |
| * @xe: xe device instance |
| * |
| * To be used before any kind of memory access. It will splat a debug warning |
| * if the device is currently sleeping. But it doesn't guarantee in any way |
| * that the device is going to remain awake. Xe PM runtime get and put |
| * functions might be added to the outer bound of the memory access, while |
| * this check is intended for inner usage to splat some warning if the worst |
| * case has just happened. |
| */ |
| void xe_device_assert_mem_access(struct xe_device *xe) |
| { |
| xe_assert(xe, !xe_pm_runtime_suspended(xe)); |
| } |
| |
| void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| |
| drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); |
| drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); |
| |
| for_each_gt(gt, xe, id) { |
| drm_printf(p, "GT id: %u\n", id); |
| drm_printf(p, "\tType: %s\n", |
| gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); |
| drm_printf(p, "\tIP ver: %u.%u.%u\n", |
| REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), |
| REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), |
| REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); |
| drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); |
| } |
| } |
| |
| u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) |
| { |
| return sign_extend64(address, xe->info.va_bits - 1); |
| } |
| |
| u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) |
| { |
| return address & GENMASK_ULL(xe->info.va_bits - 1, 0); |
| } |
| |
| static void xe_device_wedged_fini(struct drm_device *drm, void *arg) |
| { |
| struct xe_device *xe = arg; |
| |
| xe_pm_runtime_put(xe); |
| } |
| |
| /** |
| * xe_device_declare_wedged - Declare device wedged |
| * @xe: xe device instance |
| * |
| * This is a final state that can only be cleared with a mudule |
| * re-probe (unbind + bind). |
| * In this state every IOCTL will be blocked so the GT cannot be used. |
| * In general it will be called upon any critical error such as gt reset |
| * failure or guc loading failure. |
| * If xe.wedged module parameter is set to 2, this function will be called |
| * on every single execution timeout (a.k.a. GPU hang) right after devcoredump |
| * snapshot capture. In this mode, GT reset won't be attempted so the state of |
| * the issue is preserved for further debugging. |
| */ |
| void xe_device_declare_wedged(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| |
| if (xe->wedged.mode == 0) { |
| drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); |
| return; |
| } |
| |
| xe_pm_runtime_get_noresume(xe); |
| |
| if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { |
| drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); |
| return; |
| } |
| |
| if (!atomic_xchg(&xe->wedged.flag, 1)) { |
| xe->needs_flr_on_fini = true; |
| drm_err(&xe->drm, |
| "CRITICAL: Xe has declared device %s as wedged.\n" |
| "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" |
| "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", |
| dev_name(xe->drm.dev)); |
| } |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_declare_wedged(gt); |
| } |