| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* |
| * Microsemi Ocelot Switch driver |
| * |
| * Copyright (c) 2017 Microsemi Corporation |
| */ |
| #include <linux/dsa/ocelot.h> |
| #include <linux/if_bridge.h> |
| #include <linux/iopoll.h> |
| #include <linux/phy/phy.h> |
| #include <net/pkt_sched.h> |
| #include <soc/mscc/ocelot_hsio.h> |
| #include <soc/mscc/ocelot_vcap.h> |
| #include "ocelot.h" |
| #include "ocelot_vcap.h" |
| |
| #define TABLE_UPDATE_SLEEP_US 10 |
| #define TABLE_UPDATE_TIMEOUT_US 100000 |
| #define MEM_INIT_SLEEP_US 1000 |
| #define MEM_INIT_TIMEOUT_US 100000 |
| |
| #define OCELOT_RSV_VLAN_RANGE_START 4000 |
| |
| struct ocelot_mact_entry { |
| u8 mac[ETH_ALEN]; |
| u16 vid; |
| enum macaccess_entry_type type; |
| }; |
| |
| /* Caller must hold &ocelot->mact_lock */ |
| static inline u32 ocelot_mact_read_macaccess(struct ocelot *ocelot) |
| { |
| return ocelot_read(ocelot, ANA_TABLES_MACACCESS); |
| } |
| |
| /* Caller must hold &ocelot->mact_lock */ |
| static inline int ocelot_mact_wait_for_completion(struct ocelot *ocelot) |
| { |
| u32 val; |
| |
| return readx_poll_timeout(ocelot_mact_read_macaccess, |
| ocelot, val, |
| (val & ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M) == |
| MACACCESS_CMD_IDLE, |
| TABLE_UPDATE_SLEEP_US, TABLE_UPDATE_TIMEOUT_US); |
| } |
| |
| /* Caller must hold &ocelot->mact_lock */ |
| static void ocelot_mact_select(struct ocelot *ocelot, |
| const unsigned char mac[ETH_ALEN], |
| unsigned int vid) |
| { |
| u32 macl = 0, mach = 0; |
| |
| /* Set the MAC address to handle and the vlan associated in a format |
| * understood by the hardware. |
| */ |
| mach |= vid << 16; |
| mach |= mac[0] << 8; |
| mach |= mac[1] << 0; |
| macl |= mac[2] << 24; |
| macl |= mac[3] << 16; |
| macl |= mac[4] << 8; |
| macl |= mac[5] << 0; |
| |
| ocelot_write(ocelot, macl, ANA_TABLES_MACLDATA); |
| ocelot_write(ocelot, mach, ANA_TABLES_MACHDATA); |
| |
| } |
| |
| static int __ocelot_mact_learn(struct ocelot *ocelot, int port, |
| const unsigned char mac[ETH_ALEN], |
| unsigned int vid, enum macaccess_entry_type type) |
| { |
| u32 cmd = ANA_TABLES_MACACCESS_VALID | |
| ANA_TABLES_MACACCESS_DEST_IDX(port) | |
| ANA_TABLES_MACACCESS_ENTRYTYPE(type) | |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_LEARN); |
| unsigned int mc_ports; |
| int err; |
| |
| /* Set MAC_CPU_COPY if the CPU port is used by a multicast entry */ |
| if (type == ENTRYTYPE_MACv4) |
| mc_ports = (mac[1] << 8) | mac[2]; |
| else if (type == ENTRYTYPE_MACv6) |
| mc_ports = (mac[0] << 8) | mac[1]; |
| else |
| mc_ports = 0; |
| |
| if (mc_ports & BIT(ocelot->num_phys_ports)) |
| cmd |= ANA_TABLES_MACACCESS_MAC_CPU_COPY; |
| |
| ocelot_mact_select(ocelot, mac, vid); |
| |
| /* Issue a write command */ |
| ocelot_write(ocelot, cmd, ANA_TABLES_MACACCESS); |
| |
| err = ocelot_mact_wait_for_completion(ocelot); |
| |
| return err; |
| } |
| |
| int ocelot_mact_learn(struct ocelot *ocelot, int port, |
| const unsigned char mac[ETH_ALEN], |
| unsigned int vid, enum macaccess_entry_type type) |
| { |
| int ret; |
| |
| mutex_lock(&ocelot->mact_lock); |
| ret = __ocelot_mact_learn(ocelot, port, mac, vid, type); |
| mutex_unlock(&ocelot->mact_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ocelot_mact_learn); |
| |
| int ocelot_mact_forget(struct ocelot *ocelot, |
| const unsigned char mac[ETH_ALEN], unsigned int vid) |
| { |
| int err; |
| |
| mutex_lock(&ocelot->mact_lock); |
| |
| ocelot_mact_select(ocelot, mac, vid); |
| |
| /* Issue a forget command */ |
| ocelot_write(ocelot, |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_FORGET), |
| ANA_TABLES_MACACCESS); |
| |
| err = ocelot_mact_wait_for_completion(ocelot); |
| |
| mutex_unlock(&ocelot->mact_lock); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(ocelot_mact_forget); |
| |
| int ocelot_mact_lookup(struct ocelot *ocelot, int *dst_idx, |
| const unsigned char mac[ETH_ALEN], |
| unsigned int vid, enum macaccess_entry_type *type) |
| { |
| int val; |
| |
| mutex_lock(&ocelot->mact_lock); |
| |
| ocelot_mact_select(ocelot, mac, vid); |
| |
| /* Issue a read command with MACACCESS_VALID=1. */ |
| ocelot_write(ocelot, ANA_TABLES_MACACCESS_VALID | |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_READ), |
| ANA_TABLES_MACACCESS); |
| |
| if (ocelot_mact_wait_for_completion(ocelot)) { |
| mutex_unlock(&ocelot->mact_lock); |
| return -ETIMEDOUT; |
| } |
| |
| /* Read back the entry flags */ |
| val = ocelot_read(ocelot, ANA_TABLES_MACACCESS); |
| |
| mutex_unlock(&ocelot->mact_lock); |
| |
| if (!(val & ANA_TABLES_MACACCESS_VALID)) |
| return -ENOENT; |
| |
| *dst_idx = ANA_TABLES_MACACCESS_DEST_IDX_X(val); |
| *type = ANA_TABLES_MACACCESS_ENTRYTYPE_X(val); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_mact_lookup); |
| |
| int ocelot_mact_learn_streamdata(struct ocelot *ocelot, int dst_idx, |
| const unsigned char mac[ETH_ALEN], |
| unsigned int vid, |
| enum macaccess_entry_type type, |
| int sfid, int ssid) |
| { |
| int ret; |
| |
| mutex_lock(&ocelot->mact_lock); |
| |
| ocelot_write(ocelot, |
| (sfid < 0 ? 0 : ANA_TABLES_STREAMDATA_SFID_VALID) | |
| ANA_TABLES_STREAMDATA_SFID(sfid) | |
| (ssid < 0 ? 0 : ANA_TABLES_STREAMDATA_SSID_VALID) | |
| ANA_TABLES_STREAMDATA_SSID(ssid), |
| ANA_TABLES_STREAMDATA); |
| |
| ret = __ocelot_mact_learn(ocelot, dst_idx, mac, vid, type); |
| |
| mutex_unlock(&ocelot->mact_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ocelot_mact_learn_streamdata); |
| |
| static void ocelot_mact_init(struct ocelot *ocelot) |
| { |
| /* Configure the learning mode entries attributes: |
| * - Do not copy the frame to the CPU extraction queues. |
| * - Use the vlan and mac_cpoy for dmac lookup. |
| */ |
| ocelot_rmw(ocelot, 0, |
| ANA_AGENCTRL_LEARN_CPU_COPY | ANA_AGENCTRL_IGNORE_DMAC_FLAGS |
| | ANA_AGENCTRL_LEARN_FWD_KILL |
| | ANA_AGENCTRL_LEARN_IGNORE_VLAN, |
| ANA_AGENCTRL); |
| |
| /* Clear the MAC table. We are not concurrent with anyone, so |
| * holding &ocelot->mact_lock is pointless. |
| */ |
| ocelot_write(ocelot, MACACCESS_CMD_INIT, ANA_TABLES_MACACCESS); |
| } |
| |
| void ocelot_pll5_init(struct ocelot *ocelot) |
| { |
| /* Configure PLL5. This will need a proper CCF driver |
| * The values are coming from the VTSS API for Ocelot |
| */ |
| regmap_write(ocelot->targets[HSIO], HSIO_PLL5G_CFG4, |
| HSIO_PLL5G_CFG4_IB_CTRL(0x7600) | |
| HSIO_PLL5G_CFG4_IB_BIAS_CTRL(0x8)); |
| regmap_write(ocelot->targets[HSIO], HSIO_PLL5G_CFG0, |
| HSIO_PLL5G_CFG0_CORE_CLK_DIV(0x11) | |
| HSIO_PLL5G_CFG0_CPU_CLK_DIV(2) | |
| HSIO_PLL5G_CFG0_ENA_BIAS | |
| HSIO_PLL5G_CFG0_ENA_VCO_BUF | |
| HSIO_PLL5G_CFG0_ENA_CP1 | |
| HSIO_PLL5G_CFG0_SELCPI(2) | |
| HSIO_PLL5G_CFG0_LOOP_BW_RES(0xe) | |
| HSIO_PLL5G_CFG0_SELBGV820(4) | |
| HSIO_PLL5G_CFG0_DIV4 | |
| HSIO_PLL5G_CFG0_ENA_CLKTREE | |
| HSIO_PLL5G_CFG0_ENA_LANE); |
| regmap_write(ocelot->targets[HSIO], HSIO_PLL5G_CFG2, |
| HSIO_PLL5G_CFG2_EN_RESET_FRQ_DET | |
| HSIO_PLL5G_CFG2_EN_RESET_OVERRUN | |
| HSIO_PLL5G_CFG2_GAIN_TEST(0x8) | |
| HSIO_PLL5G_CFG2_ENA_AMPCTRL | |
| HSIO_PLL5G_CFG2_PWD_AMPCTRL_N | |
| HSIO_PLL5G_CFG2_AMPC_SEL(0x10)); |
| } |
| EXPORT_SYMBOL(ocelot_pll5_init); |
| |
| static void ocelot_vcap_enable(struct ocelot *ocelot, int port) |
| { |
| ocelot_write_gix(ocelot, ANA_PORT_VCAP_S2_CFG_S2_ENA | |
| ANA_PORT_VCAP_S2_CFG_S2_IP6_CFG(0xa), |
| ANA_PORT_VCAP_S2_CFG, port); |
| |
| ocelot_write_gix(ocelot, ANA_PORT_VCAP_CFG_S1_ENA, |
| ANA_PORT_VCAP_CFG, port); |
| |
| ocelot_rmw_gix(ocelot, REW_PORT_CFG_ES0_EN, |
| REW_PORT_CFG_ES0_EN, |
| REW_PORT_CFG, port); |
| } |
| |
| static int ocelot_single_vlan_aware_bridge(struct ocelot *ocelot, |
| struct netlink_ext_ack *extack) |
| { |
| struct net_device *bridge = NULL; |
| int port; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port || !ocelot_port->bridge || |
| !br_vlan_enabled(ocelot_port->bridge)) |
| continue; |
| |
| if (!bridge) { |
| bridge = ocelot_port->bridge; |
| continue; |
| } |
| |
| if (bridge == ocelot_port->bridge) |
| continue; |
| |
| NL_SET_ERR_MSG_MOD(extack, |
| "Only one VLAN-aware bridge is supported"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static inline u32 ocelot_vlant_read_vlanaccess(struct ocelot *ocelot) |
| { |
| return ocelot_read(ocelot, ANA_TABLES_VLANACCESS); |
| } |
| |
| static inline int ocelot_vlant_wait_for_completion(struct ocelot *ocelot) |
| { |
| u32 val; |
| |
| return readx_poll_timeout(ocelot_vlant_read_vlanaccess, |
| ocelot, |
| val, |
| (val & ANA_TABLES_VLANACCESS_VLAN_TBL_CMD_M) == |
| ANA_TABLES_VLANACCESS_CMD_IDLE, |
| TABLE_UPDATE_SLEEP_US, TABLE_UPDATE_TIMEOUT_US); |
| } |
| |
| static int ocelot_vlant_set_mask(struct ocelot *ocelot, u16 vid, u32 mask) |
| { |
| /* Select the VID to configure */ |
| ocelot_write(ocelot, ANA_TABLES_VLANTIDX_V_INDEX(vid), |
| ANA_TABLES_VLANTIDX); |
| /* Set the vlan port members mask and issue a write command */ |
| ocelot_write(ocelot, ANA_TABLES_VLANACCESS_VLAN_PORT_MASK(mask) | |
| ANA_TABLES_VLANACCESS_CMD_WRITE, |
| ANA_TABLES_VLANACCESS); |
| |
| return ocelot_vlant_wait_for_completion(ocelot); |
| } |
| |
| static int ocelot_port_num_untagged_vlans(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_bridge_vlan *vlan; |
| int num_untagged = 0; |
| |
| list_for_each_entry(vlan, &ocelot->vlans, list) { |
| if (!(vlan->portmask & BIT(port))) |
| continue; |
| |
| /* Ignore the VLAN added by ocelot_add_vlan_unaware_pvid(), |
| * because this is never active in hardware at the same time as |
| * the bridge VLANs, which only matter in VLAN-aware mode. |
| */ |
| if (vlan->vid >= OCELOT_RSV_VLAN_RANGE_START) |
| continue; |
| |
| if (vlan->untagged & BIT(port)) |
| num_untagged++; |
| } |
| |
| return num_untagged; |
| } |
| |
| static int ocelot_port_num_tagged_vlans(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_bridge_vlan *vlan; |
| int num_tagged = 0; |
| |
| list_for_each_entry(vlan, &ocelot->vlans, list) { |
| if (!(vlan->portmask & BIT(port))) |
| continue; |
| |
| if (!(vlan->untagged & BIT(port))) |
| num_tagged++; |
| } |
| |
| return num_tagged; |
| } |
| |
| /* We use native VLAN when we have to mix egress-tagged VLANs with exactly |
| * _one_ egress-untagged VLAN (_the_ native VLAN) |
| */ |
| static bool ocelot_port_uses_native_vlan(struct ocelot *ocelot, int port) |
| { |
| return ocelot_port_num_tagged_vlans(ocelot, port) && |
| ocelot_port_num_untagged_vlans(ocelot, port) == 1; |
| } |
| |
| static struct ocelot_bridge_vlan * |
| ocelot_port_find_native_vlan(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_bridge_vlan *vlan; |
| |
| list_for_each_entry(vlan, &ocelot->vlans, list) |
| if (vlan->portmask & BIT(port) && vlan->untagged & BIT(port)) |
| return vlan; |
| |
| return NULL; |
| } |
| |
| /* Keep in sync REW_TAG_CFG_TAG_CFG and, if applicable, |
| * REW_PORT_VLAN_CFG_PORT_VID, with the bridge VLAN table and VLAN awareness |
| * state of the port. |
| */ |
| static void ocelot_port_manage_port_tag(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| enum ocelot_port_tag_config tag_cfg; |
| bool uses_native_vlan = false; |
| |
| if (ocelot_port->vlan_aware) { |
| uses_native_vlan = ocelot_port_uses_native_vlan(ocelot, port); |
| |
| if (uses_native_vlan) |
| tag_cfg = OCELOT_PORT_TAG_NATIVE; |
| else if (ocelot_port_num_untagged_vlans(ocelot, port)) |
| tag_cfg = OCELOT_PORT_TAG_DISABLED; |
| else |
| tag_cfg = OCELOT_PORT_TAG_TRUNK; |
| } else { |
| tag_cfg = OCELOT_PORT_TAG_DISABLED; |
| } |
| |
| ocelot_rmw_gix(ocelot, REW_TAG_CFG_TAG_CFG(tag_cfg), |
| REW_TAG_CFG_TAG_CFG_M, |
| REW_TAG_CFG, port); |
| |
| if (uses_native_vlan) { |
| struct ocelot_bridge_vlan *native_vlan; |
| |
| /* Not having a native VLAN is impossible, because |
| * ocelot_port_num_untagged_vlans has returned 1. |
| * So there is no use in checking for NULL here. |
| */ |
| native_vlan = ocelot_port_find_native_vlan(ocelot, port); |
| |
| ocelot_rmw_gix(ocelot, |
| REW_PORT_VLAN_CFG_PORT_VID(native_vlan->vid), |
| REW_PORT_VLAN_CFG_PORT_VID_M, |
| REW_PORT_VLAN_CFG, port); |
| } |
| } |
| |
| int ocelot_bridge_num_find(struct ocelot *ocelot, |
| const struct net_device *bridge) |
| { |
| int port; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (ocelot_port && ocelot_port->bridge == bridge) |
| return ocelot_port->bridge_num; |
| } |
| |
| return -1; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_bridge_num_find); |
| |
| static u16 ocelot_vlan_unaware_pvid(struct ocelot *ocelot, |
| const struct net_device *bridge) |
| { |
| int bridge_num; |
| |
| /* Standalone ports use VID 0 */ |
| if (!bridge) |
| return 0; |
| |
| bridge_num = ocelot_bridge_num_find(ocelot, bridge); |
| if (WARN_ON(bridge_num < 0)) |
| return 0; |
| |
| /* VLAN-unaware bridges use a reserved VID going from 4095 downwards */ |
| return VLAN_N_VID - bridge_num - 1; |
| } |
| |
| /** |
| * ocelot_update_vlan_reclassify_rule() - Make switch aware only to bridge VLAN TPID |
| * |
| * @ocelot: Switch private data structure |
| * @port: Index of ingress port |
| * |
| * IEEE 802.1Q-2018 clauses "5.5 C-VLAN component conformance" and "5.6 S-VLAN |
| * component conformance" suggest that a C-VLAN component should only recognize |
| * and filter on C-Tags, and an S-VLAN component should only recognize and |
| * process based on C-Tags. |
| * |
| * In Linux, as per commit 1a0b20b25732 ("Merge branch 'bridge-next'"), C-VLAN |
| * components are largely represented by a bridge with vlan_protocol 802.1Q, |
| * and S-VLAN components by a bridge with vlan_protocol 802.1ad. |
| * |
| * Currently the driver only offloads vlan_protocol 802.1Q, but the hardware |
| * design is non-conformant, because the switch assigns each frame to a VLAN |
| * based on an entirely different question, as detailed in figure "Basic VLAN |
| * Classification Flow" from its manual and reproduced below. |
| * |
| * Set TAG_TYPE, PCP, DEI, VID to port-default values in VLAN_CFG register |
| * if VLAN_AWARE_ENA[port] and frame has outer tag then: |
| * if VLAN_INNER_TAG_ENA[port] and frame has inner tag then: |
| * TAG_TYPE = (Frame.InnerTPID <> 0x8100) |
| * Set PCP, DEI, VID to values from inner VLAN header |
| * else: |
| * TAG_TYPE = (Frame.OuterTPID <> 0x8100) |
| * Set PCP, DEI, VID to values from outer VLAN header |
| * if VID == 0 then: |
| * VID = VLAN_CFG.VLAN_VID |
| * |
| * Summarized, the switch will recognize both 802.1Q and 802.1ad TPIDs as VLAN |
| * "with equal rights", and just set the TAG_TYPE bit to 0 (if 802.1Q) or to 1 |
| * (if 802.1ad). It will classify based on whichever of the tags is "outer", no |
| * matter what TPID that may have (or "inner", if VLAN_INNER_TAG_ENA[port]). |
| * |
| * In the VLAN Table, the TAG_TYPE information is not accessible - just the |
| * classified VID is - so it is as if each VLAN Table entry is for 2 VLANs: |
| * C-VLAN X, and S-VLAN X. |
| * |
| * Whereas the Linux bridge behavior is to only filter on frames with a TPID |
| * equal to the vlan_protocol, and treat everything else as VLAN-untagged. |
| * |
| * Consider an ingress packet tagged with 802.1ad VID=3 and 802.1Q VID=5, |
| * received on a bridge vlan_filtering=1 vlan_protocol=802.1Q port. This frame |
| * should be treated as 802.1Q-untagged, and classified to the PVID of that |
| * bridge port. Not to VID=3, and not to VID=5. |
| * |
| * The VCAP IS1 TCAM has everything we need to overwrite the choices made in |
| * the basic VLAN classification pipeline: it can match on TAG_TYPE in the key, |
| * and it can modify the classified VID in the action. Thus, for each port |
| * under a vlan_filtering bridge, we can insert a rule in VCAP IS1 lookup 0 to |
| * match on 802.1ad tagged frames and modify their classified VID to the 802.1Q |
| * PVID of the port. This effectively makes it appear to the outside world as |
| * if those packets were processed as VLAN-untagged. |
| * |
| * The rule needs to be updated each time the bridge PVID changes, and needs |
| * to be deleted if the bridge PVID is deleted, or if the port becomes |
| * VLAN-unaware. |
| */ |
| static int ocelot_update_vlan_reclassify_rule(struct ocelot *ocelot, int port) |
| { |
| unsigned long cookie = OCELOT_VCAP_IS1_VLAN_RECLASSIFY(ocelot, port); |
| struct ocelot_vcap_block *block_vcap_is1 = &ocelot->block[VCAP_IS1]; |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| const struct ocelot_bridge_vlan *pvid_vlan; |
| struct ocelot_vcap_filter *filter; |
| int err, val, pcp, dei; |
| bool vid_replace_ena; |
| u16 vid; |
| |
| pvid_vlan = ocelot_port->pvid_vlan; |
| vid_replace_ena = ocelot_port->vlan_aware && pvid_vlan; |
| |
| filter = ocelot_vcap_block_find_filter_by_id(block_vcap_is1, cookie, |
| false); |
| if (!vid_replace_ena) { |
| /* If the reclassification filter doesn't need to exist, delete |
| * it if it was previously installed, and exit doing nothing |
| * otherwise. |
| */ |
| if (filter) |
| return ocelot_vcap_filter_del(ocelot, filter); |
| |
| return 0; |
| } |
| |
| /* The reclassification rule must apply. See if it already exists |
| * or if it must be created. |
| */ |
| |
| /* Treating as VLAN-untagged means using as classified VID equal to |
| * the bridge PVID, and PCP/DEI set to the port default QoS values. |
| */ |
| vid = pvid_vlan->vid; |
| val = ocelot_read_gix(ocelot, ANA_PORT_QOS_CFG, port); |
| pcp = ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL_X(val); |
| dei = !!(val & ANA_PORT_QOS_CFG_DP_DEFAULT_VAL); |
| |
| if (filter) { |
| bool changed = false; |
| |
| /* Filter exists, just update it */ |
| if (filter->action.vid != vid) { |
| filter->action.vid = vid; |
| changed = true; |
| } |
| if (filter->action.pcp != pcp) { |
| filter->action.pcp = pcp; |
| changed = true; |
| } |
| if (filter->action.dei != dei) { |
| filter->action.dei = dei; |
| changed = true; |
| } |
| |
| if (!changed) |
| return 0; |
| |
| return ocelot_vcap_filter_replace(ocelot, filter); |
| } |
| |
| /* Filter doesn't exist, create it */ |
| filter = kzalloc(sizeof(*filter), GFP_KERNEL); |
| if (!filter) |
| return -ENOMEM; |
| |
| filter->key_type = OCELOT_VCAP_KEY_ANY; |
| filter->ingress_port_mask = BIT(port); |
| filter->vlan.tpid = OCELOT_VCAP_BIT_1; |
| filter->prio = 1; |
| filter->id.cookie = cookie; |
| filter->id.tc_offload = false; |
| filter->block_id = VCAP_IS1; |
| filter->type = OCELOT_VCAP_FILTER_OFFLOAD; |
| filter->lookup = 0; |
| filter->action.vid_replace_ena = true; |
| filter->action.pcp_dei_ena = true; |
| filter->action.vid = vid; |
| filter->action.pcp = pcp; |
| filter->action.dei = dei; |
| |
| err = ocelot_vcap_filter_add(ocelot, filter, NULL); |
| if (err) |
| kfree(filter); |
| |
| return err; |
| } |
| |
| /* Default vlan to clasify for untagged frames (may be zero) */ |
| static int ocelot_port_set_pvid(struct ocelot *ocelot, int port, |
| const struct ocelot_bridge_vlan *pvid_vlan) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| u16 pvid = ocelot_vlan_unaware_pvid(ocelot, ocelot_port->bridge); |
| u32 val = 0; |
| |
| ocelot_port->pvid_vlan = pvid_vlan; |
| |
| if (ocelot_port->vlan_aware && pvid_vlan) |
| pvid = pvid_vlan->vid; |
| |
| ocelot_rmw_gix(ocelot, |
| ANA_PORT_VLAN_CFG_VLAN_VID(pvid), |
| ANA_PORT_VLAN_CFG_VLAN_VID_M, |
| ANA_PORT_VLAN_CFG, port); |
| |
| /* If there's no pvid, we should drop not only untagged traffic (which |
| * happens automatically), but also 802.1p traffic which gets |
| * classified to VLAN 0, but that is always in our RX filter, so it |
| * would get accepted were it not for this setting. |
| * |
| * Also, we only support the bridge 802.1Q VLAN protocol, so |
| * 802.1ad-tagged frames (carrying S-Tags) should be considered |
| * 802.1Q-untagged, and also dropped. |
| */ |
| if (!pvid_vlan && ocelot_port->vlan_aware) |
| val = ANA_PORT_DROP_CFG_DROP_PRIO_S_TAGGED_ENA | |
| ANA_PORT_DROP_CFG_DROP_PRIO_C_TAGGED_ENA | |
| ANA_PORT_DROP_CFG_DROP_S_TAGGED_ENA; |
| |
| ocelot_rmw_gix(ocelot, val, |
| ANA_PORT_DROP_CFG_DROP_PRIO_S_TAGGED_ENA | |
| ANA_PORT_DROP_CFG_DROP_PRIO_C_TAGGED_ENA | |
| ANA_PORT_DROP_CFG_DROP_S_TAGGED_ENA, |
| ANA_PORT_DROP_CFG, port); |
| |
| return ocelot_update_vlan_reclassify_rule(ocelot, port); |
| } |
| |
| static struct ocelot_bridge_vlan *ocelot_bridge_vlan_find(struct ocelot *ocelot, |
| u16 vid) |
| { |
| struct ocelot_bridge_vlan *vlan; |
| |
| list_for_each_entry(vlan, &ocelot->vlans, list) |
| if (vlan->vid == vid) |
| return vlan; |
| |
| return NULL; |
| } |
| |
| static int ocelot_vlan_member_add(struct ocelot *ocelot, int port, u16 vid, |
| bool untagged) |
| { |
| struct ocelot_bridge_vlan *vlan = ocelot_bridge_vlan_find(ocelot, vid); |
| unsigned long portmask; |
| int err; |
| |
| if (vlan) { |
| portmask = vlan->portmask | BIT(port); |
| |
| err = ocelot_vlant_set_mask(ocelot, vid, portmask); |
| if (err) |
| return err; |
| |
| vlan->portmask = portmask; |
| /* Bridge VLANs can be overwritten with a different |
| * egress-tagging setting, so make sure to override an untagged |
| * with a tagged VID if that's going on. |
| */ |
| if (untagged) |
| vlan->untagged |= BIT(port); |
| else |
| vlan->untagged &= ~BIT(port); |
| |
| return 0; |
| } |
| |
| vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); |
| if (!vlan) |
| return -ENOMEM; |
| |
| portmask = BIT(port); |
| |
| err = ocelot_vlant_set_mask(ocelot, vid, portmask); |
| if (err) { |
| kfree(vlan); |
| return err; |
| } |
| |
| vlan->vid = vid; |
| vlan->portmask = portmask; |
| if (untagged) |
| vlan->untagged = BIT(port); |
| INIT_LIST_HEAD(&vlan->list); |
| list_add_tail(&vlan->list, &ocelot->vlans); |
| |
| return 0; |
| } |
| |
| static int ocelot_vlan_member_del(struct ocelot *ocelot, int port, u16 vid) |
| { |
| struct ocelot_bridge_vlan *vlan = ocelot_bridge_vlan_find(ocelot, vid); |
| unsigned long portmask; |
| int err; |
| |
| if (!vlan) |
| return 0; |
| |
| portmask = vlan->portmask & ~BIT(port); |
| |
| err = ocelot_vlant_set_mask(ocelot, vid, portmask); |
| if (err) |
| return err; |
| |
| vlan->portmask = portmask; |
| if (vlan->portmask) |
| return 0; |
| |
| list_del(&vlan->list); |
| kfree(vlan); |
| |
| return 0; |
| } |
| |
| static int ocelot_add_vlan_unaware_pvid(struct ocelot *ocelot, int port, |
| const struct net_device *bridge) |
| { |
| u16 vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| return ocelot_vlan_member_add(ocelot, port, vid, true); |
| } |
| |
| static int ocelot_del_vlan_unaware_pvid(struct ocelot *ocelot, int port, |
| const struct net_device *bridge) |
| { |
| u16 vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| return ocelot_vlan_member_del(ocelot, port, vid); |
| } |
| |
| int ocelot_port_vlan_filtering(struct ocelot *ocelot, int port, |
| bool vlan_aware, struct netlink_ext_ack *extack) |
| { |
| struct ocelot_vcap_block *block = &ocelot->block[VCAP_IS1]; |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| struct ocelot_vcap_filter *filter; |
| int err = 0; |
| u32 val; |
| |
| list_for_each_entry(filter, &block->rules, list) { |
| if (filter->ingress_port_mask & BIT(port) && |
| filter->action.vid_replace_ena) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Cannot change VLAN state with vlan modify rules active"); |
| return -EBUSY; |
| } |
| } |
| |
| err = ocelot_single_vlan_aware_bridge(ocelot, extack); |
| if (err) |
| return err; |
| |
| if (vlan_aware) |
| err = ocelot_del_vlan_unaware_pvid(ocelot, port, |
| ocelot_port->bridge); |
| else if (ocelot_port->bridge) |
| err = ocelot_add_vlan_unaware_pvid(ocelot, port, |
| ocelot_port->bridge); |
| if (err) |
| return err; |
| |
| ocelot_port->vlan_aware = vlan_aware; |
| |
| if (vlan_aware) |
| val = ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | |
| ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1); |
| else |
| val = 0; |
| ocelot_rmw_gix(ocelot, val, |
| ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | |
| ANA_PORT_VLAN_CFG_VLAN_POP_CNT_M, |
| ANA_PORT_VLAN_CFG, port); |
| |
| err = ocelot_port_set_pvid(ocelot, port, ocelot_port->pvid_vlan); |
| if (err) |
| return err; |
| |
| ocelot_port_manage_port_tag(ocelot, port); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_port_vlan_filtering); |
| |
| int ocelot_vlan_prepare(struct ocelot *ocelot, int port, u16 vid, bool pvid, |
| bool untagged, struct netlink_ext_ack *extack) |
| { |
| if (untagged) { |
| /* We are adding an egress-tagged VLAN */ |
| if (ocelot_port_uses_native_vlan(ocelot, port)) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Port with egress-tagged VLANs cannot have more than one egress-untagged (native) VLAN"); |
| return -EBUSY; |
| } |
| } else { |
| /* We are adding an egress-tagged VLAN */ |
| if (ocelot_port_num_untagged_vlans(ocelot, port) > 1) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Port with more than one egress-untagged VLAN cannot have egress-tagged VLANs"); |
| return -EBUSY; |
| } |
| } |
| |
| if (vid > OCELOT_RSV_VLAN_RANGE_START) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "VLAN range 4000-4095 reserved for VLAN-unaware bridging"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_vlan_prepare); |
| |
| int ocelot_vlan_add(struct ocelot *ocelot, int port, u16 vid, bool pvid, |
| bool untagged) |
| { |
| int err; |
| |
| /* Ignore VID 0 added to our RX filter by the 8021q module, since |
| * that collides with OCELOT_STANDALONE_PVID and changes it from |
| * egress-untagged to egress-tagged. |
| */ |
| if (!vid) |
| return 0; |
| |
| err = ocelot_vlan_member_add(ocelot, port, vid, untagged); |
| if (err) |
| return err; |
| |
| /* Default ingress vlan classification */ |
| if (pvid) { |
| err = ocelot_port_set_pvid(ocelot, port, |
| ocelot_bridge_vlan_find(ocelot, vid)); |
| if (err) |
| return err; |
| } |
| |
| /* Untagged egress vlan clasification */ |
| ocelot_port_manage_port_tag(ocelot, port); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_vlan_add); |
| |
| int ocelot_vlan_del(struct ocelot *ocelot, int port, u16 vid) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| bool del_pvid = false; |
| int err; |
| |
| if (!vid) |
| return 0; |
| |
| if (ocelot_port->pvid_vlan && ocelot_port->pvid_vlan->vid == vid) |
| del_pvid = true; |
| |
| err = ocelot_vlan_member_del(ocelot, port, vid); |
| if (err) |
| return err; |
| |
| /* Ingress */ |
| if (del_pvid) { |
| err = ocelot_port_set_pvid(ocelot, port, NULL); |
| if (err) |
| return err; |
| } |
| |
| /* Egress */ |
| ocelot_port_manage_port_tag(ocelot, port); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_vlan_del); |
| |
| static void ocelot_vlan_init(struct ocelot *ocelot) |
| { |
| unsigned long all_ports = GENMASK(ocelot->num_phys_ports - 1, 0); |
| u16 port, vid; |
| |
| /* Clear VLAN table, by default all ports are members of all VLANs */ |
| ocelot_write(ocelot, ANA_TABLES_VLANACCESS_CMD_INIT, |
| ANA_TABLES_VLANACCESS); |
| ocelot_vlant_wait_for_completion(ocelot); |
| |
| /* Configure the port VLAN memberships */ |
| for (vid = 1; vid < VLAN_N_VID; vid++) |
| ocelot_vlant_set_mask(ocelot, vid, 0); |
| |
| /* We need VID 0 to get traffic on standalone ports. |
| * It is added automatically if the 8021q module is loaded, but we |
| * can't rely on that since it might not be. |
| */ |
| ocelot_vlant_set_mask(ocelot, OCELOT_STANDALONE_PVID, all_ports); |
| |
| /* Set vlan ingress filter mask to all ports but the CPU port by |
| * default. |
| */ |
| ocelot_write(ocelot, all_ports, ANA_VLANMASK); |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| ocelot_write_gix(ocelot, 0, REW_PORT_VLAN_CFG, port); |
| ocelot_write_gix(ocelot, 0, REW_TAG_CFG, port); |
| } |
| } |
| |
| static u32 ocelot_read_eq_avail(struct ocelot *ocelot, int port) |
| { |
| return ocelot_read_rix(ocelot, QSYS_SW_STATUS, port); |
| } |
| |
| static int ocelot_port_flush(struct ocelot *ocelot, int port) |
| { |
| unsigned int pause_ena; |
| int err, val; |
| |
| /* Disable dequeuing from the egress queues */ |
| ocelot_rmw_rix(ocelot, QSYS_PORT_MODE_DEQUEUE_DIS, |
| QSYS_PORT_MODE_DEQUEUE_DIS, |
| QSYS_PORT_MODE, port); |
| |
| /* Disable flow control */ |
| ocelot_fields_read(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, &pause_ena); |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 0); |
| |
| /* Disable priority flow control */ |
| ocelot_fields_write(ocelot, port, |
| QSYS_SWITCH_PORT_MODE_TX_PFC_ENA, 0); |
| |
| /* Wait at least the time it takes to receive a frame of maximum length |
| * at the port. |
| * Worst-case delays for 10 kilobyte jumbo frames are: |
| * 8 ms on a 10M port |
| * 800 μs on a 100M port |
| * 80 μs on a 1G port |
| * 32 μs on a 2.5G port |
| */ |
| usleep_range(8000, 10000); |
| |
| /* Disable half duplex backpressure. */ |
| ocelot_rmw_rix(ocelot, 0, SYS_FRONT_PORT_MODE_HDX_MODE, |
| SYS_FRONT_PORT_MODE, port); |
| |
| /* Flush the queues associated with the port. */ |
| ocelot_rmw_gix(ocelot, REW_PORT_CFG_FLUSH_ENA, REW_PORT_CFG_FLUSH_ENA, |
| REW_PORT_CFG, port); |
| |
| /* Enable dequeuing from the egress queues. */ |
| ocelot_rmw_rix(ocelot, 0, QSYS_PORT_MODE_DEQUEUE_DIS, QSYS_PORT_MODE, |
| port); |
| |
| /* Wait until flushing is complete. */ |
| err = read_poll_timeout(ocelot_read_eq_avail, val, !val, |
| 100, 2000000, false, ocelot, port); |
| |
| /* Clear flushing again. */ |
| ocelot_rmw_gix(ocelot, 0, REW_PORT_CFG_FLUSH_ENA, REW_PORT_CFG, port); |
| |
| /* Re-enable flow control */ |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, pause_ena); |
| |
| return err; |
| } |
| |
| int ocelot_port_configure_serdes(struct ocelot *ocelot, int port, |
| struct device_node *portnp) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| struct device *dev = ocelot->dev; |
| int err; |
| |
| /* Ensure clock signals and speed are set on all QSGMII links */ |
| if (ocelot_port->phy_mode == PHY_INTERFACE_MODE_QSGMII) |
| ocelot_port_rmwl(ocelot_port, 0, |
| DEV_CLOCK_CFG_MAC_TX_RST | |
| DEV_CLOCK_CFG_MAC_RX_RST, |
| DEV_CLOCK_CFG); |
| |
| if (ocelot_port->phy_mode != PHY_INTERFACE_MODE_INTERNAL) { |
| struct phy *serdes = of_phy_get(portnp, NULL); |
| |
| if (IS_ERR(serdes)) { |
| err = PTR_ERR(serdes); |
| dev_err_probe(dev, err, |
| "missing SerDes phys for port %d\n", |
| port); |
| return err; |
| } |
| |
| err = phy_set_mode_ext(serdes, PHY_MODE_ETHERNET, |
| ocelot_port->phy_mode); |
| of_phy_put(serdes); |
| if (err) { |
| dev_err(dev, "Could not SerDes mode on port %d: %pe\n", |
| port, ERR_PTR(err)); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_configure_serdes); |
| |
| void ocelot_phylink_mac_config(struct ocelot *ocelot, int port, |
| unsigned int link_an_mode, |
| const struct phylink_link_state *state) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| /* Disable HDX fast control */ |
| ocelot_port_writel(ocelot_port, DEV_PORT_MISC_HDX_FAST_DIS, |
| DEV_PORT_MISC); |
| |
| /* SGMII only for now */ |
| ocelot_port_writel(ocelot_port, PCS1G_MODE_CFG_SGMII_MODE_ENA, |
| PCS1G_MODE_CFG); |
| ocelot_port_writel(ocelot_port, PCS1G_SD_CFG_SD_SEL, PCS1G_SD_CFG); |
| |
| /* Enable PCS */ |
| ocelot_port_writel(ocelot_port, PCS1G_CFG_PCS_ENA, PCS1G_CFG); |
| |
| /* No aneg on SGMII */ |
| ocelot_port_writel(ocelot_port, 0, PCS1G_ANEG_CFG); |
| |
| /* No loopback */ |
| ocelot_port_writel(ocelot_port, 0, PCS1G_LB_CFG); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_phylink_mac_config); |
| |
| void ocelot_phylink_mac_link_down(struct ocelot *ocelot, int port, |
| unsigned int link_an_mode, |
| phy_interface_t interface, |
| unsigned long quirks) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| int err; |
| |
| ocelot_port->speed = SPEED_UNKNOWN; |
| |
| ocelot_port_rmwl(ocelot_port, 0, DEV_MAC_ENA_CFG_RX_ENA, |
| DEV_MAC_ENA_CFG); |
| |
| if (ocelot->ops->cut_through_fwd) { |
| mutex_lock(&ocelot->fwd_domain_lock); |
| ocelot->ops->cut_through_fwd(ocelot); |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| |
| ocelot_fields_write(ocelot, port, QSYS_SWITCH_PORT_MODE_PORT_ENA, 0); |
| |
| err = ocelot_port_flush(ocelot, port); |
| if (err) |
| dev_err(ocelot->dev, "failed to flush port %d: %d\n", |
| port, err); |
| |
| /* Put the port in reset. */ |
| if (interface != PHY_INTERFACE_MODE_QSGMII || |
| !(quirks & OCELOT_QUIRK_QSGMII_PORTS_MUST_BE_UP)) |
| ocelot_port_rmwl(ocelot_port, |
| DEV_CLOCK_CFG_MAC_TX_RST | |
| DEV_CLOCK_CFG_MAC_RX_RST, |
| DEV_CLOCK_CFG_MAC_TX_RST | |
| DEV_CLOCK_CFG_MAC_RX_RST, |
| DEV_CLOCK_CFG); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_phylink_mac_link_down); |
| |
| void ocelot_phylink_mac_link_up(struct ocelot *ocelot, int port, |
| struct phy_device *phydev, |
| unsigned int link_an_mode, |
| phy_interface_t interface, |
| int speed, int duplex, |
| bool tx_pause, bool rx_pause, |
| unsigned long quirks) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| int mac_speed, mode = 0; |
| u32 mac_fc_cfg; |
| |
| ocelot_port->speed = speed; |
| |
| /* The MAC might be integrated in systems where the MAC speed is fixed |
| * and it's the PCS who is performing the rate adaptation, so we have |
| * to write "1000Mbps" into the LINK_SPEED field of DEV_CLOCK_CFG |
| * (which is also its default value). |
| */ |
| if ((quirks & OCELOT_QUIRK_PCS_PERFORMS_RATE_ADAPTATION) || |
| speed == SPEED_1000) { |
| mac_speed = OCELOT_SPEED_1000; |
| mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA; |
| } else if (speed == SPEED_2500) { |
| mac_speed = OCELOT_SPEED_2500; |
| mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA; |
| } else if (speed == SPEED_100) { |
| mac_speed = OCELOT_SPEED_100; |
| } else { |
| mac_speed = OCELOT_SPEED_10; |
| } |
| |
| if (duplex == DUPLEX_FULL) |
| mode |= DEV_MAC_MODE_CFG_FDX_ENA; |
| |
| ocelot_port_writel(ocelot_port, mode, DEV_MAC_MODE_CFG); |
| |
| /* Take port out of reset by clearing the MAC_TX_RST, MAC_RX_RST and |
| * PORT_RST bits in DEV_CLOCK_CFG. |
| */ |
| ocelot_port_writel(ocelot_port, DEV_CLOCK_CFG_LINK_SPEED(mac_speed), |
| DEV_CLOCK_CFG); |
| |
| switch (speed) { |
| case SPEED_10: |
| mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_10); |
| break; |
| case SPEED_100: |
| mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_100); |
| break; |
| case SPEED_1000: |
| case SPEED_2500: |
| mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_1000); |
| break; |
| default: |
| dev_err(ocelot->dev, "Unsupported speed on port %d: %d\n", |
| port, speed); |
| return; |
| } |
| |
| if (rx_pause) |
| mac_fc_cfg |= SYS_MAC_FC_CFG_RX_FC_ENA; |
| |
| if (tx_pause) |
| mac_fc_cfg |= SYS_MAC_FC_CFG_TX_FC_ENA | |
| SYS_MAC_FC_CFG_PAUSE_VAL_CFG(0xffff) | |
| SYS_MAC_FC_CFG_FC_LATENCY_CFG(0x7) | |
| SYS_MAC_FC_CFG_ZERO_PAUSE_ENA; |
| |
| /* Flow control. Link speed is only used here to evaluate the time |
| * specification in incoming pause frames. |
| */ |
| ocelot_write_rix(ocelot, mac_fc_cfg, SYS_MAC_FC_CFG, port); |
| |
| ocelot_write_rix(ocelot, 0, ANA_POL_FLOWC, port); |
| |
| /* Don't attempt to send PAUSE frames on the NPI port, it's broken */ |
| if (port != ocelot->npi) |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, |
| tx_pause); |
| |
| /* Undo the effects of ocelot_phylink_mac_link_down: |
| * enable MAC module |
| */ |
| ocelot_port_writel(ocelot_port, DEV_MAC_ENA_CFG_RX_ENA | |
| DEV_MAC_ENA_CFG_TX_ENA, DEV_MAC_ENA_CFG); |
| |
| /* If the port supports cut-through forwarding, update the masks before |
| * enabling forwarding on the port. |
| */ |
| if (ocelot->ops->cut_through_fwd) { |
| mutex_lock(&ocelot->fwd_domain_lock); |
| /* Workaround for hardware bug - FP doesn't work |
| * at all link speeds for all PHY modes. The function |
| * below also calls ocelot->ops->cut_through_fwd(), |
| * so we don't need to do it twice. |
| */ |
| ocelot_port_update_active_preemptible_tcs(ocelot, port); |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| |
| /* Core: Enable port for frame transfer */ |
| ocelot_fields_write(ocelot, port, |
| QSYS_SWITCH_PORT_MODE_PORT_ENA, 1); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_phylink_mac_link_up); |
| |
| static int ocelot_rx_frame_word(struct ocelot *ocelot, u8 grp, bool ifh, |
| u32 *rval) |
| { |
| u32 bytes_valid, val; |
| |
| val = ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| if (val == XTR_NOT_READY) { |
| if (ifh) |
| return -EIO; |
| |
| do { |
| val = ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| } while (val == XTR_NOT_READY); |
| } |
| |
| switch (val) { |
| case XTR_ABORT: |
| return -EIO; |
| case XTR_EOF_0: |
| case XTR_EOF_1: |
| case XTR_EOF_2: |
| case XTR_EOF_3: |
| case XTR_PRUNED: |
| bytes_valid = XTR_VALID_BYTES(val); |
| val = ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| if (val == XTR_ESCAPE) |
| *rval = ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| else |
| *rval = val; |
| |
| return bytes_valid; |
| case XTR_ESCAPE: |
| *rval = ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| |
| return 4; |
| default: |
| *rval = val; |
| |
| return 4; |
| } |
| } |
| |
| static int ocelot_xtr_poll_xfh(struct ocelot *ocelot, int grp, u32 *xfh) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < OCELOT_TAG_LEN / 4; i++) { |
| err = ocelot_rx_frame_word(ocelot, grp, true, &xfh[i]); |
| if (err != 4) |
| return (err < 0) ? err : -EIO; |
| } |
| |
| return 0; |
| } |
| |
| void ocelot_ptp_rx_timestamp(struct ocelot *ocelot, struct sk_buff *skb, |
| u64 timestamp) |
| { |
| struct skb_shared_hwtstamps *shhwtstamps; |
| u64 tod_in_ns, full_ts_in_ns; |
| struct timespec64 ts; |
| |
| ocelot_ptp_gettime64(&ocelot->ptp_info, &ts); |
| |
| tod_in_ns = ktime_set(ts.tv_sec, ts.tv_nsec); |
| if ((tod_in_ns & 0xffffffff) < timestamp) |
| full_ts_in_ns = (((tod_in_ns >> 32) - 1) << 32) | |
| timestamp; |
| else |
| full_ts_in_ns = (tod_in_ns & GENMASK_ULL(63, 32)) | |
| timestamp; |
| |
| shhwtstamps = skb_hwtstamps(skb); |
| memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); |
| shhwtstamps->hwtstamp = full_ts_in_ns; |
| } |
| EXPORT_SYMBOL(ocelot_ptp_rx_timestamp); |
| |
| void ocelot_lock_inj_grp(struct ocelot *ocelot, int grp) |
| __acquires(&ocelot->inj_lock) |
| { |
| spin_lock(&ocelot->inj_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_lock_inj_grp); |
| |
| void ocelot_unlock_inj_grp(struct ocelot *ocelot, int grp) |
| __releases(&ocelot->inj_lock) |
| { |
| spin_unlock(&ocelot->inj_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_unlock_inj_grp); |
| |
| void ocelot_lock_xtr_grp(struct ocelot *ocelot, int grp) |
| __acquires(&ocelot->inj_lock) |
| { |
| spin_lock(&ocelot->inj_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_lock_xtr_grp); |
| |
| void ocelot_unlock_xtr_grp(struct ocelot *ocelot, int grp) |
| __releases(&ocelot->inj_lock) |
| { |
| spin_unlock(&ocelot->inj_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_unlock_xtr_grp); |
| |
| void ocelot_lock_xtr_grp_bh(struct ocelot *ocelot, int grp) |
| __acquires(&ocelot->xtr_lock) |
| { |
| spin_lock_bh(&ocelot->xtr_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_lock_xtr_grp_bh); |
| |
| void ocelot_unlock_xtr_grp_bh(struct ocelot *ocelot, int grp) |
| __releases(&ocelot->xtr_lock) |
| { |
| spin_unlock_bh(&ocelot->xtr_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_unlock_xtr_grp_bh); |
| |
| int ocelot_xtr_poll_frame(struct ocelot *ocelot, int grp, struct sk_buff **nskb) |
| { |
| u64 timestamp, src_port, len; |
| u32 xfh[OCELOT_TAG_LEN / 4]; |
| struct net_device *dev; |
| struct sk_buff *skb; |
| int sz, buf_len; |
| u32 val, *buf; |
| int err; |
| |
| lockdep_assert_held(&ocelot->xtr_lock); |
| |
| err = ocelot_xtr_poll_xfh(ocelot, grp, xfh); |
| if (err) |
| return err; |
| |
| ocelot_xfh_get_src_port(xfh, &src_port); |
| ocelot_xfh_get_len(xfh, &len); |
| ocelot_xfh_get_rew_val(xfh, ×tamp); |
| |
| if (WARN_ON(src_port >= ocelot->num_phys_ports)) |
| return -EINVAL; |
| |
| dev = ocelot->ops->port_to_netdev(ocelot, src_port); |
| if (!dev) |
| return -EINVAL; |
| |
| skb = netdev_alloc_skb(dev, len); |
| if (unlikely(!skb)) { |
| netdev_err(dev, "Unable to allocate sk_buff\n"); |
| return -ENOMEM; |
| } |
| |
| buf_len = len - ETH_FCS_LEN; |
| buf = (u32 *)skb_put(skb, buf_len); |
| |
| len = 0; |
| do { |
| sz = ocelot_rx_frame_word(ocelot, grp, false, &val); |
| if (sz < 0) { |
| err = sz; |
| goto out_free_skb; |
| } |
| *buf++ = val; |
| len += sz; |
| } while (len < buf_len); |
| |
| /* Read the FCS */ |
| sz = ocelot_rx_frame_word(ocelot, grp, false, &val); |
| if (sz < 0) { |
| err = sz; |
| goto out_free_skb; |
| } |
| |
| /* Update the statistics if part of the FCS was read before */ |
| len -= ETH_FCS_LEN - sz; |
| |
| if (unlikely(dev->features & NETIF_F_RXFCS)) { |
| buf = (u32 *)skb_put(skb, ETH_FCS_LEN); |
| *buf = val; |
| } |
| |
| if (ocelot->ptp) |
| ocelot_ptp_rx_timestamp(ocelot, skb, timestamp); |
| |
| /* Everything we see on an interface that is in the HW bridge |
| * has already been forwarded. |
| */ |
| if (ocelot->ports[src_port]->bridge) |
| skb->offload_fwd_mark = 1; |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| *nskb = skb; |
| |
| return 0; |
| |
| out_free_skb: |
| kfree_skb(skb); |
| return err; |
| } |
| EXPORT_SYMBOL(ocelot_xtr_poll_frame); |
| |
| bool ocelot_can_inject(struct ocelot *ocelot, int grp) |
| { |
| u32 val = ocelot_read(ocelot, QS_INJ_STATUS); |
| |
| lockdep_assert_held(&ocelot->inj_lock); |
| |
| if (!(val & QS_INJ_STATUS_FIFO_RDY(BIT(grp)))) |
| return false; |
| if (val & QS_INJ_STATUS_WMARK_REACHED(BIT(grp))) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ocelot_can_inject); |
| |
| /** |
| * ocelot_ifh_set_basic - Set basic information in Injection Frame Header |
| * @ifh: Pointer to Injection Frame Header memory |
| * @ocelot: Switch private data structure |
| * @port: Egress port number |
| * @rew_op: Egress rewriter operation for PTP |
| * @skb: Pointer to socket buffer (packet) |
| * |
| * Populate the Injection Frame Header with basic information for this skb: the |
| * analyzer bypass bit, destination port, VLAN info, egress rewriter info. |
| */ |
| void ocelot_ifh_set_basic(void *ifh, struct ocelot *ocelot, int port, |
| u32 rew_op, struct sk_buff *skb) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| struct net_device *dev = skb->dev; |
| u64 vlan_tci, tag_type; |
| int qos_class; |
| |
| ocelot_xmit_get_vlan_info(skb, ocelot_port->bridge, &vlan_tci, |
| &tag_type); |
| |
| qos_class = netdev_get_num_tc(dev) ? |
| netdev_get_prio_tc_map(dev, skb->priority) : skb->priority; |
| |
| memset(ifh, 0, OCELOT_TAG_LEN); |
| ocelot_ifh_set_bypass(ifh, 1); |
| ocelot_ifh_set_src(ifh, BIT_ULL(ocelot->num_phys_ports)); |
| ocelot_ifh_set_dest(ifh, BIT_ULL(port)); |
| ocelot_ifh_set_qos_class(ifh, qos_class); |
| ocelot_ifh_set_tag_type(ifh, tag_type); |
| ocelot_ifh_set_vlan_tci(ifh, vlan_tci); |
| if (rew_op) |
| ocelot_ifh_set_rew_op(ifh, rew_op); |
| } |
| EXPORT_SYMBOL(ocelot_ifh_set_basic); |
| |
| void ocelot_port_inject_frame(struct ocelot *ocelot, int port, int grp, |
| u32 rew_op, struct sk_buff *skb) |
| { |
| u32 ifh[OCELOT_TAG_LEN / 4]; |
| unsigned int i, count, last; |
| |
| lockdep_assert_held(&ocelot->inj_lock); |
| |
| ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) | |
| QS_INJ_CTRL_SOF, QS_INJ_CTRL, grp); |
| |
| ocelot_ifh_set_basic(ifh, ocelot, port, rew_op, skb); |
| |
| for (i = 0; i < OCELOT_TAG_LEN / 4; i++) |
| ocelot_write_rix(ocelot, ifh[i], QS_INJ_WR, grp); |
| |
| count = DIV_ROUND_UP(skb->len, 4); |
| last = skb->len % 4; |
| for (i = 0; i < count; i++) |
| ocelot_write_rix(ocelot, ((u32 *)skb->data)[i], QS_INJ_WR, grp); |
| |
| /* Add padding */ |
| while (i < (OCELOT_BUFFER_CELL_SZ / 4)) { |
| ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp); |
| i++; |
| } |
| |
| /* Indicate EOF and valid bytes in last word */ |
| ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) | |
| QS_INJ_CTRL_VLD_BYTES(skb->len < OCELOT_BUFFER_CELL_SZ ? 0 : last) | |
| QS_INJ_CTRL_EOF, |
| QS_INJ_CTRL, grp); |
| |
| /* Add dummy CRC */ |
| ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp); |
| skb_tx_timestamp(skb); |
| |
| skb->dev->stats.tx_packets++; |
| skb->dev->stats.tx_bytes += skb->len; |
| } |
| EXPORT_SYMBOL(ocelot_port_inject_frame); |
| |
| void ocelot_drain_cpu_queue(struct ocelot *ocelot, int grp) |
| { |
| lockdep_assert_held(&ocelot->xtr_lock); |
| |
| while (ocelot_read(ocelot, QS_XTR_DATA_PRESENT) & BIT(grp)) |
| ocelot_read_rix(ocelot, QS_XTR_RD, grp); |
| } |
| EXPORT_SYMBOL(ocelot_drain_cpu_queue); |
| |
| int ocelot_fdb_add(struct ocelot *ocelot, int port, const unsigned char *addr, |
| u16 vid, const struct net_device *bridge) |
| { |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| return ocelot_mact_learn(ocelot, port, addr, vid, ENTRYTYPE_LOCKED); |
| } |
| EXPORT_SYMBOL(ocelot_fdb_add); |
| |
| int ocelot_fdb_del(struct ocelot *ocelot, int port, const unsigned char *addr, |
| u16 vid, const struct net_device *bridge) |
| { |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| return ocelot_mact_forget(ocelot, addr, vid); |
| } |
| EXPORT_SYMBOL(ocelot_fdb_del); |
| |
| /* Caller must hold &ocelot->mact_lock */ |
| static int ocelot_mact_read(struct ocelot *ocelot, int port, int row, int col, |
| struct ocelot_mact_entry *entry) |
| { |
| u32 val, dst, macl, mach; |
| char mac[ETH_ALEN]; |
| |
| /* Set row and column to read from */ |
| ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_M_INDEX, row); |
| ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_BUCKET, col); |
| |
| /* Issue a read command */ |
| ocelot_write(ocelot, |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_READ), |
| ANA_TABLES_MACACCESS); |
| |
| if (ocelot_mact_wait_for_completion(ocelot)) |
| return -ETIMEDOUT; |
| |
| /* Read the entry flags */ |
| val = ocelot_read(ocelot, ANA_TABLES_MACACCESS); |
| if (!(val & ANA_TABLES_MACACCESS_VALID)) |
| return -EINVAL; |
| |
| /* If the entry read has another port configured as its destination, |
| * do not report it. |
| */ |
| dst = (val & ANA_TABLES_MACACCESS_DEST_IDX_M) >> 3; |
| if (dst != port) |
| return -EINVAL; |
| |
| /* Get the entry's MAC address and VLAN id */ |
| macl = ocelot_read(ocelot, ANA_TABLES_MACLDATA); |
| mach = ocelot_read(ocelot, ANA_TABLES_MACHDATA); |
| |
| mac[0] = (mach >> 8) & 0xff; |
| mac[1] = (mach >> 0) & 0xff; |
| mac[2] = (macl >> 24) & 0xff; |
| mac[3] = (macl >> 16) & 0xff; |
| mac[4] = (macl >> 8) & 0xff; |
| mac[5] = (macl >> 0) & 0xff; |
| |
| entry->vid = (mach >> 16) & 0xfff; |
| ether_addr_copy(entry->mac, mac); |
| |
| return 0; |
| } |
| |
| int ocelot_mact_flush(struct ocelot *ocelot, int port) |
| { |
| int err; |
| |
| mutex_lock(&ocelot->mact_lock); |
| |
| /* Program ageing filter for a single port */ |
| ocelot_write(ocelot, ANA_ANAGEFIL_PID_EN | ANA_ANAGEFIL_PID_VAL(port), |
| ANA_ANAGEFIL); |
| |
| /* Flushing dynamic FDB entries requires two successive age scans */ |
| ocelot_write(ocelot, |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_AGE), |
| ANA_TABLES_MACACCESS); |
| |
| err = ocelot_mact_wait_for_completion(ocelot); |
| if (err) { |
| mutex_unlock(&ocelot->mact_lock); |
| return err; |
| } |
| |
| /* And second... */ |
| ocelot_write(ocelot, |
| ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_AGE), |
| ANA_TABLES_MACACCESS); |
| |
| err = ocelot_mact_wait_for_completion(ocelot); |
| |
| /* Restore ageing filter */ |
| ocelot_write(ocelot, 0, ANA_ANAGEFIL); |
| |
| mutex_unlock(&ocelot->mact_lock); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_mact_flush); |
| |
| int ocelot_fdb_dump(struct ocelot *ocelot, int port, |
| dsa_fdb_dump_cb_t *cb, void *data) |
| { |
| int err = 0; |
| int i, j; |
| |
| /* We could take the lock just around ocelot_mact_read, but doing so |
| * thousands of times in a row seems rather pointless and inefficient. |
| */ |
| mutex_lock(&ocelot->mact_lock); |
| |
| /* Loop through all the mac tables entries. */ |
| for (i = 0; i < ocelot->num_mact_rows; i++) { |
| for (j = 0; j < 4; j++) { |
| struct ocelot_mact_entry entry; |
| bool is_static; |
| |
| err = ocelot_mact_read(ocelot, port, i, j, &entry); |
| /* If the entry is invalid (wrong port, invalid...), |
| * skip it. |
| */ |
| if (err == -EINVAL) |
| continue; |
| else if (err) |
| break; |
| |
| is_static = (entry.type == ENTRYTYPE_LOCKED); |
| |
| /* Hide the reserved VLANs used for |
| * VLAN-unaware bridging. |
| */ |
| if (entry.vid > OCELOT_RSV_VLAN_RANGE_START) |
| entry.vid = 0; |
| |
| err = cb(entry.mac, entry.vid, is_static, data); |
| if (err) |
| break; |
| } |
| } |
| |
| mutex_unlock(&ocelot->mact_lock); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(ocelot_fdb_dump); |
| |
| int ocelot_trap_add(struct ocelot *ocelot, int port, |
| unsigned long cookie, bool take_ts, |
| void (*populate)(struct ocelot_vcap_filter *f)) |
| { |
| struct ocelot_vcap_block *block_vcap_is2; |
| struct ocelot_vcap_filter *trap; |
| bool new = false; |
| int err; |
| |
| block_vcap_is2 = &ocelot->block[VCAP_IS2]; |
| |
| trap = ocelot_vcap_block_find_filter_by_id(block_vcap_is2, cookie, |
| false); |
| if (!trap) { |
| trap = kzalloc(sizeof(*trap), GFP_KERNEL); |
| if (!trap) |
| return -ENOMEM; |
| |
| populate(trap); |
| trap->prio = 1; |
| trap->id.cookie = cookie; |
| trap->id.tc_offload = false; |
| trap->block_id = VCAP_IS2; |
| trap->type = OCELOT_VCAP_FILTER_OFFLOAD; |
| trap->lookup = 0; |
| trap->action.cpu_copy_ena = true; |
| trap->action.mask_mode = OCELOT_MASK_MODE_PERMIT_DENY; |
| trap->action.port_mask = 0; |
| trap->take_ts = take_ts; |
| trap->is_trap = true; |
| new = true; |
| } |
| |
| trap->ingress_port_mask |= BIT(port); |
| |
| if (new) |
| err = ocelot_vcap_filter_add(ocelot, trap, NULL); |
| else |
| err = ocelot_vcap_filter_replace(ocelot, trap); |
| if (err) { |
| trap->ingress_port_mask &= ~BIT(port); |
| if (!trap->ingress_port_mask) |
| kfree(trap); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| int ocelot_trap_del(struct ocelot *ocelot, int port, unsigned long cookie) |
| { |
| struct ocelot_vcap_block *block_vcap_is2; |
| struct ocelot_vcap_filter *trap; |
| |
| block_vcap_is2 = &ocelot->block[VCAP_IS2]; |
| |
| trap = ocelot_vcap_block_find_filter_by_id(block_vcap_is2, cookie, |
| false); |
| if (!trap) |
| return 0; |
| |
| trap->ingress_port_mask &= ~BIT(port); |
| if (!trap->ingress_port_mask) |
| return ocelot_vcap_filter_del(ocelot, trap); |
| |
| return ocelot_vcap_filter_replace(ocelot, trap); |
| } |
| |
| static u32 ocelot_get_bond_mask(struct ocelot *ocelot, struct net_device *bond) |
| { |
| u32 mask = 0; |
| int port; |
| |
| lockdep_assert_held(&ocelot->fwd_domain_lock); |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port) |
| continue; |
| |
| if (ocelot_port->bond == bond) |
| mask |= BIT(port); |
| } |
| |
| return mask; |
| } |
| |
| /* The logical port number of a LAG is equal to the lowest numbered physical |
| * port ID present in that LAG. It may change if that port ever leaves the LAG. |
| */ |
| int ocelot_bond_get_id(struct ocelot *ocelot, struct net_device *bond) |
| { |
| int bond_mask = ocelot_get_bond_mask(ocelot, bond); |
| |
| if (!bond_mask) |
| return -ENOENT; |
| |
| return __ffs(bond_mask); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_bond_get_id); |
| |
| /* Returns the mask of user ports assigned to this DSA tag_8021q CPU port. |
| * Note that when CPU ports are in a LAG, the user ports are assigned to the |
| * 'primary' CPU port, the one whose physical port number gives the logical |
| * port number of the LAG. |
| * |
| * We leave PGID_SRC poorly configured for the 'secondary' CPU port in the LAG |
| * (to which no user port is assigned), but it appears that forwarding from |
| * this secondary CPU port looks at the PGID_SRC associated with the logical |
| * port ID that it's assigned to, which *is* configured properly. |
| */ |
| static u32 ocelot_dsa_8021q_cpu_assigned_ports(struct ocelot *ocelot, |
| struct ocelot_port *cpu) |
| { |
| u32 mask = 0; |
| int port; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port) |
| continue; |
| |
| if (ocelot_port->dsa_8021q_cpu == cpu) |
| mask |= BIT(port); |
| } |
| |
| if (cpu->bond) |
| mask &= ~ocelot_get_bond_mask(ocelot, cpu->bond); |
| |
| return mask; |
| } |
| |
| /* Returns the DSA tag_8021q CPU port that the given port is assigned to, |
| * or the bit mask of CPU ports if said CPU port is in a LAG. |
| */ |
| u32 ocelot_port_assigned_dsa_8021q_cpu_mask(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| struct ocelot_port *cpu_port = ocelot_port->dsa_8021q_cpu; |
| |
| if (!cpu_port) |
| return 0; |
| |
| if (cpu_port->bond) |
| return ocelot_get_bond_mask(ocelot, cpu_port->bond); |
| |
| return BIT(cpu_port->index); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_assigned_dsa_8021q_cpu_mask); |
| |
| u32 ocelot_get_bridge_fwd_mask(struct ocelot *ocelot, int src_port) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[src_port]; |
| const struct net_device *bridge; |
| u32 mask = 0; |
| int port; |
| |
| if (!ocelot_port || ocelot_port->stp_state != BR_STATE_FORWARDING) |
| return 0; |
| |
| bridge = ocelot_port->bridge; |
| if (!bridge) |
| return 0; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port) |
| continue; |
| |
| if (ocelot_port->stp_state == BR_STATE_FORWARDING && |
| ocelot_port->bridge == bridge) |
| mask |= BIT(port); |
| } |
| |
| return mask; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_get_bridge_fwd_mask); |
| |
| static void ocelot_apply_bridge_fwd_mask(struct ocelot *ocelot, bool joining) |
| { |
| int port; |
| |
| lockdep_assert_held(&ocelot->fwd_domain_lock); |
| |
| /* If cut-through forwarding is supported, update the masks before a |
| * port joins the forwarding domain, to avoid potential underruns if it |
| * has the highest speed from the new domain. |
| */ |
| if (joining && ocelot->ops->cut_through_fwd) |
| ocelot->ops->cut_through_fwd(ocelot); |
| |
| /* Apply FWD mask. The loop is needed to add/remove the current port as |
| * a source for the other ports. |
| */ |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| unsigned long mask; |
| |
| if (!ocelot_port) { |
| /* Unused ports can't send anywhere */ |
| mask = 0; |
| } else if (ocelot_port->is_dsa_8021q_cpu) { |
| /* The DSA tag_8021q CPU ports need to be able to |
| * forward packets to all ports assigned to them. |
| */ |
| mask = ocelot_dsa_8021q_cpu_assigned_ports(ocelot, |
| ocelot_port); |
| } else if (ocelot_port->bridge) { |
| struct net_device *bond = ocelot_port->bond; |
| |
| mask = ocelot_get_bridge_fwd_mask(ocelot, port); |
| mask &= ~BIT(port); |
| |
| mask |= ocelot_port_assigned_dsa_8021q_cpu_mask(ocelot, |
| port); |
| |
| if (bond) |
| mask &= ~ocelot_get_bond_mask(ocelot, bond); |
| } else { |
| /* Standalone ports forward only to DSA tag_8021q CPU |
| * ports (if those exist), or to the hardware CPU port |
| * module otherwise. |
| */ |
| mask = ocelot_port_assigned_dsa_8021q_cpu_mask(ocelot, |
| port); |
| } |
| |
| ocelot_write_rix(ocelot, mask, ANA_PGID_PGID, PGID_SRC + port); |
| } |
| |
| /* If cut-through forwarding is supported and a port is leaving, there |
| * is a chance that cut-through was disabled on the other ports due to |
| * the port which is leaving (it has a higher link speed). We need to |
| * update the cut-through masks of the remaining ports no earlier than |
| * after the port has left, to prevent underruns from happening between |
| * the cut-through update and the forwarding domain update. |
| */ |
| if (!joining && ocelot->ops->cut_through_fwd) |
| ocelot->ops->cut_through_fwd(ocelot); |
| } |
| |
| /* Update PGID_CPU which is the destination port mask used for whitelisting |
| * unicast addresses filtered towards the host. In the normal and NPI modes, |
| * this points to the analyzer entry for the CPU port module, while in DSA |
| * tag_8021q mode, it is a bit mask of all active CPU ports. |
| * PGID_SRC will take care of forwarding a packet from one user port to |
| * no more than a single CPU port. |
| */ |
| static void ocelot_update_pgid_cpu(struct ocelot *ocelot) |
| { |
| int pgid_cpu = 0; |
| int port; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port || !ocelot_port->is_dsa_8021q_cpu) |
| continue; |
| |
| pgid_cpu |= BIT(port); |
| } |
| |
| if (!pgid_cpu) |
| pgid_cpu = BIT(ocelot->num_phys_ports); |
| |
| ocelot_write_rix(ocelot, pgid_cpu, ANA_PGID_PGID, PGID_CPU); |
| } |
| |
| void ocelot_port_setup_dsa_8021q_cpu(struct ocelot *ocelot, int cpu) |
| { |
| struct ocelot_port *cpu_port = ocelot->ports[cpu]; |
| u16 vid; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| cpu_port->is_dsa_8021q_cpu = true; |
| |
| for (vid = OCELOT_RSV_VLAN_RANGE_START; vid < VLAN_N_VID; vid++) |
| ocelot_vlan_member_add(ocelot, cpu, vid, true); |
| |
| ocelot_update_pgid_cpu(ocelot); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_setup_dsa_8021q_cpu); |
| |
| void ocelot_port_teardown_dsa_8021q_cpu(struct ocelot *ocelot, int cpu) |
| { |
| struct ocelot_port *cpu_port = ocelot->ports[cpu]; |
| u16 vid; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| cpu_port->is_dsa_8021q_cpu = false; |
| |
| for (vid = OCELOT_RSV_VLAN_RANGE_START; vid < VLAN_N_VID; vid++) |
| ocelot_vlan_member_del(ocelot, cpu_port->index, vid); |
| |
| ocelot_update_pgid_cpu(ocelot); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_teardown_dsa_8021q_cpu); |
| |
| void ocelot_port_assign_dsa_8021q_cpu(struct ocelot *ocelot, int port, |
| int cpu) |
| { |
| struct ocelot_port *cpu_port = ocelot->ports[cpu]; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot->ports[port]->dsa_8021q_cpu = cpu_port; |
| ocelot_apply_bridge_fwd_mask(ocelot, true); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_assign_dsa_8021q_cpu); |
| |
| void ocelot_port_unassign_dsa_8021q_cpu(struct ocelot *ocelot, int port) |
| { |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot->ports[port]->dsa_8021q_cpu = NULL; |
| ocelot_apply_bridge_fwd_mask(ocelot, true); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_unassign_dsa_8021q_cpu); |
| |
| void ocelot_bridge_stp_state_set(struct ocelot *ocelot, int port, u8 state) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| u32 learn_ena = 0; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot_port->stp_state = state; |
| |
| if ((state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING) && |
| ocelot_port->learn_ena) |
| learn_ena = ANA_PORT_PORT_CFG_LEARN_ENA; |
| |
| ocelot_rmw_gix(ocelot, learn_ena, ANA_PORT_PORT_CFG_LEARN_ENA, |
| ANA_PORT_PORT_CFG, port); |
| |
| ocelot_apply_bridge_fwd_mask(ocelot, state == BR_STATE_FORWARDING); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL(ocelot_bridge_stp_state_set); |
| |
| void ocelot_set_ageing_time(struct ocelot *ocelot, unsigned int msecs) |
| { |
| unsigned int age_period = ANA_AUTOAGE_AGE_PERIOD(msecs / 2000); |
| |
| /* Setting AGE_PERIOD to zero effectively disables automatic aging, |
| * which is clearly not what our intention is. So avoid that. |
| */ |
| if (!age_period) |
| age_period = 1; |
| |
| ocelot_rmw(ocelot, age_period, ANA_AUTOAGE_AGE_PERIOD_M, ANA_AUTOAGE); |
| } |
| EXPORT_SYMBOL(ocelot_set_ageing_time); |
| |
| static struct ocelot_multicast *ocelot_multicast_get(struct ocelot *ocelot, |
| const unsigned char *addr, |
| u16 vid) |
| { |
| struct ocelot_multicast *mc; |
| |
| list_for_each_entry(mc, &ocelot->multicast, list) { |
| if (ether_addr_equal(mc->addr, addr) && mc->vid == vid) |
| return mc; |
| } |
| |
| return NULL; |
| } |
| |
| static enum macaccess_entry_type ocelot_classify_mdb(const unsigned char *addr) |
| { |
| if (addr[0] == 0x01 && addr[1] == 0x00 && addr[2] == 0x5e) |
| return ENTRYTYPE_MACv4; |
| if (addr[0] == 0x33 && addr[1] == 0x33) |
| return ENTRYTYPE_MACv6; |
| return ENTRYTYPE_LOCKED; |
| } |
| |
| static struct ocelot_pgid *ocelot_pgid_alloc(struct ocelot *ocelot, int index, |
| unsigned long ports) |
| { |
| struct ocelot_pgid *pgid; |
| |
| pgid = kzalloc(sizeof(*pgid), GFP_KERNEL); |
| if (!pgid) |
| return ERR_PTR(-ENOMEM); |
| |
| pgid->ports = ports; |
| pgid->index = index; |
| refcount_set(&pgid->refcount, 1); |
| list_add_tail(&pgid->list, &ocelot->pgids); |
| |
| return pgid; |
| } |
| |
| static void ocelot_pgid_free(struct ocelot *ocelot, struct ocelot_pgid *pgid) |
| { |
| if (!refcount_dec_and_test(&pgid->refcount)) |
| return; |
| |
| list_del(&pgid->list); |
| kfree(pgid); |
| } |
| |
| static struct ocelot_pgid *ocelot_mdb_get_pgid(struct ocelot *ocelot, |
| const struct ocelot_multicast *mc) |
| { |
| struct ocelot_pgid *pgid; |
| int index; |
| |
| /* According to VSC7514 datasheet 3.9.1.5 IPv4 Multicast Entries and |
| * 3.9.1.6 IPv6 Multicast Entries, "Instead of a lookup in the |
| * destination mask table (PGID), the destination set is programmed as |
| * part of the entry MAC address.", and the DEST_IDX is set to 0. |
| */ |
| if (mc->entry_type == ENTRYTYPE_MACv4 || |
| mc->entry_type == ENTRYTYPE_MACv6) |
| return ocelot_pgid_alloc(ocelot, 0, mc->ports); |
| |
| list_for_each_entry(pgid, &ocelot->pgids, list) { |
| /* When searching for a nonreserved multicast PGID, ignore the |
| * dummy PGID of zero that we have for MACv4/MACv6 entries |
| */ |
| if (pgid->index && pgid->ports == mc->ports) { |
| refcount_inc(&pgid->refcount); |
| return pgid; |
| } |
| } |
| |
| /* Search for a free index in the nonreserved multicast PGID area */ |
| for_each_nonreserved_multicast_dest_pgid(ocelot, index) { |
| bool used = false; |
| |
| list_for_each_entry(pgid, &ocelot->pgids, list) { |
| if (pgid->index == index) { |
| used = true; |
| break; |
| } |
| } |
| |
| if (!used) |
| return ocelot_pgid_alloc(ocelot, index, mc->ports); |
| } |
| |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| static void ocelot_encode_ports_to_mdb(unsigned char *addr, |
| struct ocelot_multicast *mc) |
| { |
| ether_addr_copy(addr, mc->addr); |
| |
| if (mc->entry_type == ENTRYTYPE_MACv4) { |
| addr[0] = 0; |
| addr[1] = mc->ports >> 8; |
| addr[2] = mc->ports & 0xff; |
| } else if (mc->entry_type == ENTRYTYPE_MACv6) { |
| addr[0] = mc->ports >> 8; |
| addr[1] = mc->ports & 0xff; |
| } |
| } |
| |
| int ocelot_port_mdb_add(struct ocelot *ocelot, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| const struct net_device *bridge) |
| { |
| unsigned char addr[ETH_ALEN]; |
| struct ocelot_multicast *mc; |
| struct ocelot_pgid *pgid; |
| u16 vid = mdb->vid; |
| |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| mc = ocelot_multicast_get(ocelot, mdb->addr, vid); |
| if (!mc) { |
| /* New entry */ |
| mc = devm_kzalloc(ocelot->dev, sizeof(*mc), GFP_KERNEL); |
| if (!mc) |
| return -ENOMEM; |
| |
| mc->entry_type = ocelot_classify_mdb(mdb->addr); |
| ether_addr_copy(mc->addr, mdb->addr); |
| mc->vid = vid; |
| |
| list_add_tail(&mc->list, &ocelot->multicast); |
| } else { |
| /* Existing entry. Clean up the current port mask from |
| * hardware now, because we'll be modifying it. |
| */ |
| ocelot_pgid_free(ocelot, mc->pgid); |
| ocelot_encode_ports_to_mdb(addr, mc); |
| ocelot_mact_forget(ocelot, addr, vid); |
| } |
| |
| mc->ports |= BIT(port); |
| |
| pgid = ocelot_mdb_get_pgid(ocelot, mc); |
| if (IS_ERR(pgid)) { |
| dev_err(ocelot->dev, |
| "Cannot allocate PGID for mdb %pM vid %d\n", |
| mc->addr, mc->vid); |
| devm_kfree(ocelot->dev, mc); |
| return PTR_ERR(pgid); |
| } |
| mc->pgid = pgid; |
| |
| ocelot_encode_ports_to_mdb(addr, mc); |
| |
| if (mc->entry_type != ENTRYTYPE_MACv4 && |
| mc->entry_type != ENTRYTYPE_MACv6) |
| ocelot_write_rix(ocelot, pgid->ports, ANA_PGID_PGID, |
| pgid->index); |
| |
| return ocelot_mact_learn(ocelot, pgid->index, addr, vid, |
| mc->entry_type); |
| } |
| EXPORT_SYMBOL(ocelot_port_mdb_add); |
| |
| int ocelot_port_mdb_del(struct ocelot *ocelot, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| const struct net_device *bridge) |
| { |
| unsigned char addr[ETH_ALEN]; |
| struct ocelot_multicast *mc; |
| struct ocelot_pgid *pgid; |
| u16 vid = mdb->vid; |
| |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| mc = ocelot_multicast_get(ocelot, mdb->addr, vid); |
| if (!mc) |
| return -ENOENT; |
| |
| ocelot_encode_ports_to_mdb(addr, mc); |
| ocelot_mact_forget(ocelot, addr, vid); |
| |
| ocelot_pgid_free(ocelot, mc->pgid); |
| mc->ports &= ~BIT(port); |
| if (!mc->ports) { |
| list_del(&mc->list); |
| devm_kfree(ocelot->dev, mc); |
| return 0; |
| } |
| |
| /* We have a PGID with fewer ports now */ |
| pgid = ocelot_mdb_get_pgid(ocelot, mc); |
| if (IS_ERR(pgid)) |
| return PTR_ERR(pgid); |
| mc->pgid = pgid; |
| |
| ocelot_encode_ports_to_mdb(addr, mc); |
| |
| if (mc->entry_type != ENTRYTYPE_MACv4 && |
| mc->entry_type != ENTRYTYPE_MACv6) |
| ocelot_write_rix(ocelot, pgid->ports, ANA_PGID_PGID, |
| pgid->index); |
| |
| return ocelot_mact_learn(ocelot, pgid->index, addr, vid, |
| mc->entry_type); |
| } |
| EXPORT_SYMBOL(ocelot_port_mdb_del); |
| |
| int ocelot_port_bridge_join(struct ocelot *ocelot, int port, |
| struct net_device *bridge, int bridge_num, |
| struct netlink_ext_ack *extack) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| int err; |
| |
| err = ocelot_single_vlan_aware_bridge(ocelot, extack); |
| if (err) |
| return err; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot_port->bridge = bridge; |
| ocelot_port->bridge_num = bridge_num; |
| |
| ocelot_apply_bridge_fwd_mask(ocelot, true); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| |
| if (br_vlan_enabled(bridge)) |
| return 0; |
| |
| return ocelot_add_vlan_unaware_pvid(ocelot, port, bridge); |
| } |
| EXPORT_SYMBOL(ocelot_port_bridge_join); |
| |
| void ocelot_port_bridge_leave(struct ocelot *ocelot, int port, |
| struct net_device *bridge) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| if (!br_vlan_enabled(bridge)) |
| ocelot_del_vlan_unaware_pvid(ocelot, port, bridge); |
| |
| ocelot_port->bridge = NULL; |
| ocelot_port->bridge_num = -1; |
| |
| ocelot_port_set_pvid(ocelot, port, NULL); |
| ocelot_port_manage_port_tag(ocelot, port); |
| ocelot_apply_bridge_fwd_mask(ocelot, false); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL(ocelot_port_bridge_leave); |
| |
| static void ocelot_set_aggr_pgids(struct ocelot *ocelot) |
| { |
| unsigned long visited = GENMASK(ocelot->num_phys_ports - 1, 0); |
| int i, port, lag; |
| |
| /* Reset destination and aggregation PGIDS */ |
| for_each_unicast_dest_pgid(ocelot, port) |
| ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port); |
| |
| for_each_aggr_pgid(ocelot, i) |
| ocelot_write_rix(ocelot, GENMASK(ocelot->num_phys_ports - 1, 0), |
| ANA_PGID_PGID, i); |
| |
| /* The visited ports bitmask holds the list of ports offloading any |
| * bonding interface. Initially we mark all these ports as unvisited, |
| * then every time we visit a port in this bitmask, we know that it is |
| * the lowest numbered port, i.e. the one whose logical ID == physical |
| * port ID == LAG ID. So we mark as visited all further ports in the |
| * bitmask that are offloading the same bonding interface. This way, |
| * we set up the aggregation PGIDs only once per bonding interface. |
| */ |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port || !ocelot_port->bond) |
| continue; |
| |
| visited &= ~BIT(port); |
| } |
| |
| /* Now, set PGIDs for each active LAG */ |
| for (lag = 0; lag < ocelot->num_phys_ports; lag++) { |
| struct net_device *bond = ocelot->ports[lag]->bond; |
| int num_active_ports = 0; |
| unsigned long bond_mask; |
| u8 aggr_idx[16]; |
| |
| if (!bond || (visited & BIT(lag))) |
| continue; |
| |
| bond_mask = ocelot_get_bond_mask(ocelot, bond); |
| |
| for_each_set_bit(port, &bond_mask, ocelot->num_phys_ports) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| // Destination mask |
| ocelot_write_rix(ocelot, bond_mask, |
| ANA_PGID_PGID, port); |
| |
| if (ocelot_port->lag_tx_active) |
| aggr_idx[num_active_ports++] = port; |
| } |
| |
| for_each_aggr_pgid(ocelot, i) { |
| u32 ac; |
| |
| ac = ocelot_read_rix(ocelot, ANA_PGID_PGID, i); |
| ac &= ~bond_mask; |
| /* Don't do division by zero if there was no active |
| * port. Just make all aggregation codes zero. |
| */ |
| if (num_active_ports) |
| ac |= BIT(aggr_idx[i % num_active_ports]); |
| ocelot_write_rix(ocelot, ac, ANA_PGID_PGID, i); |
| } |
| |
| /* Mark all ports in the same LAG as visited to avoid applying |
| * the same config again. |
| */ |
| for (port = lag; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| if (!ocelot_port) |
| continue; |
| |
| if (ocelot_port->bond == bond) |
| visited |= BIT(port); |
| } |
| } |
| } |
| |
| /* When offloading a bonding interface, the switch ports configured under the |
| * same bond must have the same logical port ID, equal to the physical port ID |
| * of the lowest numbered physical port in that bond. Otherwise, in standalone/ |
| * bridged mode, each port has a logical port ID equal to its physical port ID. |
| */ |
| static void ocelot_setup_logical_port_ids(struct ocelot *ocelot) |
| { |
| int port; |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| struct net_device *bond; |
| |
| if (!ocelot_port) |
| continue; |
| |
| bond = ocelot_port->bond; |
| if (bond) { |
| int lag = ocelot_bond_get_id(ocelot, bond); |
| |
| ocelot_rmw_gix(ocelot, |
| ANA_PORT_PORT_CFG_PORTID_VAL(lag), |
| ANA_PORT_PORT_CFG_PORTID_VAL_M, |
| ANA_PORT_PORT_CFG, port); |
| } else { |
| ocelot_rmw_gix(ocelot, |
| ANA_PORT_PORT_CFG_PORTID_VAL(port), |
| ANA_PORT_PORT_CFG_PORTID_VAL_M, |
| ANA_PORT_PORT_CFG, port); |
| } |
| } |
| } |
| |
| static int ocelot_migrate_mc(struct ocelot *ocelot, struct ocelot_multicast *mc, |
| unsigned long from_mask, unsigned long to_mask) |
| { |
| unsigned char addr[ETH_ALEN]; |
| struct ocelot_pgid *pgid; |
| u16 vid = mc->vid; |
| |
| dev_dbg(ocelot->dev, |
| "Migrating multicast %pM vid %d from port mask 0x%lx to 0x%lx\n", |
| mc->addr, mc->vid, from_mask, to_mask); |
| |
| /* First clean up the current port mask from hardware, because |
| * we'll be modifying it. |
| */ |
| ocelot_pgid_free(ocelot, mc->pgid); |
| ocelot_encode_ports_to_mdb(addr, mc); |
| ocelot_mact_forget(ocelot, addr, vid); |
| |
| mc->ports &= ~from_mask; |
| mc->ports |= to_mask; |
| |
| pgid = ocelot_mdb_get_pgid(ocelot, mc); |
| if (IS_ERR(pgid)) { |
| dev_err(ocelot->dev, |
| "Cannot allocate PGID for mdb %pM vid %d\n", |
| mc->addr, mc->vid); |
| devm_kfree(ocelot->dev, mc); |
| return PTR_ERR(pgid); |
| } |
| mc->pgid = pgid; |
| |
| ocelot_encode_ports_to_mdb(addr, mc); |
| |
| if (mc->entry_type != ENTRYTYPE_MACv4 && |
| mc->entry_type != ENTRYTYPE_MACv6) |
| ocelot_write_rix(ocelot, pgid->ports, ANA_PGID_PGID, |
| pgid->index); |
| |
| return ocelot_mact_learn(ocelot, pgid->index, addr, vid, |
| mc->entry_type); |
| } |
| |
| int ocelot_migrate_mdbs(struct ocelot *ocelot, unsigned long from_mask, |
| unsigned long to_mask) |
| { |
| struct ocelot_multicast *mc; |
| int err; |
| |
| list_for_each_entry(mc, &ocelot->multicast, list) { |
| if (!(mc->ports & from_mask)) |
| continue; |
| |
| err = ocelot_migrate_mc(ocelot, mc, from_mask, to_mask); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_migrate_mdbs); |
| |
| /* Documentation for PORTID_VAL says: |
| * Logical port number for front port. If port is not a member of a LLAG, |
| * then PORTID must be set to the physical port number. |
| * If port is a member of a LLAG, then PORTID must be set to the common |
| * PORTID_VAL used for all member ports of the LLAG. |
| * The value must not exceed the number of physical ports on the device. |
| * |
| * This means we have little choice but to migrate FDB entries pointing towards |
| * a logical port when that changes. |
| */ |
| static void ocelot_migrate_lag_fdbs(struct ocelot *ocelot, |
| struct net_device *bond, |
| int lag) |
| { |
| struct ocelot_lag_fdb *fdb; |
| int err; |
| |
| lockdep_assert_held(&ocelot->fwd_domain_lock); |
| |
| list_for_each_entry(fdb, &ocelot->lag_fdbs, list) { |
| if (fdb->bond != bond) |
| continue; |
| |
| err = ocelot_mact_forget(ocelot, fdb->addr, fdb->vid); |
| if (err) { |
| dev_err(ocelot->dev, |
| "failed to delete LAG %s FDB %pM vid %d: %pe\n", |
| bond->name, fdb->addr, fdb->vid, ERR_PTR(err)); |
| } |
| |
| err = ocelot_mact_learn(ocelot, lag, fdb->addr, fdb->vid, |
| ENTRYTYPE_LOCKED); |
| if (err) { |
| dev_err(ocelot->dev, |
| "failed to migrate LAG %s FDB %pM vid %d: %pe\n", |
| bond->name, fdb->addr, fdb->vid, ERR_PTR(err)); |
| } |
| } |
| } |
| |
| int ocelot_port_lag_join(struct ocelot *ocelot, int port, |
| struct net_device *bond, |
| struct netdev_lag_upper_info *info, |
| struct netlink_ext_ack *extack) |
| { |
| if (info->tx_type != NETDEV_LAG_TX_TYPE_HASH) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Can only offload LAG using hash TX type"); |
| return -EOPNOTSUPP; |
| } |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot->ports[port]->bond = bond; |
| |
| ocelot_setup_logical_port_ids(ocelot); |
| ocelot_apply_bridge_fwd_mask(ocelot, true); |
| ocelot_set_aggr_pgids(ocelot); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_port_lag_join); |
| |
| void ocelot_port_lag_leave(struct ocelot *ocelot, int port, |
| struct net_device *bond) |
| { |
| int old_lag_id, new_lag_id; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| old_lag_id = ocelot_bond_get_id(ocelot, bond); |
| |
| ocelot->ports[port]->bond = NULL; |
| |
| ocelot_setup_logical_port_ids(ocelot); |
| ocelot_apply_bridge_fwd_mask(ocelot, false); |
| ocelot_set_aggr_pgids(ocelot); |
| |
| new_lag_id = ocelot_bond_get_id(ocelot, bond); |
| |
| if (new_lag_id >= 0 && old_lag_id != new_lag_id) |
| ocelot_migrate_lag_fdbs(ocelot, bond, new_lag_id); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL(ocelot_port_lag_leave); |
| |
| void ocelot_port_lag_change(struct ocelot *ocelot, int port, bool lag_tx_active) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| ocelot_port->lag_tx_active = lag_tx_active; |
| |
| /* Rebalance the LAGs */ |
| ocelot_set_aggr_pgids(ocelot); |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| } |
| EXPORT_SYMBOL(ocelot_port_lag_change); |
| |
| int ocelot_lag_fdb_add(struct ocelot *ocelot, struct net_device *bond, |
| const unsigned char *addr, u16 vid, |
| const struct net_device *bridge) |
| { |
| struct ocelot_lag_fdb *fdb; |
| int lag, err; |
| |
| fdb = kzalloc(sizeof(*fdb), GFP_KERNEL); |
| if (!fdb) |
| return -ENOMEM; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| ether_addr_copy(fdb->addr, addr); |
| fdb->vid = vid; |
| fdb->bond = bond; |
| |
| lag = ocelot_bond_get_id(ocelot, bond); |
| |
| err = ocelot_mact_learn(ocelot, lag, addr, vid, ENTRYTYPE_LOCKED); |
| if (err) { |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| kfree(fdb); |
| return err; |
| } |
| |
| list_add_tail(&fdb->list, &ocelot->lag_fdbs); |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_lag_fdb_add); |
| |
| int ocelot_lag_fdb_del(struct ocelot *ocelot, struct net_device *bond, |
| const unsigned char *addr, u16 vid, |
| const struct net_device *bridge) |
| { |
| struct ocelot_lag_fdb *fdb, *tmp; |
| |
| mutex_lock(&ocelot->fwd_domain_lock); |
| |
| if (!vid) |
| vid = ocelot_vlan_unaware_pvid(ocelot, bridge); |
| |
| list_for_each_entry_safe(fdb, tmp, &ocelot->lag_fdbs, list) { |
| if (!ether_addr_equal(fdb->addr, addr) || fdb->vid != vid || |
| fdb->bond != bond) |
| continue; |
| |
| ocelot_mact_forget(ocelot, addr, vid); |
| list_del(&fdb->list); |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| kfree(fdb); |
| |
| return 0; |
| } |
| |
| mutex_unlock(&ocelot->fwd_domain_lock); |
| |
| return -ENOENT; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_lag_fdb_del); |
| |
| /* Configure the maximum SDU (L2 payload) on RX to the value specified in @sdu. |
| * The length of VLAN tags is accounted for automatically via DEV_MAC_TAGS_CFG. |
| * In the special case that it's the NPI port that we're configuring, the |
| * length of the tag and optional prefix needs to be accounted for privately, |
| * in order to be able to sustain communication at the requested @sdu. |
| */ |
| void ocelot_port_set_maxlen(struct ocelot *ocelot, int port, size_t sdu) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| int maxlen = sdu + ETH_HLEN + ETH_FCS_LEN; |
| int pause_start, pause_stop; |
| int atop, atop_tot; |
| |
| if (port == ocelot->npi) { |
| maxlen += OCELOT_TAG_LEN; |
| |
| if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_SHORT) |
| maxlen += OCELOT_SHORT_PREFIX_LEN; |
| else if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_LONG) |
| maxlen += OCELOT_LONG_PREFIX_LEN; |
| } |
| |
| ocelot_port_writel(ocelot_port, maxlen, DEV_MAC_MAXLEN_CFG); |
| |
| /* Set Pause watermark hysteresis */ |
| pause_start = 6 * maxlen / OCELOT_BUFFER_CELL_SZ; |
| pause_stop = 4 * maxlen / OCELOT_BUFFER_CELL_SZ; |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_START, |
| pause_start); |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_STOP, |
| pause_stop); |
| |
| /* Tail dropping watermarks */ |
| atop_tot = (ocelot->packet_buffer_size - 9 * maxlen) / |
| OCELOT_BUFFER_CELL_SZ; |
| atop = (9 * maxlen) / OCELOT_BUFFER_CELL_SZ; |
| ocelot_write_rix(ocelot, ocelot->ops->wm_enc(atop), SYS_ATOP, port); |
| ocelot_write(ocelot, ocelot->ops->wm_enc(atop_tot), SYS_ATOP_TOT_CFG); |
| } |
| EXPORT_SYMBOL(ocelot_port_set_maxlen); |
| |
| int ocelot_get_max_mtu(struct ocelot *ocelot, int port) |
| { |
| int max_mtu = 65535 - ETH_HLEN - ETH_FCS_LEN; |
| |
| if (port == ocelot->npi) { |
| max_mtu -= OCELOT_TAG_LEN; |
| |
| if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_SHORT) |
| max_mtu -= OCELOT_SHORT_PREFIX_LEN; |
| else if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_LONG) |
| max_mtu -= OCELOT_LONG_PREFIX_LEN; |
| } |
| |
| return max_mtu; |
| } |
| EXPORT_SYMBOL(ocelot_get_max_mtu); |
| |
| static void ocelot_port_set_learning(struct ocelot *ocelot, int port, |
| bool enabled) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| u32 val = 0; |
| |
| if (enabled) |
| val = ANA_PORT_PORT_CFG_LEARN_ENA; |
| |
| ocelot_rmw_gix(ocelot, val, ANA_PORT_PORT_CFG_LEARN_ENA, |
| ANA_PORT_PORT_CFG, port); |
| |
| ocelot_port->learn_ena = enabled; |
| } |
| |
| static void ocelot_port_set_ucast_flood(struct ocelot *ocelot, int port, |
| bool enabled) |
| { |
| u32 val = 0; |
| |
| if (enabled) |
| val = BIT(port); |
| |
| ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_UC); |
| } |
| |
| static void ocelot_port_set_mcast_flood(struct ocelot *ocelot, int port, |
| bool enabled) |
| { |
| u32 val = 0; |
| |
| if (enabled) |
| val = BIT(port); |
| |
| ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MC); |
| ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MCIPV4); |
| ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MCIPV6); |
| } |
| |
| static void ocelot_port_set_bcast_flood(struct ocelot *ocelot, int port, |
| bool enabled) |
| { |
| u32 val = 0; |
| |
| if (enabled) |
| val = BIT(port); |
| |
| ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_BC); |
| } |
| |
| int ocelot_port_pre_bridge_flags(struct ocelot *ocelot, int port, |
| struct switchdev_brport_flags flags) |
| { |
| if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | |
| BR_BCAST_FLOOD)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ocelot_port_pre_bridge_flags); |
| |
| void ocelot_port_bridge_flags(struct ocelot *ocelot, int port, |
| struct switchdev_brport_flags flags) |
| { |
| if (flags.mask & BR_LEARNING) |
| ocelot_port_set_learning(ocelot, port, |
| !!(flags.val & BR_LEARNING)); |
| |
| if (flags.mask & BR_FLOOD) |
| ocelot_port_set_ucast_flood(ocelot, port, |
| !!(flags.val & BR_FLOOD)); |
| |
| if (flags.mask & BR_MCAST_FLOOD) |
| ocelot_port_set_mcast_flood(ocelot, port, |
| !!(flags.val & BR_MCAST_FLOOD)); |
| |
| if (flags.mask & BR_BCAST_FLOOD) |
| ocelot_port_set_bcast_flood(ocelot, port, |
| !!(flags.val & BR_BCAST_FLOOD)); |
| } |
| EXPORT_SYMBOL(ocelot_port_bridge_flags); |
| |
| int ocelot_port_get_default_prio(struct ocelot *ocelot, int port) |
| { |
| int val = ocelot_read_gix(ocelot, ANA_PORT_QOS_CFG, port); |
| |
| return ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL_X(val); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_get_default_prio); |
| |
| int ocelot_port_set_default_prio(struct ocelot *ocelot, int port, u8 prio) |
| { |
| if (prio >= OCELOT_NUM_TC) |
| return -ERANGE; |
| |
| ocelot_rmw_gix(ocelot, |
| ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL(prio), |
| ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL_M, |
| ANA_PORT_QOS_CFG, |
| port); |
| |
| return ocelot_update_vlan_reclassify_rule(ocelot, port); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_set_default_prio); |
| |
| int ocelot_port_get_dscp_prio(struct ocelot *ocelot, int port, u8 dscp) |
| { |
| int qos_cfg = ocelot_read_gix(ocelot, ANA_PORT_QOS_CFG, port); |
| int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp); |
| |
| /* Return error if DSCP prioritization isn't enabled */ |
| if (!(qos_cfg & ANA_PORT_QOS_CFG_QOS_DSCP_ENA)) |
| return -EOPNOTSUPP; |
| |
| if (qos_cfg & ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA) { |
| dscp = ANA_DSCP_CFG_DSCP_TRANSLATE_VAL_X(dscp_cfg); |
| /* Re-read ANA_DSCP_CFG for the translated DSCP */ |
| dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp); |
| } |
| |
| /* If the DSCP value is not trusted, the QoS classification falls back |
| * to VLAN PCP or port-based default. |
| */ |
| if (!(dscp_cfg & ANA_DSCP_CFG_DSCP_TRUST_ENA)) |
| return -EOPNOTSUPP; |
| |
| return ANA_DSCP_CFG_QOS_DSCP_VAL_X(dscp_cfg); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_get_dscp_prio); |
| |
| int ocelot_port_add_dscp_prio(struct ocelot *ocelot, int port, u8 dscp, u8 prio) |
| { |
| int mask, val; |
| |
| if (prio >= OCELOT_NUM_TC) |
| return -ERANGE; |
| |
| /* There is at least one app table priority (this one), so we need to |
| * make sure DSCP prioritization is enabled on the port. |
| * Also make sure DSCP translation is disabled |
| * (dcbnl doesn't support it). |
| */ |
| mask = ANA_PORT_QOS_CFG_QOS_DSCP_ENA | |
| ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA; |
| |
| ocelot_rmw_gix(ocelot, ANA_PORT_QOS_CFG_QOS_DSCP_ENA, mask, |
| ANA_PORT_QOS_CFG, port); |
| |
| /* Trust this DSCP value and map it to the given QoS class */ |
| val = ANA_DSCP_CFG_DSCP_TRUST_ENA | ANA_DSCP_CFG_QOS_DSCP_VAL(prio); |
| |
| ocelot_write_rix(ocelot, val, ANA_DSCP_CFG, dscp); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_add_dscp_prio); |
| |
| int ocelot_port_del_dscp_prio(struct ocelot *ocelot, int port, u8 dscp, u8 prio) |
| { |
| int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp); |
| int mask, i; |
| |
| /* During a "dcb app replace" command, the new app table entry will be |
| * added first, then the old one will be deleted. But the hardware only |
| * supports one QoS class per DSCP value (duh), so if we blindly delete |
| * the app table entry for this DSCP value, we end up deleting the |
| * entry with the new priority. Avoid that by checking whether user |
| * space wants to delete the priority which is currently configured, or |
| * something else which is no longer current. |
| */ |
| if (ANA_DSCP_CFG_QOS_DSCP_VAL_X(dscp_cfg) != prio) |
| return 0; |
| |
| /* Untrust this DSCP value */ |
| ocelot_write_rix(ocelot, 0, ANA_DSCP_CFG, dscp); |
| |
| for (i = 0; i < 64; i++) { |
| int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, i); |
| |
| /* There are still app table entries on the port, so we need to |
| * keep DSCP enabled, nothing to do. |
| */ |
| if (dscp_cfg & ANA_DSCP_CFG_DSCP_TRUST_ENA) |
| return 0; |
| } |
| |
| /* Disable DSCP QoS classification if there isn't any trusted |
| * DSCP value left. |
| */ |
| mask = ANA_PORT_QOS_CFG_QOS_DSCP_ENA | |
| ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA; |
| |
| ocelot_rmw_gix(ocelot, 0, mask, ANA_PORT_QOS_CFG, port); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_del_dscp_prio); |
| |
| struct ocelot_mirror *ocelot_mirror_get(struct ocelot *ocelot, int to, |
| struct netlink_ext_ack *extack) |
| { |
| struct ocelot_mirror *m = ocelot->mirror; |
| |
| if (m) { |
| if (m->to != to) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Mirroring already configured towards different egress port"); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| refcount_inc(&m->refcount); |
| return m; |
| } |
| |
| m = kzalloc(sizeof(*m), GFP_KERNEL); |
| if (!m) |
| return ERR_PTR(-ENOMEM); |
| |
| m->to = to; |
| refcount_set(&m->refcount, 1); |
| ocelot->mirror = m; |
| |
| /* Program the mirror port to hardware */ |
| ocelot_write(ocelot, BIT(to), ANA_MIRRORPORTS); |
| |
| return m; |
| } |
| |
| void ocelot_mirror_put(struct ocelot *ocelot) |
| { |
| struct ocelot_mirror *m = ocelot->mirror; |
| |
| if (!refcount_dec_and_test(&m->refcount)) |
| return; |
| |
| ocelot_write(ocelot, 0, ANA_MIRRORPORTS); |
| ocelot->mirror = NULL; |
| kfree(m); |
| } |
| |
| int ocelot_port_mirror_add(struct ocelot *ocelot, int from, int to, |
| bool ingress, struct netlink_ext_ack *extack) |
| { |
| struct ocelot_mirror *m = ocelot_mirror_get(ocelot, to, extack); |
| |
| if (IS_ERR(m)) |
| return PTR_ERR(m); |
| |
| if (ingress) { |
| ocelot_rmw_gix(ocelot, ANA_PORT_PORT_CFG_SRC_MIRROR_ENA, |
| ANA_PORT_PORT_CFG_SRC_MIRROR_ENA, |
| ANA_PORT_PORT_CFG, from); |
| } else { |
| ocelot_rmw(ocelot, BIT(from), BIT(from), |
| ANA_EMIRRORPORTS); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_mirror_add); |
| |
| void ocelot_port_mirror_del(struct ocelot *ocelot, int from, bool ingress) |
| { |
| if (ingress) { |
| ocelot_rmw_gix(ocelot, 0, ANA_PORT_PORT_CFG_SRC_MIRROR_ENA, |
| ANA_PORT_PORT_CFG, from); |
| } else { |
| ocelot_rmw(ocelot, 0, BIT(from), ANA_EMIRRORPORTS); |
| } |
| |
| ocelot_mirror_put(ocelot); |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_mirror_del); |
| |
| static void ocelot_port_reset_mqprio(struct ocelot *ocelot, int port) |
| { |
| struct net_device *dev = ocelot->ops->port_to_netdev(ocelot, port); |
| |
| netdev_reset_tc(dev); |
| ocelot_port_change_fp(ocelot, port, 0); |
| } |
| |
| int ocelot_port_mqprio(struct ocelot *ocelot, int port, |
| struct tc_mqprio_qopt_offload *mqprio) |
| { |
| struct net_device *dev = ocelot->ops->port_to_netdev(ocelot, port); |
| struct netlink_ext_ack *extack = mqprio->extack; |
| struct tc_mqprio_qopt *qopt = &mqprio->qopt; |
| int num_tc = qopt->num_tc; |
| int tc, err; |
| |
| if (!num_tc) { |
| ocelot_port_reset_mqprio(ocelot, port); |
| return 0; |
| } |
| |
| err = netdev_set_num_tc(dev, num_tc); |
| if (err) |
| return err; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| if (qopt->count[tc] != 1) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Only one TXQ per TC supported"); |
| return -EINVAL; |
| } |
| |
| err = netdev_set_tc_queue(dev, tc, 1, qopt->offset[tc]); |
| if (err) |
| goto err_reset_tc; |
| } |
| |
| err = netif_set_real_num_tx_queues(dev, num_tc); |
| if (err) |
| goto err_reset_tc; |
| |
| ocelot_port_change_fp(ocelot, port, mqprio->preemptible_tcs); |
| |
| return 0; |
| |
| err_reset_tc: |
| ocelot_port_reset_mqprio(ocelot, port); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(ocelot_port_mqprio); |
| |
| void ocelot_init_port(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| skb_queue_head_init(&ocelot_port->tx_skbs); |
| |
| /* Basic L2 initialization */ |
| |
| /* Set MAC IFG Gaps |
| * FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 0 |
| * !FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 5 |
| */ |
| ocelot_port_writel(ocelot_port, DEV_MAC_IFG_CFG_TX_IFG(5), |
| DEV_MAC_IFG_CFG); |
| |
| /* Load seed (0) and set MAC HDX late collision */ |
| ocelot_port_writel(ocelot_port, DEV_MAC_HDX_CFG_LATE_COL_POS(67) | |
| DEV_MAC_HDX_CFG_SEED_LOAD, |
| DEV_MAC_HDX_CFG); |
| mdelay(1); |
| ocelot_port_writel(ocelot_port, DEV_MAC_HDX_CFG_LATE_COL_POS(67), |
| DEV_MAC_HDX_CFG); |
| |
| /* Set Max Length and maximum tags allowed */ |
| ocelot_port_set_maxlen(ocelot, port, ETH_DATA_LEN); |
| ocelot_port_writel(ocelot_port, DEV_MAC_TAGS_CFG_TAG_ID(ETH_P_8021AD) | |
| DEV_MAC_TAGS_CFG_VLAN_AWR_ENA | |
| DEV_MAC_TAGS_CFG_VLAN_DBL_AWR_ENA | |
| DEV_MAC_TAGS_CFG_VLAN_LEN_AWR_ENA, |
| DEV_MAC_TAGS_CFG); |
| |
| /* Set SMAC of Pause frame (00:00:00:00:00:00) */ |
| ocelot_port_writel(ocelot_port, 0, DEV_MAC_FC_MAC_HIGH_CFG); |
| ocelot_port_writel(ocelot_port, 0, DEV_MAC_FC_MAC_LOW_CFG); |
| |
| /* Enable transmission of pause frames */ |
| ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 1); |
| |
| /* Drop frames with multicast source address */ |
| ocelot_rmw_gix(ocelot, ANA_PORT_DROP_CFG_DROP_MC_SMAC_ENA, |
| ANA_PORT_DROP_CFG_DROP_MC_SMAC_ENA, |
| ANA_PORT_DROP_CFG, port); |
| |
| /* Set default VLAN and tag type to 8021Q. */ |
| ocelot_rmw_gix(ocelot, REW_PORT_VLAN_CFG_PORT_TPID(ETH_P_8021Q), |
| REW_PORT_VLAN_CFG_PORT_TPID_M, |
| REW_PORT_VLAN_CFG, port); |
| |
| /* Disable source address learning for standalone mode */ |
| ocelot_port_set_learning(ocelot, port, false); |
| |
| /* Set the port's initial logical port ID value, enable receiving |
| * frames on it, and configure the MAC address learning type to |
| * automatic. |
| */ |
| ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_LEARNAUTO | |
| ANA_PORT_PORT_CFG_RECV_ENA | |
| ANA_PORT_PORT_CFG_PORTID_VAL(port), |
| ANA_PORT_PORT_CFG, port); |
| |
| /* Enable vcap lookups */ |
| ocelot_vcap_enable(ocelot, port); |
| } |
| EXPORT_SYMBOL(ocelot_init_port); |
| |
| /* Configure and enable the CPU port module, which is a set of queues |
| * accessible through register MMIO, frame DMA or Ethernet (in case |
| * NPI mode is used). |
| */ |
| static void ocelot_cpu_port_init(struct ocelot *ocelot) |
| { |
| int cpu = ocelot->num_phys_ports; |
| |
| /* The unicast destination PGID for the CPU port module is unused */ |
| ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, cpu); |
| /* Instead set up a multicast destination PGID for traffic copied to |
| * the CPU. Whitelisted MAC addresses like the port netdevice MAC |
| * addresses will be copied to the CPU via this PGID. |
| */ |
| ocelot_write_rix(ocelot, BIT(cpu), ANA_PGID_PGID, PGID_CPU); |
| ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_RECV_ENA | |
| ANA_PORT_PORT_CFG_PORTID_VAL(cpu), |
| ANA_PORT_PORT_CFG, cpu); |
| |
| /* Enable CPU port module */ |
| ocelot_fields_write(ocelot, cpu, QSYS_SWITCH_PORT_MODE_PORT_ENA, 1); |
| /* CPU port Injection/Extraction configuration */ |
| ocelot_fields_write(ocelot, cpu, SYS_PORT_MODE_INCL_XTR_HDR, |
| OCELOT_TAG_PREFIX_NONE); |
| ocelot_fields_write(ocelot, cpu, SYS_PORT_MODE_INCL_INJ_HDR, |
| OCELOT_TAG_PREFIX_NONE); |
| |
| /* Configure the CPU port to be VLAN aware */ |
| ocelot_write_gix(ocelot, |
| ANA_PORT_VLAN_CFG_VLAN_VID(OCELOT_STANDALONE_PVID) | |
| ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | |
| ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1), |
| ANA_PORT_VLAN_CFG, cpu); |
| } |
| |
| static void ocelot_detect_features(struct ocelot *ocelot) |
| { |
| int mmgt, eq_ctrl; |
| |
| /* For Ocelot, Felix, Seville, Serval etc, SYS:MMGT:MMGT:FREECNT holds |
| * the number of 240-byte free memory words (aka 4-cell chunks) and not |
| * 192 bytes as the documentation incorrectly says. |
| */ |
| mmgt = ocelot_read(ocelot, SYS_MMGT); |
| ocelot->packet_buffer_size = 240 * SYS_MMGT_FREECNT(mmgt); |
| |
| eq_ctrl = ocelot_read(ocelot, QSYS_EQ_CTRL); |
| ocelot->num_frame_refs = QSYS_MMGT_EQ_CTRL_FP_FREE_CNT(eq_ctrl); |
| } |
| |
| static int ocelot_mem_init_status(struct ocelot *ocelot) |
| { |
| unsigned int val; |
| int err; |
| |
| err = regmap_field_read(ocelot->regfields[SYS_RESET_CFG_MEM_INIT], |
| &val); |
| |
| return err ?: val; |
| } |
| |
| int ocelot_reset(struct ocelot *ocelot) |
| { |
| int err; |
| u32 val; |
| |
| err = regmap_field_write(ocelot->regfields[SYS_RESET_CFG_MEM_INIT], 1); |
| if (err) |
| return err; |
| |
| err = regmap_field_write(ocelot->regfields[SYS_RESET_CFG_MEM_ENA], 1); |
| if (err) |
| return err; |
| |
| /* MEM_INIT is a self-clearing bit. Wait for it to be cleared (should be |
| * 100us) before enabling the switch core. |
| */ |
| err = readx_poll_timeout(ocelot_mem_init_status, ocelot, val, !val, |
| MEM_INIT_SLEEP_US, MEM_INIT_TIMEOUT_US); |
| if (err) |
| return err; |
| |
| err = regmap_field_write(ocelot->regfields[SYS_RESET_CFG_MEM_ENA], 1); |
| if (err) |
| return err; |
| |
| return regmap_field_write(ocelot->regfields[SYS_RESET_CFG_CORE_ENA], 1); |
| } |
| EXPORT_SYMBOL(ocelot_reset); |
| |
| int ocelot_init(struct ocelot *ocelot) |
| { |
| int i, ret; |
| u32 port; |
| |
| if (ocelot->ops->reset) { |
| ret = ocelot->ops->reset(ocelot); |
| if (ret) { |
| dev_err(ocelot->dev, "Switch reset failed\n"); |
| return ret; |
| } |
| } |
| |
| mutex_init(&ocelot->mact_lock); |
| mutex_init(&ocelot->fwd_domain_lock); |
| spin_lock_init(&ocelot->ptp_clock_lock); |
| spin_lock_init(&ocelot->ts_id_lock); |
| spin_lock_init(&ocelot->inj_lock); |
| spin_lock_init(&ocelot->xtr_lock); |
| |
| ocelot->owq = alloc_ordered_workqueue("ocelot-owq", 0); |
| if (!ocelot->owq) |
| return -ENOMEM; |
| |
| ret = ocelot_stats_init(ocelot); |
| if (ret) |
| goto err_stats_init; |
| |
| INIT_LIST_HEAD(&ocelot->multicast); |
| INIT_LIST_HEAD(&ocelot->pgids); |
| INIT_LIST_HEAD(&ocelot->vlans); |
| INIT_LIST_HEAD(&ocelot->lag_fdbs); |
| ocelot_detect_features(ocelot); |
| ocelot_mact_init(ocelot); |
| ocelot_vlan_init(ocelot); |
| ocelot_vcap_init(ocelot); |
| ocelot_cpu_port_init(ocelot); |
| |
| if (ocelot->ops->psfp_init) |
| ocelot->ops->psfp_init(ocelot); |
| |
| if (ocelot->mm_supported) { |
| ret = ocelot_mm_init(ocelot); |
| if (ret) |
| goto err_mm_init; |
| } |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| /* Clear all counters (5 groups) */ |
| ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(port) | |
| SYS_STAT_CFG_STAT_CLEAR_SHOT(0x7f), |
| SYS_STAT_CFG); |
| } |
| |
| /* Only use S-Tag */ |
| ocelot_write(ocelot, ETH_P_8021AD, SYS_VLAN_ETYPE_CFG); |
| |
| /* Aggregation mode */ |
| ocelot_write(ocelot, ANA_AGGR_CFG_AC_SMAC_ENA | |
| ANA_AGGR_CFG_AC_DMAC_ENA | |
| ANA_AGGR_CFG_AC_IP4_SIPDIP_ENA | |
| ANA_AGGR_CFG_AC_IP4_TCPUDP_ENA | |
| ANA_AGGR_CFG_AC_IP6_FLOW_LBL_ENA | |
| ANA_AGGR_CFG_AC_IP6_TCPUDP_ENA, |
| ANA_AGGR_CFG); |
| |
| /* Set MAC age time to default value. The entry is aged after |
| * 2*AGE_PERIOD |
| */ |
| ocelot_write(ocelot, |
| ANA_AUTOAGE_AGE_PERIOD(BR_DEFAULT_AGEING_TIME / 2 / HZ), |
| ANA_AUTOAGE); |
| |
| /* Disable learning for frames discarded by VLAN ingress filtering */ |
| regmap_field_write(ocelot->regfields[ANA_ADVLEARN_VLAN_CHK], 1); |
| |
| /* Setup frame ageing - fixed value "2 sec" - in 6.5 us units */ |
| ocelot_write(ocelot, SYS_FRM_AGING_AGE_TX_ENA | |
| SYS_FRM_AGING_MAX_AGE(307692), SYS_FRM_AGING); |
| |
| /* Setup flooding PGIDs */ |
| for (i = 0; i < ocelot->num_flooding_pgids; i++) |
| ocelot_write_rix(ocelot, ANA_FLOODING_FLD_MULTICAST(PGID_MC) | |
| ANA_FLOODING_FLD_BROADCAST(PGID_BC) | |
| ANA_FLOODING_FLD_UNICAST(PGID_UC), |
| ANA_FLOODING, i); |
| ocelot_write(ocelot, ANA_FLOODING_IPMC_FLD_MC6_DATA(PGID_MCIPV6) | |
| ANA_FLOODING_IPMC_FLD_MC6_CTRL(PGID_MC) | |
| ANA_FLOODING_IPMC_FLD_MC4_DATA(PGID_MCIPV4) | |
| ANA_FLOODING_IPMC_FLD_MC4_CTRL(PGID_MC), |
| ANA_FLOODING_IPMC); |
| |
| for (port = 0; port < ocelot->num_phys_ports; port++) { |
| /* Transmit the frame to the local port. */ |
| ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port); |
| /* Do not forward BPDU frames to the front ports. */ |
| ocelot_write_gix(ocelot, |
| ANA_PORT_CPU_FWD_BPDU_CFG_BPDU_REDIR_ENA(0xffff), |
| ANA_PORT_CPU_FWD_BPDU_CFG, |
| port); |
| /* Ensure bridging is disabled */ |
| ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_SRC + port); |
| } |
| |
| for_each_nonreserved_multicast_dest_pgid(ocelot, i) { |
| u32 val = ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports - 1, 0)); |
| |
| ocelot_write_rix(ocelot, val, ANA_PGID_PGID, i); |
| } |
| |
| ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_BLACKHOLE); |
| |
| /* Allow broadcast and unknown L2 multicast to the CPU. */ |
| ocelot_rmw_rix(ocelot, ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)), |
| ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)), |
| ANA_PGID_PGID, PGID_MC); |
| ocelot_rmw_rix(ocelot, ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)), |
| ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)), |
| ANA_PGID_PGID, PGID_BC); |
| ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV4); |
| ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV6); |
| |
| /* Allow manual injection via DEVCPU_QS registers, and byte swap these |
| * registers endianness. |
| */ |
| ocelot_write_rix(ocelot, QS_INJ_GRP_CFG_BYTE_SWAP | |
| QS_INJ_GRP_CFG_MODE(1), QS_INJ_GRP_CFG, 0); |
| ocelot_write_rix(ocelot, QS_XTR_GRP_CFG_BYTE_SWAP | |
| QS_XTR_GRP_CFG_MODE(1), QS_XTR_GRP_CFG, 0); |
| ocelot_write(ocelot, ANA_CPUQ_CFG_CPUQ_MIRROR(2) | |
| ANA_CPUQ_CFG_CPUQ_LRN(2) | |
| ANA_CPUQ_CFG_CPUQ_MAC_COPY(2) | |
| ANA_CPUQ_CFG_CPUQ_SRC_COPY(2) | |
| ANA_CPUQ_CFG_CPUQ_LOCKED_PORTMOVE(2) | |
| ANA_CPUQ_CFG_CPUQ_ALLBRIDGE(6) | |
| ANA_CPUQ_CFG_CPUQ_IPMC_CTRL(6) | |
| ANA_CPUQ_CFG_CPUQ_IGMP(6) | |
| ANA_CPUQ_CFG_CPUQ_MLD(6), ANA_CPUQ_CFG); |
| for (i = 0; i < 16; i++) |
| ocelot_write_rix(ocelot, ANA_CPUQ_8021_CFG_CPUQ_GARP_VAL(6) | |
| ANA_CPUQ_8021_CFG_CPUQ_BPDU_VAL(6), |
| ANA_CPUQ_8021_CFG, i); |
| |
| return 0; |
| |
| err_mm_init: |
| ocelot_stats_deinit(ocelot); |
| err_stats_init: |
| destroy_workqueue(ocelot->owq); |
| return ret; |
| } |
| EXPORT_SYMBOL(ocelot_init); |
| |
| void ocelot_deinit(struct ocelot *ocelot) |
| { |
| ocelot_stats_deinit(ocelot); |
| destroy_workqueue(ocelot->owq); |
| } |
| EXPORT_SYMBOL(ocelot_deinit); |
| |
| void ocelot_deinit_port(struct ocelot *ocelot, int port) |
| { |
| struct ocelot_port *ocelot_port = ocelot->ports[port]; |
| |
| skb_queue_purge(&ocelot_port->tx_skbs); |
| } |
| EXPORT_SYMBOL(ocelot_deinit_port); |
| |
| MODULE_DESCRIPTION("Microsemi Ocelot switch family library"); |
| MODULE_LICENSE("Dual MIT/GPL"); |