blob: 10fd4601b9f2a4ed546717e939dc37c87fb6ca8a [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_device.h"
#include <linux/delay.h>
#include <linux/units.h>
#include <drm/drm_aperture.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_client.h>
#include <drm/drm_gem_ttm_helper.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include <uapi/drm/xe_drm.h>
#include "display/xe_display.h"
#include "instructions/xe_gpu_commands.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_debugfs.h"
#include "xe_devcoredump.h"
#include "xe_dma_buf.h"
#include "xe_drm_client.h"
#include "xe_drv.h"
#include "xe_exec.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_ggtt.h"
#include "xe_gsc_proxy.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_vf.h"
#include "xe_guc.h"
#include "xe_hw_engine_group.h"
#include "xe_hwmon.h"
#include "xe_irq.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_module.h"
#include "xe_observation.h"
#include "xe_pat.h"
#include "xe_pcode.h"
#include "xe_pm.h"
#include "xe_query.h"
#include "xe_sriov.h"
#include "xe_tile.h"
#include "xe_ttm_stolen_mgr.h"
#include "xe_ttm_sys_mgr.h"
#include "xe_vm.h"
#include "xe_vram.h"
#include "xe_wait_user_fence.h"
#include "xe_wa.h"
#include <generated/xe_wa_oob.h>
static int xe_file_open(struct drm_device *dev, struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_drm_client *client;
struct xe_file *xef;
int ret = -ENOMEM;
struct task_struct *task = NULL;
xef = kzalloc(sizeof(*xef), GFP_KERNEL);
if (!xef)
return ret;
client = xe_drm_client_alloc();
if (!client) {
kfree(xef);
return ret;
}
xef->drm = file;
xef->client = client;
xef->xe = xe;
mutex_init(&xef->vm.lock);
xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
mutex_init(&xef->exec_queue.lock);
xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
spin_lock(&xe->clients.lock);
xe->clients.count++;
spin_unlock(&xe->clients.lock);
file->driver_priv = xef;
kref_init(&xef->refcount);
task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
if (task) {
xef->process_name = kstrdup(task->comm, GFP_KERNEL);
xef->pid = task->pid;
put_task_struct(task);
}
return 0;
}
static void xe_file_destroy(struct kref *ref)
{
struct xe_file *xef = container_of(ref, struct xe_file, refcount);
struct xe_device *xe = xef->xe;
xa_destroy(&xef->exec_queue.xa);
mutex_destroy(&xef->exec_queue.lock);
xa_destroy(&xef->vm.xa);
mutex_destroy(&xef->vm.lock);
spin_lock(&xe->clients.lock);
xe->clients.count--;
spin_unlock(&xe->clients.lock);
xe_drm_client_put(xef->client);
kfree(xef->process_name);
kfree(xef);
}
/**
* xe_file_get() - Take a reference to the xe file object
* @xef: Pointer to the xe file
*
* Anyone with a pointer to xef must take a reference to the xe file
* object using this call.
*
* Return: xe file pointer
*/
struct xe_file *xe_file_get(struct xe_file *xef)
{
kref_get(&xef->refcount);
return xef;
}
/**
* xe_file_put() - Drop a reference to the xe file object
* @xef: Pointer to the xe file
*
* Used to drop reference to the xef object
*/
void xe_file_put(struct xe_file *xef)
{
kref_put(&xef->refcount, xe_file_destroy);
}
static void xe_file_close(struct drm_device *dev, struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = file->driver_priv;
struct xe_vm *vm;
struct xe_exec_queue *q;
unsigned long idx;
xe_pm_runtime_get(xe);
/*
* No need for exec_queue.lock here as there is no contention for it
* when FD is closing as IOCTLs presumably can't be modifying the
* xarray. Taking exec_queue.lock here causes undue dependency on
* vm->lock taken during xe_exec_queue_kill().
*/
xa_for_each(&xef->exec_queue.xa, idx, q) {
if (q->vm && q->hwe->hw_engine_group)
xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
xe_exec_queue_kill(q);
xe_exec_queue_put(q);
}
xa_for_each(&xef->vm.xa, idx, vm)
xe_vm_close_and_put(vm);
xe_file_put(xef);
xe_pm_runtime_put(xe);
}
static const struct drm_ioctl_desc xe_ioctls[] = {
DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
};
static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct drm_file *file_priv = file->private_data;
struct xe_device *xe = to_xe_device(file_priv->minor->dev);
long ret;
if (xe_device_wedged(xe))
return -ECANCELED;
ret = xe_pm_runtime_get_ioctl(xe);
if (ret >= 0)
ret = drm_ioctl(file, cmd, arg);
xe_pm_runtime_put(xe);
return ret;
}
#ifdef CONFIG_COMPAT
static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct drm_file *file_priv = file->private_data;
struct xe_device *xe = to_xe_device(file_priv->minor->dev);
long ret;
if (xe_device_wedged(xe))
return -ECANCELED;
ret = xe_pm_runtime_get_ioctl(xe);
if (ret >= 0)
ret = drm_compat_ioctl(file, cmd, arg);
xe_pm_runtime_put(xe);
return ret;
}
#else
/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
#define xe_drm_compat_ioctl NULL
#endif
static const struct file_operations xe_driver_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release_noglobal,
.unlocked_ioctl = xe_drm_ioctl,
.mmap = drm_gem_mmap,
.poll = drm_poll,
.read = drm_read,
.compat_ioctl = xe_drm_compat_ioctl,
.llseek = noop_llseek,
#ifdef CONFIG_PROC_FS
.show_fdinfo = drm_show_fdinfo,
#endif
.fop_flags = FOP_UNSIGNED_OFFSET,
};
static struct drm_driver driver = {
/* Don't use MTRRs here; the Xserver or userspace app should
* deal with them for Intel hardware.
*/
.driver_features =
DRIVER_GEM |
DRIVER_RENDER | DRIVER_SYNCOBJ |
DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
.open = xe_file_open,
.postclose = xe_file_close,
.gem_prime_import = xe_gem_prime_import,
.dumb_create = xe_bo_dumb_create,
.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
#ifdef CONFIG_PROC_FS
.show_fdinfo = xe_drm_client_fdinfo,
#endif
.ioctls = xe_ioctls,
.num_ioctls = ARRAY_SIZE(xe_ioctls),
.fops = &xe_driver_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
};
static void xe_device_destroy(struct drm_device *dev, void *dummy)
{
struct xe_device *xe = to_xe_device(dev);
if (xe->preempt_fence_wq)
destroy_workqueue(xe->preempt_fence_wq);
if (xe->ordered_wq)
destroy_workqueue(xe->ordered_wq);
if (xe->unordered_wq)
destroy_workqueue(xe->unordered_wq);
if (xe->destroy_wq)
destroy_workqueue(xe->destroy_wq);
ttm_device_fini(&xe->ttm);
}
struct xe_device *xe_device_create(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct xe_device *xe;
int err;
xe_display_driver_set_hooks(&driver);
err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
if (err)
return ERR_PTR(err);
xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
if (IS_ERR(xe))
return xe;
err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
xe->drm.anon_inode->i_mapping,
xe->drm.vma_offset_manager, false, false);
if (WARN_ON(err))
goto err;
err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
if (err)
goto err;
xe->info.devid = pdev->device;
xe->info.revid = pdev->revision;
xe->info.force_execlist = xe_modparam.force_execlist;
spin_lock_init(&xe->irq.lock);
spin_lock_init(&xe->clients.lock);
init_waitqueue_head(&xe->ufence_wq);
init_rwsem(&xe->usm.lock);
xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
/* Trigger a large asid and an early asid wrap. */
u32 asid;
BUILD_BUG_ON(XE_MAX_ASID < 2);
err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
&xe->usm.next_asid, GFP_KERNEL);
drm_WARN_ON(&xe->drm, err);
if (err >= 0)
xa_erase(&xe->usm.asid_to_vm, asid);
}
spin_lock_init(&xe->pinned.lock);
INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
INIT_LIST_HEAD(&xe->pinned.external_vram);
INIT_LIST_HEAD(&xe->pinned.evicted);
xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
if (!xe->ordered_wq || !xe->unordered_wq ||
!xe->preempt_fence_wq || !xe->destroy_wq) {
/*
* Cleanup done in xe_device_destroy via
* drmm_add_action_or_reset register above
*/
drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
err = -ENOMEM;
goto err;
}
err = xe_display_create(xe);
if (WARN_ON(err))
goto err;
return xe;
err:
return ERR_PTR(err);
}
/*
* The driver-initiated FLR is the highest level of reset that we can trigger
* from within the driver. It is different from the PCI FLR in that it doesn't
* fully reset the SGUnit and doesn't modify the PCI config space and therefore
* it doesn't require a re-enumeration of the PCI BARs. However, the
* driver-initiated FLR does still cause a reset of both GT and display and a
* memory wipe of local and stolen memory, so recovery would require a full HW
* re-init and saving/restoring (or re-populating) the wiped memory. Since we
* perform the FLR as the very last action before releasing access to the HW
* during the driver release flow, we don't attempt recovery at all, because
* if/when a new instance of i915 is bound to the device it will do a full
* re-init anyway.
*/
static void xe_driver_flr(struct xe_device *xe)
{
const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
struct xe_gt *gt = xe_root_mmio_gt(xe);
int ret;
if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
return;
}
drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
/*
* Make sure any pending FLR requests have cleared by waiting for the
* FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
* to make sure it's not still set from a prior attempt (it's a write to
* clear bit).
* Note that we should never be in a situation where a previous attempt
* is still pending (unless the HW is totally dead), but better to be
* safe in case something unexpected happens
*/
ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
if (ret) {
drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
return;
}
xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
/* Trigger the actual Driver-FLR */
xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
/* Wait for hardware teardown to complete */
ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
if (ret) {
drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
return;
}
/* Wait for hardware/firmware re-init to complete */
ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
flr_timeout, NULL, false);
if (ret) {
drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
return;
}
/* Clear sticky completion status */
xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
}
static void xe_driver_flr_fini(void *arg)
{
struct xe_device *xe = arg;
if (xe->needs_flr_on_fini)
xe_driver_flr(xe);
}
static void xe_device_sanitize(void *arg)
{
struct xe_device *xe = arg;
struct xe_gt *gt;
u8 id;
for_each_gt(gt, xe, id)
xe_gt_sanitize(gt);
}
static int xe_set_dma_info(struct xe_device *xe)
{
unsigned int mask_size = xe->info.dma_mask_size;
int err;
dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
if (err)
goto mask_err;
err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
if (err)
goto mask_err;
return 0;
mask_err:
drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
return err;
}
static bool verify_lmem_ready(struct xe_gt *gt)
{
u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
return !!val;
}
static int wait_for_lmem_ready(struct xe_device *xe)
{
struct xe_gt *gt = xe_root_mmio_gt(xe);
unsigned long timeout, start;
if (!IS_DGFX(xe))
return 0;
if (IS_SRIOV_VF(xe))
return 0;
if (verify_lmem_ready(gt))
return 0;
drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
start = jiffies;
timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
do {
if (signal_pending(current))
return -EINTR;
/*
* The boot firmware initializes local memory and
* assesses its health. If memory training fails,
* the punit will have been instructed to keep the GT powered
* down.we won't be able to communicate with it
*
* If the status check is done before punit updates the register,
* it can lead to the system being unusable.
* use a timeout and defer the probe to prevent this.
*/
if (time_after(jiffies, timeout)) {
drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
return -EPROBE_DEFER;
}
msleep(20);
} while (!verify_lmem_ready(gt));
drm_dbg(&xe->drm, "lmem ready after %ums",
jiffies_to_msecs(jiffies - start));
return 0;
}
static void update_device_info(struct xe_device *xe)
{
/* disable features that are not available/applicable to VFs */
if (IS_SRIOV_VF(xe)) {
xe->info.probe_display = 0;
xe->info.has_heci_gscfi = 0;
xe->info.skip_guc_pc = 1;
xe->info.skip_pcode = 1;
}
}
/**
* xe_device_probe_early: Device early probe
* @xe: xe device instance
*
* Initialize MMIO resources that don't require any
* knowledge about tile count. Also initialize pcode and
* check vram initialization on root tile.
*
* Return: 0 on success, error code on failure
*/
int xe_device_probe_early(struct xe_device *xe)
{
int err;
err = xe_mmio_init(xe);
if (err)
return err;
xe_sriov_probe_early(xe);
update_device_info(xe);
err = xe_pcode_probe_early(xe);
if (err)
return err;
err = wait_for_lmem_ready(xe);
if (err)
return err;
xe->wedged.mode = xe_modparam.wedged_mode;
return 0;
}
static int xe_device_set_has_flat_ccs(struct xe_device *xe)
{
u32 reg;
int err;
if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
return 0;
struct xe_gt *gt = xe_root_mmio_gt(xe);
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
if (!xe->info.has_flat_ccs)
drm_dbg(&xe->drm,
"Flat CCS has been disabled in bios, May lead to performance impact");
return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
int xe_device_probe(struct xe_device *xe)
{
struct xe_tile *tile;
struct xe_gt *gt;
int err;
u8 last_gt;
u8 id;
xe_pat_init_early(xe);
err = xe_sriov_init(xe);
if (err)
return err;
xe->info.mem_region_mask = 1;
err = xe_display_init_nommio(xe);
if (err)
return err;
err = xe_set_dma_info(xe);
if (err)
return err;
err = xe_mmio_probe_tiles(xe);
if (err)
return err;
xe_ttm_sys_mgr_init(xe);
for_each_gt(gt, xe, id) {
err = xe_gt_init_early(gt);
if (err)
return err;
}
for_each_tile(tile, xe, id) {
if (IS_SRIOV_VF(xe)) {
xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
if (err)
return err;
err = xe_gt_sriov_vf_query_config(tile->primary_gt);
if (err)
return err;
}
err = xe_ggtt_init_early(tile->mem.ggtt);
if (err)
return err;
if (IS_SRIOV_VF(xe)) {
err = xe_memirq_init(&tile->sriov.vf.memirq);
if (err)
return err;
}
}
for_each_gt(gt, xe, id) {
err = xe_gt_init_hwconfig(gt);
if (err)
return err;
}
err = xe_devcoredump_init(xe);
if (err)
return err;
err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
if (err)
return err;
err = xe_display_init_noirq(xe);
if (err)
return err;
err = xe_irq_install(xe);
if (err)
goto err;
err = xe_device_set_has_flat_ccs(xe);
if (err)
goto err;
err = xe_vram_probe(xe);
if (err)
goto err;
for_each_tile(tile, xe, id) {
err = xe_tile_init_noalloc(tile);
if (err)
goto err;
}
/* Allocate and map stolen after potential VRAM resize */
xe_ttm_stolen_mgr_init(xe);
/*
* Now that GT is initialized (TTM in particular),
* we can try to init display, and inherit the initial fb.
* This is the reason the first allocation needs to be done
* inside display.
*/
err = xe_display_init_noaccel(xe);
if (err)
goto err;
for_each_gt(gt, xe, id) {
last_gt = id;
err = xe_gt_init(gt);
if (err)
goto err_fini_gt;
}
xe_heci_gsc_init(xe);
err = xe_oa_init(xe);
if (err)
goto err_fini_gt;
err = xe_display_init(xe);
if (err)
goto err_fini_oa;
err = drm_dev_register(&xe->drm, 0);
if (err)
goto err_fini_display;
xe_display_register(xe);
xe_oa_register(xe);
xe_debugfs_register(xe);
xe_hwmon_register(xe);
for_each_gt(gt, xe, id)
xe_gt_sanitize_freq(gt);
return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
err_fini_display:
xe_display_driver_remove(xe);
err_fini_oa:
xe_oa_fini(xe);
err_fini_gt:
for_each_gt(gt, xe, id) {
if (id < last_gt)
xe_gt_remove(gt);
else
break;
}
err:
xe_display_fini(xe);
return err;
}
static void xe_device_remove_display(struct xe_device *xe)
{
xe_display_unregister(xe);
drm_dev_unplug(&xe->drm);
xe_display_driver_remove(xe);
}
void xe_device_remove(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
xe_oa_unregister(xe);
xe_device_remove_display(xe);
xe_display_fini(xe);
xe_oa_fini(xe);
xe_heci_gsc_fini(xe);
for_each_gt(gt, xe, id)
xe_gt_remove(gt);
}
void xe_device_shutdown(struct xe_device *xe)
{
}
/**
* xe_device_wmb() - Device specific write memory barrier
* @xe: the &xe_device
*
* While wmb() is sufficient for a barrier if we use system memory, on discrete
* platforms with device memory we additionally need to issue a register write.
* Since it doesn't matter which register we write to, use the read-only VF_CAP
* register that is also marked as accessible by the VFs.
*/
void xe_device_wmb(struct xe_device *xe)
{
struct xe_gt *gt = xe_root_mmio_gt(xe);
wmb();
if (IS_DGFX(xe))
xe_mmio_write32(gt, VF_CAP_REG, 0);
}
/**
* xe_device_td_flush() - Flush transient L3 cache entries
* @xe: The device
*
* Display engine has direct access to memory and is never coherent with L3/L4
* caches (or CPU caches), however KMD is responsible for specifically flushing
* transient L3 GPU cache entries prior to the flip sequence to ensure scanout
* can happen from such a surface without seeing corruption.
*
* Display surfaces can be tagged as transient by mapping it using one of the
* various L3:XD PAT index modes on Xe2.
*
* Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
* at the end of each submission via PIPE_CONTROL for compute/render, since SA
* Media is not coherent with L3 and we want to support render-vs-media
* usescases. For other engines like copy/blt the HW internally forces uncached
* behaviour, hence why we can skip the TDF on such platforms.
*/
void xe_device_td_flush(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
return;
if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
xe_device_l2_flush(xe);
return;
}
for_each_gt(gt, xe, id) {
if (xe_gt_is_media_type(gt))
continue;
if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
return;
xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
/*
* FIXME: We can likely do better here with our choice of
* timeout. Currently we just assume the worst case, i.e. 150us,
* which is believed to be sufficient to cover the worst case
* scenario on current platforms if all cache entries are
* transient and need to be flushed..
*/
if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
150, NULL, false))
xe_gt_err_once(gt, "TD flush timeout\n");
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
}
void xe_device_l2_flush(struct xe_device *xe)
{
struct xe_gt *gt;
int err;
gt = xe_root_mmio_gt(xe);
if (!XE_WA(gt, 16023588340))
return;
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return;
spin_lock(&gt->global_invl_lock);
xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
xe_gt_err_once(gt, "Global invalidation timeout\n");
spin_unlock(&gt->global_invl_lock);
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
{
return xe_device_has_flat_ccs(xe) ?
DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
}
/**
* xe_device_assert_mem_access - Inspect the current runtime_pm state.
* @xe: xe device instance
*
* To be used before any kind of memory access. It will splat a debug warning
* if the device is currently sleeping. But it doesn't guarantee in any way
* that the device is going to remain awake. Xe PM runtime get and put
* functions might be added to the outer bound of the memory access, while
* this check is intended for inner usage to splat some warning if the worst
* case has just happened.
*/
void xe_device_assert_mem_access(struct xe_device *xe)
{
xe_assert(xe, !xe_pm_runtime_suspended(xe));
}
void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
{
struct xe_gt *gt;
u8 id;
drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
for_each_gt(gt, xe, id) {
drm_printf(p, "GT id: %u\n", id);
drm_printf(p, "\tType: %s\n",
gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
drm_printf(p, "\tIP ver: %u.%u.%u\n",
REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
}
}
u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
{
return sign_extend64(address, xe->info.va_bits - 1);
}
u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
{
return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
}
static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
{
struct xe_device *xe = arg;
xe_pm_runtime_put(xe);
}
/**
* xe_device_declare_wedged - Declare device wedged
* @xe: xe device instance
*
* This is a final state that can only be cleared with a mudule
* re-probe (unbind + bind).
* In this state every IOCTL will be blocked so the GT cannot be used.
* In general it will be called upon any critical error such as gt reset
* failure or guc loading failure.
* If xe.wedged module parameter is set to 2, this function will be called
* on every single execution timeout (a.k.a. GPU hang) right after devcoredump
* snapshot capture. In this mode, GT reset won't be attempted so the state of
* the issue is preserved for further debugging.
*/
void xe_device_declare_wedged(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
if (xe->wedged.mode == 0) {
drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
return;
}
xe_pm_runtime_get_noresume(xe);
if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
return;
}
if (!atomic_xchg(&xe->wedged.flag, 1)) {
xe->needs_flr_on_fini = true;
drm_err(&xe->drm,
"CRITICAL: Xe has declared device %s as wedged.\n"
"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
dev_name(xe->drm.dev));
}
for_each_gt(gt, xe, id)
xe_gt_declare_wedged(gt);
}