| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVMe over Fabrics RDMA target. |
| * Copyright (c) 2015-2016 HGST, a Western Digital Company. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/atomic.h> |
| #include <linux/blk-integrity.h> |
| #include <linux/ctype.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/nvme.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/wait.h> |
| #include <linux/inet.h> |
| #include <linux/unaligned.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| #include <rdma/rw.h> |
| #include <rdma/ib_cm.h> |
| |
| #include <linux/nvme-rdma.h> |
| #include "nvmet.h" |
| |
| /* |
| * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data |
| */ |
| #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE |
| #define NVMET_RDMA_MAX_INLINE_SGE 4 |
| #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) |
| |
| /* Assume mpsmin == device_page_size == 4KB */ |
| #define NVMET_RDMA_MAX_MDTS 8 |
| #define NVMET_RDMA_MAX_METADATA_MDTS 5 |
| |
| #define NVMET_RDMA_BACKLOG 128 |
| |
| #define NVMET_RDMA_DISCRETE_RSP_TAG -1 |
| |
| struct nvmet_rdma_srq; |
| |
| struct nvmet_rdma_cmd { |
| struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; |
| struct ib_cqe cqe; |
| struct ib_recv_wr wr; |
| struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; |
| struct nvme_command *nvme_cmd; |
| struct nvmet_rdma_queue *queue; |
| struct nvmet_rdma_srq *nsrq; |
| }; |
| |
| enum { |
| NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), |
| }; |
| |
| struct nvmet_rdma_rsp { |
| struct ib_sge send_sge; |
| struct ib_cqe send_cqe; |
| struct ib_send_wr send_wr; |
| |
| struct nvmet_rdma_cmd *cmd; |
| struct nvmet_rdma_queue *queue; |
| |
| struct ib_cqe read_cqe; |
| struct ib_cqe write_cqe; |
| struct rdma_rw_ctx rw; |
| |
| struct nvmet_req req; |
| |
| bool allocated; |
| u8 n_rdma; |
| u32 flags; |
| u32 invalidate_rkey; |
| |
| struct list_head wait_list; |
| int tag; |
| }; |
| |
| enum nvmet_rdma_queue_state { |
| NVMET_RDMA_Q_CONNECTING, |
| NVMET_RDMA_Q_LIVE, |
| NVMET_RDMA_Q_DISCONNECTING, |
| }; |
| |
| struct nvmet_rdma_queue { |
| struct rdma_cm_id *cm_id; |
| struct ib_qp *qp; |
| struct nvmet_port *port; |
| struct ib_cq *cq; |
| atomic_t sq_wr_avail; |
| struct nvmet_rdma_device *dev; |
| struct nvmet_rdma_srq *nsrq; |
| spinlock_t state_lock; |
| enum nvmet_rdma_queue_state state; |
| struct nvmet_cq nvme_cq; |
| struct nvmet_sq nvme_sq; |
| |
| struct nvmet_rdma_rsp *rsps; |
| struct sbitmap rsp_tags; |
| struct nvmet_rdma_cmd *cmds; |
| |
| struct work_struct release_work; |
| struct list_head rsp_wait_list; |
| struct list_head rsp_wr_wait_list; |
| spinlock_t rsp_wr_wait_lock; |
| |
| int idx; |
| int host_qid; |
| int comp_vector; |
| int recv_queue_size; |
| int send_queue_size; |
| |
| struct list_head queue_list; |
| }; |
| |
| struct nvmet_rdma_port { |
| struct nvmet_port *nport; |
| struct sockaddr_storage addr; |
| struct rdma_cm_id *cm_id; |
| struct delayed_work repair_work; |
| }; |
| |
| struct nvmet_rdma_srq { |
| struct ib_srq *srq; |
| struct nvmet_rdma_cmd *cmds; |
| struct nvmet_rdma_device *ndev; |
| }; |
| |
| struct nvmet_rdma_device { |
| struct ib_device *device; |
| struct ib_pd *pd; |
| struct nvmet_rdma_srq **srqs; |
| int srq_count; |
| size_t srq_size; |
| struct kref ref; |
| struct list_head entry; |
| int inline_data_size; |
| int inline_page_count; |
| }; |
| |
| static bool nvmet_rdma_use_srq; |
| module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); |
| MODULE_PARM_DESC(use_srq, "Use shared receive queue."); |
| |
| static int srq_size_set(const char *val, const struct kernel_param *kp); |
| static const struct kernel_param_ops srq_size_ops = { |
| .set = srq_size_set, |
| .get = param_get_int, |
| }; |
| |
| static int nvmet_rdma_srq_size = 1024; |
| module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); |
| MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); |
| |
| static DEFINE_IDA(nvmet_rdma_queue_ida); |
| static LIST_HEAD(nvmet_rdma_queue_list); |
| static DEFINE_MUTEX(nvmet_rdma_queue_mutex); |
| |
| static LIST_HEAD(device_list); |
| static DEFINE_MUTEX(device_list_mutex); |
| |
| static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); |
| static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); |
| static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); |
| static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); |
| static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); |
| static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); |
| static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); |
| static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_rsp *r); |
| static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_rsp *r, |
| int tag); |
| |
| static const struct nvmet_fabrics_ops nvmet_rdma_ops; |
| |
| static int srq_size_set(const char *val, const struct kernel_param *kp) |
| { |
| int n = 0, ret; |
| |
| ret = kstrtoint(val, 10, &n); |
| if (ret != 0 || n < 256) |
| return -EINVAL; |
| |
| return param_set_int(val, kp); |
| } |
| |
| static int num_pages(int len) |
| { |
| return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); |
| } |
| |
| static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) |
| { |
| return nvme_is_write(rsp->req.cmd) && |
| rsp->req.transfer_len && |
| !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); |
| } |
| |
| static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) |
| { |
| return !nvme_is_write(rsp->req.cmd) && |
| rsp->req.transfer_len && |
| !rsp->req.cqe->status && |
| !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); |
| } |
| |
| static inline struct nvmet_rdma_rsp * |
| nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) |
| { |
| struct nvmet_rdma_rsp *rsp = NULL; |
| int tag; |
| |
| tag = sbitmap_get(&queue->rsp_tags); |
| if (tag >= 0) |
| rsp = &queue->rsps[tag]; |
| |
| if (unlikely(!rsp)) { |
| int ret; |
| |
| rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); |
| if (unlikely(!rsp)) |
| return NULL; |
| ret = nvmet_rdma_alloc_rsp(queue->dev, rsp, |
| NVMET_RDMA_DISCRETE_RSP_TAG); |
| if (unlikely(ret)) { |
| kfree(rsp); |
| return NULL; |
| } |
| } |
| |
| return rsp; |
| } |
| |
| static inline void |
| nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) |
| { |
| if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) { |
| nvmet_rdma_free_rsp(rsp->queue->dev, rsp); |
| kfree(rsp); |
| return; |
| } |
| |
| sbitmap_clear_bit(&rsp->queue->rsp_tags, rsp->tag); |
| } |
| |
| static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *c) |
| { |
| struct scatterlist *sg; |
| struct ib_sge *sge; |
| int i; |
| |
| if (!ndev->inline_data_size) |
| return; |
| |
| sg = c->inline_sg; |
| sge = &c->sge[1]; |
| |
| for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { |
| if (sge->length) |
| ib_dma_unmap_page(ndev->device, sge->addr, |
| sge->length, DMA_FROM_DEVICE); |
| if (sg_page(sg)) |
| __free_page(sg_page(sg)); |
| } |
| } |
| |
| static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *c) |
| { |
| struct scatterlist *sg; |
| struct ib_sge *sge; |
| struct page *pg; |
| int len; |
| int i; |
| |
| if (!ndev->inline_data_size) |
| return 0; |
| |
| sg = c->inline_sg; |
| sg_init_table(sg, ndev->inline_page_count); |
| sge = &c->sge[1]; |
| len = ndev->inline_data_size; |
| |
| for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { |
| pg = alloc_page(GFP_KERNEL); |
| if (!pg) |
| goto out_err; |
| sg_assign_page(sg, pg); |
| sge->addr = ib_dma_map_page(ndev->device, |
| pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| if (ib_dma_mapping_error(ndev->device, sge->addr)) |
| goto out_err; |
| sge->length = min_t(int, len, PAGE_SIZE); |
| sge->lkey = ndev->pd->local_dma_lkey; |
| len -= sge->length; |
| } |
| |
| return 0; |
| out_err: |
| for (; i >= 0; i--, sg--, sge--) { |
| if (sge->length) |
| ib_dma_unmap_page(ndev->device, sge->addr, |
| sge->length, DMA_FROM_DEVICE); |
| if (sg_page(sg)) |
| __free_page(sg_page(sg)); |
| } |
| return -ENOMEM; |
| } |
| |
| static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *c, bool admin) |
| { |
| /* NVMe command / RDMA RECV */ |
| c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); |
| if (!c->nvme_cmd) |
| goto out; |
| |
| c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, |
| sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); |
| if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) |
| goto out_free_cmd; |
| |
| c->sge[0].length = sizeof(*c->nvme_cmd); |
| c->sge[0].lkey = ndev->pd->local_dma_lkey; |
| |
| if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) |
| goto out_unmap_cmd; |
| |
| c->cqe.done = nvmet_rdma_recv_done; |
| |
| c->wr.wr_cqe = &c->cqe; |
| c->wr.sg_list = c->sge; |
| c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; |
| |
| return 0; |
| |
| out_unmap_cmd: |
| ib_dma_unmap_single(ndev->device, c->sge[0].addr, |
| sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); |
| out_free_cmd: |
| kfree(c->nvme_cmd); |
| |
| out: |
| return -ENOMEM; |
| } |
| |
| static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *c, bool admin) |
| { |
| if (!admin) |
| nvmet_rdma_free_inline_pages(ndev, c); |
| ib_dma_unmap_single(ndev->device, c->sge[0].addr, |
| sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); |
| kfree(c->nvme_cmd); |
| } |
| |
| static struct nvmet_rdma_cmd * |
| nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, |
| int nr_cmds, bool admin) |
| { |
| struct nvmet_rdma_cmd *cmds; |
| int ret = -EINVAL, i; |
| |
| cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); |
| if (!cmds) |
| goto out; |
| |
| for (i = 0; i < nr_cmds; i++) { |
| ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); |
| if (ret) |
| goto out_free; |
| } |
| |
| return cmds; |
| |
| out_free: |
| while (--i >= 0) |
| nvmet_rdma_free_cmd(ndev, cmds + i, admin); |
| kfree(cmds); |
| out: |
| return ERR_PTR(ret); |
| } |
| |
| static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) |
| { |
| int i; |
| |
| for (i = 0; i < nr_cmds; i++) |
| nvmet_rdma_free_cmd(ndev, cmds + i, admin); |
| kfree(cmds); |
| } |
| |
| static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_rsp *r, int tag) |
| { |
| /* NVMe CQE / RDMA SEND */ |
| r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); |
| if (!r->req.cqe) |
| goto out; |
| |
| r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, |
| sizeof(*r->req.cqe), DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) |
| goto out_free_rsp; |
| |
| if (ib_dma_pci_p2p_dma_supported(ndev->device)) |
| r->req.p2p_client = &ndev->device->dev; |
| r->send_sge.length = sizeof(*r->req.cqe); |
| r->send_sge.lkey = ndev->pd->local_dma_lkey; |
| |
| r->send_cqe.done = nvmet_rdma_send_done; |
| |
| r->send_wr.wr_cqe = &r->send_cqe; |
| r->send_wr.sg_list = &r->send_sge; |
| r->send_wr.num_sge = 1; |
| r->send_wr.send_flags = IB_SEND_SIGNALED; |
| |
| /* Data In / RDMA READ */ |
| r->read_cqe.done = nvmet_rdma_read_data_done; |
| /* Data Out / RDMA WRITE */ |
| r->write_cqe.done = nvmet_rdma_write_data_done; |
| r->tag = tag; |
| |
| return 0; |
| |
| out_free_rsp: |
| kfree(r->req.cqe); |
| out: |
| return -ENOMEM; |
| } |
| |
| static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_rsp *r) |
| { |
| ib_dma_unmap_single(ndev->device, r->send_sge.addr, |
| sizeof(*r->req.cqe), DMA_TO_DEVICE); |
| kfree(r->req.cqe); |
| } |
| |
| static int |
| nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) |
| { |
| struct nvmet_rdma_device *ndev = queue->dev; |
| int nr_rsps = queue->recv_queue_size * 2; |
| int ret = -ENOMEM, i; |
| |
| if (sbitmap_init_node(&queue->rsp_tags, nr_rsps, -1, GFP_KERNEL, |
| NUMA_NO_NODE, false, true)) |
| goto out; |
| |
| queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), |
| GFP_KERNEL); |
| if (!queue->rsps) |
| goto out_free_sbitmap; |
| |
| for (i = 0; i < nr_rsps; i++) { |
| struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; |
| |
| ret = nvmet_rdma_alloc_rsp(ndev, rsp, i); |
| if (ret) |
| goto out_free; |
| } |
| |
| return 0; |
| |
| out_free: |
| while (--i >= 0) |
| nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); |
| kfree(queue->rsps); |
| out_free_sbitmap: |
| sbitmap_free(&queue->rsp_tags); |
| out: |
| return ret; |
| } |
| |
| static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) |
| { |
| struct nvmet_rdma_device *ndev = queue->dev; |
| int i, nr_rsps = queue->recv_queue_size * 2; |
| |
| for (i = 0; i < nr_rsps; i++) |
| nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); |
| kfree(queue->rsps); |
| sbitmap_free(&queue->rsp_tags); |
| } |
| |
| static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, |
| struct nvmet_rdma_cmd *cmd) |
| { |
| int ret; |
| |
| ib_dma_sync_single_for_device(ndev->device, |
| cmd->sge[0].addr, cmd->sge[0].length, |
| DMA_FROM_DEVICE); |
| |
| if (cmd->nsrq) |
| ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); |
| else |
| ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); |
| |
| if (unlikely(ret)) |
| pr_err("post_recv cmd failed\n"); |
| |
| return ret; |
| } |
| |
| static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) |
| { |
| spin_lock(&queue->rsp_wr_wait_lock); |
| while (!list_empty(&queue->rsp_wr_wait_list)) { |
| struct nvmet_rdma_rsp *rsp; |
| bool ret; |
| |
| rsp = list_entry(queue->rsp_wr_wait_list.next, |
| struct nvmet_rdma_rsp, wait_list); |
| list_del(&rsp->wait_list); |
| |
| spin_unlock(&queue->rsp_wr_wait_lock); |
| ret = nvmet_rdma_execute_command(rsp); |
| spin_lock(&queue->rsp_wr_wait_lock); |
| |
| if (!ret) { |
| list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); |
| break; |
| } |
| } |
| spin_unlock(&queue->rsp_wr_wait_lock); |
| } |
| |
| static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) |
| { |
| struct ib_mr_status mr_status; |
| int ret; |
| u16 status = 0; |
| |
| ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); |
| if (ret) { |
| pr_err("ib_check_mr_status failed, ret %d\n", ret); |
| return NVME_SC_INVALID_PI; |
| } |
| |
| if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { |
| switch (mr_status.sig_err.err_type) { |
| case IB_SIG_BAD_GUARD: |
| status = NVME_SC_GUARD_CHECK; |
| break; |
| case IB_SIG_BAD_REFTAG: |
| status = NVME_SC_REFTAG_CHECK; |
| break; |
| case IB_SIG_BAD_APPTAG: |
| status = NVME_SC_APPTAG_CHECK; |
| break; |
| } |
| pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", |
| mr_status.sig_err.err_type, |
| mr_status.sig_err.expected, |
| mr_status.sig_err.actual); |
| } |
| |
| return status; |
| } |
| |
| static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, |
| struct nvme_command *cmd, struct ib_sig_domain *domain, |
| u16 control, u8 pi_type) |
| { |
| domain->sig_type = IB_SIG_TYPE_T10_DIF; |
| domain->sig.dif.bg_type = IB_T10DIF_CRC; |
| domain->sig.dif.pi_interval = 1 << bi->interval_exp; |
| domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); |
| if (control & NVME_RW_PRINFO_PRCHK_REF) |
| domain->sig.dif.ref_remap = true; |
| |
| domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat); |
| domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm); |
| domain->sig.dif.app_escape = true; |
| if (pi_type == NVME_NS_DPS_PI_TYPE3) |
| domain->sig.dif.ref_escape = true; |
| } |
| |
| static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, |
| struct ib_sig_attrs *sig_attrs) |
| { |
| struct nvme_command *cmd = req->cmd; |
| u16 control = le16_to_cpu(cmd->rw.control); |
| u8 pi_type = req->ns->pi_type; |
| struct blk_integrity *bi; |
| |
| bi = bdev_get_integrity(req->ns->bdev); |
| |
| memset(sig_attrs, 0, sizeof(*sig_attrs)); |
| |
| if (control & NVME_RW_PRINFO_PRACT) { |
| /* for WRITE_INSERT/READ_STRIP no wire domain */ |
| sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; |
| nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, |
| pi_type); |
| /* Clear the PRACT bit since HCA will generate/verify the PI */ |
| control &= ~NVME_RW_PRINFO_PRACT; |
| cmd->rw.control = cpu_to_le16(control); |
| /* PI is added by the HW */ |
| req->transfer_len += req->metadata_len; |
| } else { |
| /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ |
| nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, |
| pi_type); |
| nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, |
| pi_type); |
| } |
| |
| if (control & NVME_RW_PRINFO_PRCHK_REF) |
| sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; |
| if (control & NVME_RW_PRINFO_PRCHK_GUARD) |
| sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; |
| if (control & NVME_RW_PRINFO_PRCHK_APP) |
| sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; |
| } |
| |
| static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, |
| struct ib_sig_attrs *sig_attrs) |
| { |
| struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
| struct nvmet_req *req = &rsp->req; |
| int ret; |
| |
| if (req->metadata_len) |
| ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, |
| cm_id->port_num, req->sg, req->sg_cnt, |
| req->metadata_sg, req->metadata_sg_cnt, sig_attrs, |
| addr, key, nvmet_data_dir(req)); |
| else |
| ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, |
| req->sg, req->sg_cnt, 0, addr, key, |
| nvmet_data_dir(req)); |
| |
| return ret; |
| } |
| |
| static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) |
| { |
| struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
| struct nvmet_req *req = &rsp->req; |
| |
| if (req->metadata_len) |
| rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, |
| cm_id->port_num, req->sg, req->sg_cnt, |
| req->metadata_sg, req->metadata_sg_cnt, |
| nvmet_data_dir(req)); |
| else |
| rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, |
| req->sg, req->sg_cnt, nvmet_data_dir(req)); |
| } |
| |
| static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) |
| { |
| struct nvmet_rdma_queue *queue = rsp->queue; |
| |
| atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); |
| |
| if (rsp->n_rdma) |
| nvmet_rdma_rw_ctx_destroy(rsp); |
| |
| if (rsp->req.sg != rsp->cmd->inline_sg) |
| nvmet_req_free_sgls(&rsp->req); |
| |
| if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) |
| nvmet_rdma_process_wr_wait_list(queue); |
| |
| nvmet_rdma_put_rsp(rsp); |
| } |
| |
| static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) |
| { |
| if (queue->nvme_sq.ctrl) { |
| nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); |
| } else { |
| /* |
| * we didn't setup the controller yet in case |
| * of admin connect error, just disconnect and |
| * cleanup the queue |
| */ |
| nvmet_rdma_queue_disconnect(queue); |
| } |
| } |
| |
| static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvmet_rdma_rsp *rsp = |
| container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); |
| struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
| |
| nvmet_rdma_release_rsp(rsp); |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS && |
| wc->status != IB_WC_WR_FLUSH_ERR)) { |
| pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", |
| wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); |
| nvmet_rdma_error_comp(queue); |
| } |
| } |
| |
| static void nvmet_rdma_queue_response(struct nvmet_req *req) |
| { |
| struct nvmet_rdma_rsp *rsp = |
| container_of(req, struct nvmet_rdma_rsp, req); |
| struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
| struct ib_send_wr *first_wr; |
| |
| if (rsp->invalidate_rkey) { |
| rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; |
| rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; |
| } else { |
| rsp->send_wr.opcode = IB_WR_SEND; |
| } |
| |
| if (nvmet_rdma_need_data_out(rsp)) { |
| if (rsp->req.metadata_len) |
| first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, |
| cm_id->port_num, &rsp->write_cqe, NULL); |
| else |
| first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, |
| cm_id->port_num, NULL, &rsp->send_wr); |
| } else { |
| first_wr = &rsp->send_wr; |
| } |
| |
| nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); |
| |
| ib_dma_sync_single_for_device(rsp->queue->dev->device, |
| rsp->send_sge.addr, rsp->send_sge.length, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { |
| pr_err("sending cmd response failed\n"); |
| nvmet_rdma_release_rsp(rsp); |
| } |
| } |
| |
| static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvmet_rdma_rsp *rsp = |
| container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); |
| struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
| u16 status = 0; |
| |
| WARN_ON(rsp->n_rdma <= 0); |
| atomic_add(rsp->n_rdma, &queue->sq_wr_avail); |
| rsp->n_rdma = 0; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| nvmet_rdma_rw_ctx_destroy(rsp); |
| nvmet_req_uninit(&rsp->req); |
| nvmet_rdma_release_rsp(rsp); |
| if (wc->status != IB_WC_WR_FLUSH_ERR) { |
| pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", |
| wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); |
| nvmet_rdma_error_comp(queue); |
| } |
| return; |
| } |
| |
| if (rsp->req.metadata_len) |
| status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); |
| nvmet_rdma_rw_ctx_destroy(rsp); |
| |
| if (unlikely(status)) |
| nvmet_req_complete(&rsp->req, status); |
| else |
| rsp->req.execute(&rsp->req); |
| } |
| |
| static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvmet_rdma_rsp *rsp = |
| container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); |
| struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
| struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
| u16 status; |
| |
| if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) |
| return; |
| |
| WARN_ON(rsp->n_rdma <= 0); |
| atomic_add(rsp->n_rdma, &queue->sq_wr_avail); |
| rsp->n_rdma = 0; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| nvmet_rdma_rw_ctx_destroy(rsp); |
| nvmet_req_uninit(&rsp->req); |
| nvmet_rdma_release_rsp(rsp); |
| if (wc->status != IB_WC_WR_FLUSH_ERR) { |
| pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", |
| ib_wc_status_msg(wc->status), wc->status); |
| nvmet_rdma_error_comp(queue); |
| } |
| return; |
| } |
| |
| /* |
| * Upon RDMA completion check the signature status |
| * - if succeeded send good NVMe response |
| * - if failed send bad NVMe response with appropriate error |
| */ |
| status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); |
| if (unlikely(status)) |
| rsp->req.cqe->status = cpu_to_le16(status << 1); |
| nvmet_rdma_rw_ctx_destroy(rsp); |
| |
| if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { |
| pr_err("sending cmd response failed\n"); |
| nvmet_rdma_release_rsp(rsp); |
| } |
| } |
| |
| static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, |
| u64 off) |
| { |
| int sg_count = num_pages(len); |
| struct scatterlist *sg; |
| int i; |
| |
| sg = rsp->cmd->inline_sg; |
| for (i = 0; i < sg_count; i++, sg++) { |
| if (i < sg_count - 1) |
| sg_unmark_end(sg); |
| else |
| sg_mark_end(sg); |
| sg->offset = off; |
| sg->length = min_t(int, len, PAGE_SIZE - off); |
| len -= sg->length; |
| if (!i) |
| off = 0; |
| } |
| |
| rsp->req.sg = rsp->cmd->inline_sg; |
| rsp->req.sg_cnt = sg_count; |
| } |
| |
| static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) |
| { |
| struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; |
| u64 off = le64_to_cpu(sgl->addr); |
| u32 len = le32_to_cpu(sgl->length); |
| |
| if (!nvme_is_write(rsp->req.cmd)) { |
| rsp->req.error_loc = |
| offsetof(struct nvme_common_command, opcode); |
| return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| } |
| |
| if (off + len > rsp->queue->dev->inline_data_size) { |
| pr_err("invalid inline data offset!\n"); |
| return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; |
| } |
| |
| /* no data command? */ |
| if (!len) |
| return 0; |
| |
| nvmet_rdma_use_inline_sg(rsp, len, off); |
| rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; |
| rsp->req.transfer_len += len; |
| return 0; |
| } |
| |
| static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, |
| struct nvme_keyed_sgl_desc *sgl, bool invalidate) |
| { |
| u64 addr = le64_to_cpu(sgl->addr); |
| u32 key = get_unaligned_le32(sgl->key); |
| struct ib_sig_attrs sig_attrs; |
| int ret; |
| |
| rsp->req.transfer_len = get_unaligned_le24(sgl->length); |
| |
| /* no data command? */ |
| if (!rsp->req.transfer_len) |
| return 0; |
| |
| if (rsp->req.metadata_len) |
| nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); |
| |
| ret = nvmet_req_alloc_sgls(&rsp->req); |
| if (unlikely(ret < 0)) |
| goto error_out; |
| |
| ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); |
| if (unlikely(ret < 0)) |
| goto error_out; |
| rsp->n_rdma += ret; |
| |
| if (invalidate) |
| rsp->invalidate_rkey = key; |
| |
| return 0; |
| |
| error_out: |
| rsp->req.transfer_len = 0; |
| return NVME_SC_INTERNAL; |
| } |
| |
| static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) |
| { |
| struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; |
| |
| switch (sgl->type >> 4) { |
| case NVME_SGL_FMT_DATA_DESC: |
| switch (sgl->type & 0xf) { |
| case NVME_SGL_FMT_OFFSET: |
| return nvmet_rdma_map_sgl_inline(rsp); |
| default: |
| pr_err("invalid SGL subtype: %#x\n", sgl->type); |
| rsp->req.error_loc = |
| offsetof(struct nvme_common_command, dptr); |
| return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| } |
| case NVME_KEY_SGL_FMT_DATA_DESC: |
| switch (sgl->type & 0xf) { |
| case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: |
| return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); |
| case NVME_SGL_FMT_ADDRESS: |
| return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); |
| default: |
| pr_err("invalid SGL subtype: %#x\n", sgl->type); |
| rsp->req.error_loc = |
| offsetof(struct nvme_common_command, dptr); |
| return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| } |
| default: |
| pr_err("invalid SGL type: %#x\n", sgl->type); |
| rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); |
| return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; |
| } |
| } |
| |
| static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) |
| { |
| struct nvmet_rdma_queue *queue = rsp->queue; |
| |
| if (unlikely(atomic_sub_return(1 + rsp->n_rdma, |
| &queue->sq_wr_avail) < 0)) { |
| pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", |
| 1 + rsp->n_rdma, queue->idx, |
| queue->nvme_sq.ctrl->cntlid); |
| atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); |
| return false; |
| } |
| |
| if (nvmet_rdma_need_data_in(rsp)) { |
| if (rdma_rw_ctx_post(&rsp->rw, queue->qp, |
| queue->cm_id->port_num, &rsp->read_cqe, NULL)) |
| nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); |
| } else { |
| rsp->req.execute(&rsp->req); |
| } |
| |
| return true; |
| } |
| |
| static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, |
| struct nvmet_rdma_rsp *cmd) |
| { |
| u16 status; |
| |
| ib_dma_sync_single_for_cpu(queue->dev->device, |
| cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, |
| DMA_FROM_DEVICE); |
| ib_dma_sync_single_for_cpu(queue->dev->device, |
| cmd->send_sge.addr, cmd->send_sge.length, |
| DMA_TO_DEVICE); |
| |
| if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, |
| &queue->nvme_sq, &nvmet_rdma_ops)) |
| return; |
| |
| status = nvmet_rdma_map_sgl(cmd); |
| if (status) |
| goto out_err; |
| |
| if (unlikely(!nvmet_rdma_execute_command(cmd))) { |
| spin_lock(&queue->rsp_wr_wait_lock); |
| list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); |
| spin_unlock(&queue->rsp_wr_wait_lock); |
| } |
| |
| return; |
| |
| out_err: |
| nvmet_req_complete(&cmd->req, status); |
| } |
| |
| static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvmet_rdma_cmd *cmd = |
| container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); |
| struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
| struct nvmet_rdma_rsp *rsp; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| if (wc->status != IB_WC_WR_FLUSH_ERR) { |
| pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", |
| wc->wr_cqe, ib_wc_status_msg(wc->status), |
| wc->status); |
| nvmet_rdma_error_comp(queue); |
| } |
| return; |
| } |
| |
| if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { |
| pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); |
| nvmet_rdma_error_comp(queue); |
| return; |
| } |
| |
| cmd->queue = queue; |
| rsp = nvmet_rdma_get_rsp(queue); |
| if (unlikely(!rsp)) { |
| /* |
| * we get here only under memory pressure, |
| * silently drop and have the host retry |
| * as we can't even fail it. |
| */ |
| nvmet_rdma_post_recv(queue->dev, cmd); |
| return; |
| } |
| rsp->queue = queue; |
| rsp->cmd = cmd; |
| rsp->flags = 0; |
| rsp->req.cmd = cmd->nvme_cmd; |
| rsp->req.port = queue->port; |
| rsp->n_rdma = 0; |
| rsp->invalidate_rkey = 0; |
| |
| if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&queue->state_lock, flags); |
| if (queue->state == NVMET_RDMA_Q_CONNECTING) |
| list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); |
| else |
| nvmet_rdma_put_rsp(rsp); |
| spin_unlock_irqrestore(&queue->state_lock, flags); |
| return; |
| } |
| |
| nvmet_rdma_handle_command(queue, rsp); |
| } |
| |
| static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) |
| { |
| nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, |
| false); |
| ib_destroy_srq(nsrq->srq); |
| |
| kfree(nsrq); |
| } |
| |
| static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) |
| { |
| int i; |
| |
| if (!ndev->srqs) |
| return; |
| |
| for (i = 0; i < ndev->srq_count; i++) |
| nvmet_rdma_destroy_srq(ndev->srqs[i]); |
| |
| kfree(ndev->srqs); |
| } |
| |
| static struct nvmet_rdma_srq * |
| nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) |
| { |
| struct ib_srq_init_attr srq_attr = { NULL, }; |
| size_t srq_size = ndev->srq_size; |
| struct nvmet_rdma_srq *nsrq; |
| struct ib_srq *srq; |
| int ret, i; |
| |
| nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); |
| if (!nsrq) |
| return ERR_PTR(-ENOMEM); |
| |
| srq_attr.attr.max_wr = srq_size; |
| srq_attr.attr.max_sge = 1 + ndev->inline_page_count; |
| srq_attr.attr.srq_limit = 0; |
| srq_attr.srq_type = IB_SRQT_BASIC; |
| srq = ib_create_srq(ndev->pd, &srq_attr); |
| if (IS_ERR(srq)) { |
| ret = PTR_ERR(srq); |
| goto out_free; |
| } |
| |
| nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); |
| if (IS_ERR(nsrq->cmds)) { |
| ret = PTR_ERR(nsrq->cmds); |
| goto out_destroy_srq; |
| } |
| |
| nsrq->srq = srq; |
| nsrq->ndev = ndev; |
| |
| for (i = 0; i < srq_size; i++) { |
| nsrq->cmds[i].nsrq = nsrq; |
| ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); |
| if (ret) |
| goto out_free_cmds; |
| } |
| |
| return nsrq; |
| |
| out_free_cmds: |
| nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); |
| out_destroy_srq: |
| ib_destroy_srq(srq); |
| out_free: |
| kfree(nsrq); |
| return ERR_PTR(ret); |
| } |
| |
| static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) |
| { |
| int i, ret; |
| |
| if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { |
| /* |
| * If SRQs aren't supported we just go ahead and use normal |
| * non-shared receive queues. |
| */ |
| pr_info("SRQ requested but not supported.\n"); |
| return 0; |
| } |
| |
| ndev->srq_size = min(ndev->device->attrs.max_srq_wr, |
| nvmet_rdma_srq_size); |
| ndev->srq_count = min(ndev->device->num_comp_vectors, |
| ndev->device->attrs.max_srq); |
| |
| ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); |
| if (!ndev->srqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < ndev->srq_count; i++) { |
| ndev->srqs[i] = nvmet_rdma_init_srq(ndev); |
| if (IS_ERR(ndev->srqs[i])) { |
| ret = PTR_ERR(ndev->srqs[i]); |
| goto err_srq; |
| } |
| } |
| |
| return 0; |
| |
| err_srq: |
| while (--i >= 0) |
| nvmet_rdma_destroy_srq(ndev->srqs[i]); |
| kfree(ndev->srqs); |
| return ret; |
| } |
| |
| static void nvmet_rdma_free_dev(struct kref *ref) |
| { |
| struct nvmet_rdma_device *ndev = |
| container_of(ref, struct nvmet_rdma_device, ref); |
| |
| mutex_lock(&device_list_mutex); |
| list_del(&ndev->entry); |
| mutex_unlock(&device_list_mutex); |
| |
| nvmet_rdma_destroy_srqs(ndev); |
| ib_dealloc_pd(ndev->pd); |
| |
| kfree(ndev); |
| } |
| |
| static struct nvmet_rdma_device * |
| nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) |
| { |
| struct nvmet_rdma_port *port = cm_id->context; |
| struct nvmet_port *nport = port->nport; |
| struct nvmet_rdma_device *ndev; |
| int inline_page_count; |
| int inline_sge_count; |
| int ret; |
| |
| mutex_lock(&device_list_mutex); |
| list_for_each_entry(ndev, &device_list, entry) { |
| if (ndev->device->node_guid == cm_id->device->node_guid && |
| kref_get_unless_zero(&ndev->ref)) |
| goto out_unlock; |
| } |
| |
| ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); |
| if (!ndev) |
| goto out_err; |
| |
| inline_page_count = num_pages(nport->inline_data_size); |
| inline_sge_count = max(cm_id->device->attrs.max_sge_rd, |
| cm_id->device->attrs.max_recv_sge) - 1; |
| if (inline_page_count > inline_sge_count) { |
| pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", |
| nport->inline_data_size, cm_id->device->name, |
| inline_sge_count * PAGE_SIZE); |
| nport->inline_data_size = inline_sge_count * PAGE_SIZE; |
| inline_page_count = inline_sge_count; |
| } |
| ndev->inline_data_size = nport->inline_data_size; |
| ndev->inline_page_count = inline_page_count; |
| |
| if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & |
| IBK_INTEGRITY_HANDOVER)) { |
| pr_warn("T10-PI is not supported by device %s. Disabling it\n", |
| cm_id->device->name); |
| nport->pi_enable = false; |
| } |
| |
| ndev->device = cm_id->device; |
| kref_init(&ndev->ref); |
| |
| ndev->pd = ib_alloc_pd(ndev->device, 0); |
| if (IS_ERR(ndev->pd)) |
| goto out_free_dev; |
| |
| if (nvmet_rdma_use_srq) { |
| ret = nvmet_rdma_init_srqs(ndev); |
| if (ret) |
| goto out_free_pd; |
| } |
| |
| list_add(&ndev->entry, &device_list); |
| out_unlock: |
| mutex_unlock(&device_list_mutex); |
| pr_debug("added %s.\n", ndev->device->name); |
| return ndev; |
| |
| out_free_pd: |
| ib_dealloc_pd(ndev->pd); |
| out_free_dev: |
| kfree(ndev); |
| out_err: |
| mutex_unlock(&device_list_mutex); |
| return NULL; |
| } |
| |
| static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) |
| { |
| struct ib_qp_init_attr qp_attr = { }; |
| struct nvmet_rdma_device *ndev = queue->dev; |
| int nr_cqe, ret, i, factor; |
| |
| /* |
| * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. |
| */ |
| nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; |
| |
| queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, |
| queue->comp_vector, IB_POLL_WORKQUEUE); |
| if (IS_ERR(queue->cq)) { |
| ret = PTR_ERR(queue->cq); |
| pr_err("failed to create CQ cqe= %d ret= %d\n", |
| nr_cqe + 1, ret); |
| goto out; |
| } |
| |
| qp_attr.qp_context = queue; |
| qp_attr.event_handler = nvmet_rdma_qp_event; |
| qp_attr.send_cq = queue->cq; |
| qp_attr.recv_cq = queue->cq; |
| qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| qp_attr.qp_type = IB_QPT_RC; |
| /* +1 for drain */ |
| qp_attr.cap.max_send_wr = queue->send_queue_size + 1; |
| factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, |
| 1 << NVMET_RDMA_MAX_MDTS); |
| qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; |
| qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, |
| ndev->device->attrs.max_send_sge); |
| |
| if (queue->nsrq) { |
| qp_attr.srq = queue->nsrq->srq; |
| } else { |
| /* +1 for drain */ |
| qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; |
| qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; |
| } |
| |
| if (queue->port->pi_enable && queue->host_qid) |
| qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; |
| |
| ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); |
| if (ret) { |
| pr_err("failed to create_qp ret= %d\n", ret); |
| goto err_destroy_cq; |
| } |
| queue->qp = queue->cm_id->qp; |
| |
| atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); |
| |
| pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", |
| __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, |
| qp_attr.cap.max_send_wr, queue->cm_id); |
| |
| if (!queue->nsrq) { |
| for (i = 0; i < queue->recv_queue_size; i++) { |
| queue->cmds[i].queue = queue; |
| ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); |
| if (ret) |
| goto err_destroy_qp; |
| } |
| } |
| |
| out: |
| return ret; |
| |
| err_destroy_qp: |
| rdma_destroy_qp(queue->cm_id); |
| err_destroy_cq: |
| ib_cq_pool_put(queue->cq, nr_cqe + 1); |
| goto out; |
| } |
| |
| static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) |
| { |
| ib_drain_qp(queue->qp); |
| if (queue->cm_id) |
| rdma_destroy_id(queue->cm_id); |
| ib_destroy_qp(queue->qp); |
| ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * |
| queue->send_queue_size + 1); |
| } |
| |
| static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) |
| { |
| pr_debug("freeing queue %d\n", queue->idx); |
| |
| nvmet_sq_destroy(&queue->nvme_sq); |
| |
| nvmet_rdma_destroy_queue_ib(queue); |
| if (!queue->nsrq) { |
| nvmet_rdma_free_cmds(queue->dev, queue->cmds, |
| queue->recv_queue_size, |
| !queue->host_qid); |
| } |
| nvmet_rdma_free_rsps(queue); |
| ida_free(&nvmet_rdma_queue_ida, queue->idx); |
| kfree(queue); |
| } |
| |
| static void nvmet_rdma_release_queue_work(struct work_struct *w) |
| { |
| struct nvmet_rdma_queue *queue = |
| container_of(w, struct nvmet_rdma_queue, release_work); |
| struct nvmet_rdma_device *dev = queue->dev; |
| |
| nvmet_rdma_free_queue(queue); |
| |
| kref_put(&dev->ref, nvmet_rdma_free_dev); |
| } |
| |
| static int |
| nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, |
| struct nvmet_rdma_queue *queue) |
| { |
| struct nvme_rdma_cm_req *req; |
| |
| req = (struct nvme_rdma_cm_req *)conn->private_data; |
| if (!req || conn->private_data_len == 0) |
| return NVME_RDMA_CM_INVALID_LEN; |
| |
| if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) |
| return NVME_RDMA_CM_INVALID_RECFMT; |
| |
| queue->host_qid = le16_to_cpu(req->qid); |
| |
| /* |
| * req->hsqsize corresponds to our recv queue size plus 1 |
| * req->hrqsize corresponds to our send queue size |
| */ |
| queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; |
| queue->send_queue_size = le16_to_cpu(req->hrqsize); |
| |
| if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) |
| return NVME_RDMA_CM_INVALID_HSQSIZE; |
| |
| /* XXX: Should we enforce some kind of max for IO queues? */ |
| |
| return 0; |
| } |
| |
| static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, |
| enum nvme_rdma_cm_status status) |
| { |
| struct nvme_rdma_cm_rej rej; |
| |
| pr_debug("rejecting connect request: status %d (%s)\n", |
| status, nvme_rdma_cm_msg(status)); |
| |
| rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
| rej.sts = cpu_to_le16(status); |
| |
| return rdma_reject(cm_id, (void *)&rej, sizeof(rej), |
| IB_CM_REJ_CONSUMER_DEFINED); |
| } |
| |
| static struct nvmet_rdma_queue * |
| nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, |
| struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *event) |
| { |
| struct nvmet_rdma_port *port = cm_id->context; |
| struct nvmet_rdma_queue *queue; |
| int ret; |
| |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) { |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_reject; |
| } |
| |
| ret = nvmet_sq_init(&queue->nvme_sq); |
| if (ret) { |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_free_queue; |
| } |
| |
| ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); |
| if (ret) |
| goto out_destroy_sq; |
| |
| /* |
| * Schedules the actual release because calling rdma_destroy_id from |
| * inside a CM callback would trigger a deadlock. (great API design..) |
| */ |
| INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); |
| queue->dev = ndev; |
| queue->cm_id = cm_id; |
| queue->port = port->nport; |
| |
| spin_lock_init(&queue->state_lock); |
| queue->state = NVMET_RDMA_Q_CONNECTING; |
| INIT_LIST_HEAD(&queue->rsp_wait_list); |
| INIT_LIST_HEAD(&queue->rsp_wr_wait_list); |
| spin_lock_init(&queue->rsp_wr_wait_lock); |
| INIT_LIST_HEAD(&queue->queue_list); |
| |
| queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); |
| if (queue->idx < 0) { |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_destroy_sq; |
| } |
| |
| /* |
| * Spread the io queues across completion vectors, |
| * but still keep all admin queues on vector 0. |
| */ |
| queue->comp_vector = !queue->host_qid ? 0 : |
| queue->idx % ndev->device->num_comp_vectors; |
| |
| |
| ret = nvmet_rdma_alloc_rsps(queue); |
| if (ret) { |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_ida_remove; |
| } |
| |
| if (ndev->srqs) { |
| queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; |
| } else { |
| queue->cmds = nvmet_rdma_alloc_cmds(ndev, |
| queue->recv_queue_size, |
| !queue->host_qid); |
| if (IS_ERR(queue->cmds)) { |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_free_responses; |
| } |
| } |
| |
| ret = nvmet_rdma_create_queue_ib(queue); |
| if (ret) { |
| pr_err("%s: creating RDMA queue failed (%d).\n", |
| __func__, ret); |
| ret = NVME_RDMA_CM_NO_RSC; |
| goto out_free_cmds; |
| } |
| |
| return queue; |
| |
| out_free_cmds: |
| if (!queue->nsrq) { |
| nvmet_rdma_free_cmds(queue->dev, queue->cmds, |
| queue->recv_queue_size, |
| !queue->host_qid); |
| } |
| out_free_responses: |
| nvmet_rdma_free_rsps(queue); |
| out_ida_remove: |
| ida_free(&nvmet_rdma_queue_ida, queue->idx); |
| out_destroy_sq: |
| nvmet_sq_destroy(&queue->nvme_sq); |
| out_free_queue: |
| kfree(queue); |
| out_reject: |
| nvmet_rdma_cm_reject(cm_id, ret); |
| return NULL; |
| } |
| |
| static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) |
| { |
| struct nvmet_rdma_queue *queue = priv; |
| |
| switch (event->event) { |
| case IB_EVENT_COMM_EST: |
| rdma_notify(queue->cm_id, event->event); |
| break; |
| case IB_EVENT_QP_LAST_WQE_REACHED: |
| pr_debug("received last WQE reached event for queue=0x%p\n", |
| queue); |
| break; |
| default: |
| pr_err("received IB QP event: %s (%d)\n", |
| ib_event_msg(event->event), event->event); |
| break; |
| } |
| } |
| |
| static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, |
| struct nvmet_rdma_queue *queue, |
| struct rdma_conn_param *p) |
| { |
| struct rdma_conn_param param = { }; |
| struct nvme_rdma_cm_rep priv = { }; |
| int ret = -ENOMEM; |
| |
| param.rnr_retry_count = 7; |
| param.flow_control = 1; |
| param.initiator_depth = min_t(u8, p->initiator_depth, |
| queue->dev->device->attrs.max_qp_init_rd_atom); |
| param.private_data = &priv; |
| param.private_data_len = sizeof(priv); |
| priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
| priv.crqsize = cpu_to_le16(queue->recv_queue_size); |
| |
| ret = rdma_accept(cm_id, ¶m); |
| if (ret) |
| pr_err("rdma_accept failed (error code = %d)\n", ret); |
| |
| return ret; |
| } |
| |
| static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *event) |
| { |
| struct nvmet_rdma_device *ndev; |
| struct nvmet_rdma_queue *queue; |
| int ret = -EINVAL; |
| |
| ndev = nvmet_rdma_find_get_device(cm_id); |
| if (!ndev) { |
| nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); |
| return -ECONNREFUSED; |
| } |
| |
| queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); |
| if (!queue) { |
| ret = -ENOMEM; |
| goto put_device; |
| } |
| |
| if (queue->host_qid == 0) { |
| struct nvmet_rdma_queue *q; |
| int pending = 0; |
| |
| /* Check for pending controller teardown */ |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { |
| if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && |
| q->state == NVMET_RDMA_Q_DISCONNECTING) |
| pending++; |
| } |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| if (pending > NVMET_RDMA_BACKLOG) |
| return NVME_SC_CONNECT_CTRL_BUSY; |
| } |
| |
| ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); |
| if (ret) { |
| /* |
| * Don't destroy the cm_id in free path, as we implicitly |
| * destroy the cm_id here with non-zero ret code. |
| */ |
| queue->cm_id = NULL; |
| goto free_queue; |
| } |
| |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| |
| return 0; |
| |
| free_queue: |
| nvmet_rdma_free_queue(queue); |
| put_device: |
| kref_put(&ndev->ref, nvmet_rdma_free_dev); |
| |
| return ret; |
| } |
| |
| static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&queue->state_lock, flags); |
| if (queue->state != NVMET_RDMA_Q_CONNECTING) { |
| pr_warn("trying to establish a connected queue\n"); |
| goto out_unlock; |
| } |
| queue->state = NVMET_RDMA_Q_LIVE; |
| |
| while (!list_empty(&queue->rsp_wait_list)) { |
| struct nvmet_rdma_rsp *cmd; |
| |
| cmd = list_first_entry(&queue->rsp_wait_list, |
| struct nvmet_rdma_rsp, wait_list); |
| list_del(&cmd->wait_list); |
| |
| spin_unlock_irqrestore(&queue->state_lock, flags); |
| nvmet_rdma_handle_command(queue, cmd); |
| spin_lock_irqsave(&queue->state_lock, flags); |
| } |
| |
| out_unlock: |
| spin_unlock_irqrestore(&queue->state_lock, flags); |
| } |
| |
| static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) |
| { |
| bool disconnect = false; |
| unsigned long flags; |
| |
| pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); |
| |
| spin_lock_irqsave(&queue->state_lock, flags); |
| switch (queue->state) { |
| case NVMET_RDMA_Q_CONNECTING: |
| while (!list_empty(&queue->rsp_wait_list)) { |
| struct nvmet_rdma_rsp *rsp; |
| |
| rsp = list_first_entry(&queue->rsp_wait_list, |
| struct nvmet_rdma_rsp, |
| wait_list); |
| list_del(&rsp->wait_list); |
| nvmet_rdma_put_rsp(rsp); |
| } |
| fallthrough; |
| case NVMET_RDMA_Q_LIVE: |
| queue->state = NVMET_RDMA_Q_DISCONNECTING; |
| disconnect = true; |
| break; |
| case NVMET_RDMA_Q_DISCONNECTING: |
| break; |
| } |
| spin_unlock_irqrestore(&queue->state_lock, flags); |
| |
| if (disconnect) { |
| rdma_disconnect(queue->cm_id); |
| queue_work(nvmet_wq, &queue->release_work); |
| } |
| } |
| |
| static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) |
| { |
| bool disconnect = false; |
| |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| if (!list_empty(&queue->queue_list)) { |
| list_del_init(&queue->queue_list); |
| disconnect = true; |
| } |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| |
| if (disconnect) |
| __nvmet_rdma_queue_disconnect(queue); |
| } |
| |
| static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, |
| struct nvmet_rdma_queue *queue) |
| { |
| WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); |
| |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| if (!list_empty(&queue->queue_list)) |
| list_del_init(&queue->queue_list); |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| |
| pr_err("failed to connect queue %d\n", queue->idx); |
| queue_work(nvmet_wq, &queue->release_work); |
| } |
| |
| /** |
| * nvmet_rdma_device_removal() - Handle RDMA device removal |
| * @cm_id: rdma_cm id, used for nvmet port |
| * @queue: nvmet rdma queue (cm id qp_context) |
| * |
| * DEVICE_REMOVAL event notifies us that the RDMA device is about |
| * to unplug. Note that this event can be generated on a normal |
| * queue cm_id and/or a device bound listener cm_id (where in this |
| * case queue will be null). |
| * |
| * We registered an ib_client to handle device removal for queues, |
| * so we only need to handle the listening port cm_ids. In this case |
| * we nullify the priv to prevent double cm_id destruction and destroying |
| * the cm_id implicitely by returning a non-zero rc to the callout. |
| */ |
| static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, |
| struct nvmet_rdma_queue *queue) |
| { |
| struct nvmet_rdma_port *port; |
| |
| if (queue) { |
| /* |
| * This is a queue cm_id. we have registered |
| * an ib_client to handle queues removal |
| * so don't interfear and just return. |
| */ |
| return 0; |
| } |
| |
| port = cm_id->context; |
| |
| /* |
| * This is a listener cm_id. Make sure that |
| * future remove_port won't invoke a double |
| * cm_id destroy. use atomic xchg to make sure |
| * we don't compete with remove_port. |
| */ |
| if (xchg(&port->cm_id, NULL) != cm_id) |
| return 0; |
| |
| /* |
| * We need to return 1 so that the core will destroy |
| * it's own ID. What a great API design.. |
| */ |
| return 1; |
| } |
| |
| static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *event) |
| { |
| struct nvmet_rdma_queue *queue = NULL; |
| int ret = 0; |
| |
| if (cm_id->qp) |
| queue = cm_id->qp->qp_context; |
| |
| pr_debug("%s (%d): status %d id %p\n", |
| rdma_event_msg(event->event), event->event, |
| event->status, cm_id); |
| |
| switch (event->event) { |
| case RDMA_CM_EVENT_CONNECT_REQUEST: |
| ret = nvmet_rdma_queue_connect(cm_id, event); |
| break; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| nvmet_rdma_queue_established(queue); |
| break; |
| case RDMA_CM_EVENT_ADDR_CHANGE: |
| if (!queue) { |
| struct nvmet_rdma_port *port = cm_id->context; |
| |
| queue_delayed_work(nvmet_wq, &port->repair_work, 0); |
| break; |
| } |
| fallthrough; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| case RDMA_CM_EVENT_TIMEWAIT_EXIT: |
| nvmet_rdma_queue_disconnect(queue); |
| break; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| ret = nvmet_rdma_device_removal(cm_id, queue); |
| break; |
| case RDMA_CM_EVENT_REJECTED: |
| pr_debug("Connection rejected: %s\n", |
| rdma_reject_msg(cm_id, event->status)); |
| fallthrough; |
| case RDMA_CM_EVENT_UNREACHABLE: |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| nvmet_rdma_queue_connect_fail(cm_id, queue); |
| break; |
| default: |
| pr_err("received unrecognized RDMA CM event %d\n", |
| event->event); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) |
| { |
| struct nvmet_rdma_queue *queue, *n; |
| |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) { |
| if (queue->nvme_sq.ctrl != ctrl) |
| continue; |
| list_del_init(&queue->queue_list); |
| __nvmet_rdma_queue_disconnect(queue); |
| } |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| } |
| |
| static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) |
| { |
| struct nvmet_rdma_queue *queue, *tmp; |
| struct nvmet_port *nport = port->nport; |
| |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, |
| queue_list) { |
| if (queue->port != nport) |
| continue; |
| |
| list_del_init(&queue->queue_list); |
| __nvmet_rdma_queue_disconnect(queue); |
| } |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| } |
| |
| static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) |
| { |
| struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); |
| |
| if (cm_id) |
| rdma_destroy_id(cm_id); |
| |
| /* |
| * Destroy the remaining queues, which are not belong to any |
| * controller yet. Do it here after the RDMA-CM was destroyed |
| * guarantees that no new queue will be created. |
| */ |
| nvmet_rdma_destroy_port_queues(port); |
| } |
| |
| static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) |
| { |
| struct sockaddr *addr = (struct sockaddr *)&port->addr; |
| struct rdma_cm_id *cm_id; |
| int ret; |
| |
| cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, |
| RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(cm_id)) { |
| pr_err("CM ID creation failed\n"); |
| return PTR_ERR(cm_id); |
| } |
| |
| /* |
| * Allow both IPv4 and IPv6 sockets to bind a single port |
| * at the same time. |
| */ |
| ret = rdma_set_afonly(cm_id, 1); |
| if (ret) { |
| pr_err("rdma_set_afonly failed (%d)\n", ret); |
| goto out_destroy_id; |
| } |
| |
| ret = rdma_bind_addr(cm_id, addr); |
| if (ret) { |
| pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); |
| goto out_destroy_id; |
| } |
| |
| ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG); |
| if (ret) { |
| pr_err("listening to %pISpcs failed (%d)\n", addr, ret); |
| goto out_destroy_id; |
| } |
| |
| port->cm_id = cm_id; |
| return 0; |
| |
| out_destroy_id: |
| rdma_destroy_id(cm_id); |
| return ret; |
| } |
| |
| static void nvmet_rdma_repair_port_work(struct work_struct *w) |
| { |
| struct nvmet_rdma_port *port = container_of(to_delayed_work(w), |
| struct nvmet_rdma_port, repair_work); |
| int ret; |
| |
| nvmet_rdma_disable_port(port); |
| ret = nvmet_rdma_enable_port(port); |
| if (ret) |
| queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); |
| } |
| |
| static int nvmet_rdma_add_port(struct nvmet_port *nport) |
| { |
| struct nvmet_rdma_port *port; |
| __kernel_sa_family_t af; |
| int ret; |
| |
| port = kzalloc(sizeof(*port), GFP_KERNEL); |
| if (!port) |
| return -ENOMEM; |
| |
| nport->priv = port; |
| port->nport = nport; |
| INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); |
| |
| switch (nport->disc_addr.adrfam) { |
| case NVMF_ADDR_FAMILY_IP4: |
| af = AF_INET; |
| break; |
| case NVMF_ADDR_FAMILY_IP6: |
| af = AF_INET6; |
| break; |
| default: |
| pr_err("address family %d not supported\n", |
| nport->disc_addr.adrfam); |
| ret = -EINVAL; |
| goto out_free_port; |
| } |
| |
| if (nport->inline_data_size < 0) { |
| nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; |
| } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { |
| pr_warn("inline_data_size %u is too large, reducing to %u\n", |
| nport->inline_data_size, |
| NVMET_RDMA_MAX_INLINE_DATA_SIZE); |
| nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; |
| } |
| |
| if (nport->max_queue_size < 0) { |
| nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; |
| } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { |
| pr_warn("max_queue_size %u is too large, reducing to %u\n", |
| nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); |
| nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; |
| } |
| |
| ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, |
| nport->disc_addr.trsvcid, &port->addr); |
| if (ret) { |
| pr_err("malformed ip/port passed: %s:%s\n", |
| nport->disc_addr.traddr, nport->disc_addr.trsvcid); |
| goto out_free_port; |
| } |
| |
| ret = nvmet_rdma_enable_port(port); |
| if (ret) |
| goto out_free_port; |
| |
| pr_info("enabling port %d (%pISpcs)\n", |
| le16_to_cpu(nport->disc_addr.portid), |
| (struct sockaddr *)&port->addr); |
| |
| return 0; |
| |
| out_free_port: |
| kfree(port); |
| return ret; |
| } |
| |
| static void nvmet_rdma_remove_port(struct nvmet_port *nport) |
| { |
| struct nvmet_rdma_port *port = nport->priv; |
| |
| cancel_delayed_work_sync(&port->repair_work); |
| nvmet_rdma_disable_port(port); |
| kfree(port); |
| } |
| |
| static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, |
| struct nvmet_port *nport, char *traddr) |
| { |
| struct nvmet_rdma_port *port = nport->priv; |
| struct rdma_cm_id *cm_id = port->cm_id; |
| |
| if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { |
| struct nvmet_rdma_rsp *rsp = |
| container_of(req, struct nvmet_rdma_rsp, req); |
| struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; |
| struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; |
| |
| sprintf(traddr, "%pISc", addr); |
| } else { |
| memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); |
| } |
| } |
| |
| static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl, |
| char *traddr, size_t traddr_len) |
| { |
| struct nvmet_sq *nvme_sq = ctrl->sqs[0]; |
| struct nvmet_rdma_queue *queue = |
| container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq); |
| |
| return snprintf(traddr, traddr_len, "%pISc", |
| (struct sockaddr *)&queue->cm_id->route.addr.dst_addr); |
| } |
| |
| static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) |
| { |
| if (ctrl->pi_support) |
| return NVMET_RDMA_MAX_METADATA_MDTS; |
| return NVMET_RDMA_MAX_MDTS; |
| } |
| |
| static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) |
| { |
| if (ctrl->pi_support) |
| return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; |
| return NVME_RDMA_MAX_QUEUE_SIZE; |
| } |
| |
| static const struct nvmet_fabrics_ops nvmet_rdma_ops = { |
| .owner = THIS_MODULE, |
| .type = NVMF_TRTYPE_RDMA, |
| .msdbd = 1, |
| .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, |
| .add_port = nvmet_rdma_add_port, |
| .remove_port = nvmet_rdma_remove_port, |
| .queue_response = nvmet_rdma_queue_response, |
| .delete_ctrl = nvmet_rdma_delete_ctrl, |
| .disc_traddr = nvmet_rdma_disc_port_addr, |
| .host_traddr = nvmet_rdma_host_port_addr, |
| .get_mdts = nvmet_rdma_get_mdts, |
| .get_max_queue_size = nvmet_rdma_get_max_queue_size, |
| }; |
| |
| static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) |
| { |
| struct nvmet_rdma_queue *queue, *tmp; |
| struct nvmet_rdma_device *ndev; |
| bool found = false; |
| |
| mutex_lock(&device_list_mutex); |
| list_for_each_entry(ndev, &device_list, entry) { |
| if (ndev->device == ib_device) { |
| found = true; |
| break; |
| } |
| } |
| mutex_unlock(&device_list_mutex); |
| |
| if (!found) |
| return; |
| |
| /* |
| * IB Device that is used by nvmet controllers is being removed, |
| * delete all queues using this device. |
| */ |
| mutex_lock(&nvmet_rdma_queue_mutex); |
| list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, |
| queue_list) { |
| if (queue->dev->device != ib_device) |
| continue; |
| |
| pr_info("Removing queue %d\n", queue->idx); |
| list_del_init(&queue->queue_list); |
| __nvmet_rdma_queue_disconnect(queue); |
| } |
| mutex_unlock(&nvmet_rdma_queue_mutex); |
| |
| flush_workqueue(nvmet_wq); |
| } |
| |
| static struct ib_client nvmet_rdma_ib_client = { |
| .name = "nvmet_rdma", |
| .remove = nvmet_rdma_remove_one |
| }; |
| |
| static int __init nvmet_rdma_init(void) |
| { |
| int ret; |
| |
| ret = ib_register_client(&nvmet_rdma_ib_client); |
| if (ret) |
| return ret; |
| |
| ret = nvmet_register_transport(&nvmet_rdma_ops); |
| if (ret) |
| goto err_ib_client; |
| |
| return 0; |
| |
| err_ib_client: |
| ib_unregister_client(&nvmet_rdma_ib_client); |
| return ret; |
| } |
| |
| static void __exit nvmet_rdma_exit(void) |
| { |
| nvmet_unregister_transport(&nvmet_rdma_ops); |
| ib_unregister_client(&nvmet_rdma_ib_client); |
| WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); |
| ida_destroy(&nvmet_rdma_queue_ida); |
| } |
| |
| module_init(nvmet_rdma_init); |
| module_exit(nvmet_rdma_exit); |
| |
| MODULE_DESCRIPTION("NVMe target RDMA transport driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ |