| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Energy Model of devices |
| * |
| * Copyright (c) 2018-2021, Arm ltd. |
| * Written by: Quentin Perret, Arm ltd. |
| * Improvements provided by: Lukasz Luba, Arm ltd. |
| */ |
| |
| #define pr_fmt(fmt) "energy_model: " fmt |
| |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpumask.h> |
| #include <linux/debugfs.h> |
| #include <linux/energy_model.h> |
| #include <linux/sched/topology.h> |
| #include <linux/slab.h> |
| |
| /* |
| * Mutex serializing the registrations of performance domains and letting |
| * callbacks defined by drivers sleep. |
| */ |
| static DEFINE_MUTEX(em_pd_mutex); |
| |
| static void em_cpufreq_update_efficiencies(struct device *dev, |
| struct em_perf_state *table); |
| static void em_check_capacity_update(void); |
| static void em_update_workfn(struct work_struct *work); |
| static DECLARE_DELAYED_WORK(em_update_work, em_update_workfn); |
| |
| static bool _is_cpu_device(struct device *dev) |
| { |
| return (dev->bus == &cpu_subsys); |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static struct dentry *rootdir; |
| |
| struct em_dbg_info { |
| struct em_perf_domain *pd; |
| int ps_id; |
| }; |
| |
| #define DEFINE_EM_DBG_SHOW(name, fname) \ |
| static int em_debug_##fname##_show(struct seq_file *s, void *unused) \ |
| { \ |
| struct em_dbg_info *em_dbg = s->private; \ |
| struct em_perf_state *table; \ |
| unsigned long val; \ |
| \ |
| rcu_read_lock(); \ |
| table = em_perf_state_from_pd(em_dbg->pd); \ |
| val = table[em_dbg->ps_id].name; \ |
| rcu_read_unlock(); \ |
| \ |
| seq_printf(s, "%lu\n", val); \ |
| return 0; \ |
| } \ |
| DEFINE_SHOW_ATTRIBUTE(em_debug_##fname) |
| |
| DEFINE_EM_DBG_SHOW(frequency, frequency); |
| DEFINE_EM_DBG_SHOW(power, power); |
| DEFINE_EM_DBG_SHOW(cost, cost); |
| DEFINE_EM_DBG_SHOW(performance, performance); |
| DEFINE_EM_DBG_SHOW(flags, inefficiency); |
| |
| static void em_debug_create_ps(struct em_perf_domain *em_pd, |
| struct em_dbg_info *em_dbg, int i, |
| struct dentry *pd) |
| { |
| struct em_perf_state *table; |
| unsigned long freq; |
| struct dentry *d; |
| char name[24]; |
| |
| em_dbg[i].pd = em_pd; |
| em_dbg[i].ps_id = i; |
| |
| rcu_read_lock(); |
| table = em_perf_state_from_pd(em_pd); |
| freq = table[i].frequency; |
| rcu_read_unlock(); |
| |
| snprintf(name, sizeof(name), "ps:%lu", freq); |
| |
| /* Create per-ps directory */ |
| d = debugfs_create_dir(name, pd); |
| debugfs_create_file("frequency", 0444, d, &em_dbg[i], |
| &em_debug_frequency_fops); |
| debugfs_create_file("power", 0444, d, &em_dbg[i], |
| &em_debug_power_fops); |
| debugfs_create_file("cost", 0444, d, &em_dbg[i], |
| &em_debug_cost_fops); |
| debugfs_create_file("performance", 0444, d, &em_dbg[i], |
| &em_debug_performance_fops); |
| debugfs_create_file("inefficient", 0444, d, &em_dbg[i], |
| &em_debug_inefficiency_fops); |
| } |
| |
| static int em_debug_cpus_show(struct seq_file *s, void *unused) |
| { |
| seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private))); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(em_debug_cpus); |
| |
| static int em_debug_flags_show(struct seq_file *s, void *unused) |
| { |
| struct em_perf_domain *pd = s->private; |
| |
| seq_printf(s, "%#lx\n", pd->flags); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(em_debug_flags); |
| |
| static void em_debug_create_pd(struct device *dev) |
| { |
| struct em_dbg_info *em_dbg; |
| struct dentry *d; |
| int i; |
| |
| /* Create the directory of the performance domain */ |
| d = debugfs_create_dir(dev_name(dev), rootdir); |
| |
| if (_is_cpu_device(dev)) |
| debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus, |
| &em_debug_cpus_fops); |
| |
| debugfs_create_file("flags", 0444, d, dev->em_pd, |
| &em_debug_flags_fops); |
| |
| em_dbg = devm_kcalloc(dev, dev->em_pd->nr_perf_states, |
| sizeof(*em_dbg), GFP_KERNEL); |
| if (!em_dbg) |
| return; |
| |
| /* Create a sub-directory for each performance state */ |
| for (i = 0; i < dev->em_pd->nr_perf_states; i++) |
| em_debug_create_ps(dev->em_pd, em_dbg, i, d); |
| |
| } |
| |
| static void em_debug_remove_pd(struct device *dev) |
| { |
| debugfs_lookup_and_remove(dev_name(dev), rootdir); |
| } |
| |
| static int __init em_debug_init(void) |
| { |
| /* Create /sys/kernel/debug/energy_model directory */ |
| rootdir = debugfs_create_dir("energy_model", NULL); |
| |
| return 0; |
| } |
| fs_initcall(em_debug_init); |
| #else /* CONFIG_DEBUG_FS */ |
| static void em_debug_create_pd(struct device *dev) {} |
| static void em_debug_remove_pd(struct device *dev) {} |
| #endif |
| |
| static void em_destroy_table_rcu(struct rcu_head *rp) |
| { |
| struct em_perf_table __rcu *table; |
| |
| table = container_of(rp, struct em_perf_table, rcu); |
| kfree(table); |
| } |
| |
| static void em_release_table_kref(struct kref *kref) |
| { |
| struct em_perf_table __rcu *table; |
| |
| /* It was the last owner of this table so we can free */ |
| table = container_of(kref, struct em_perf_table, kref); |
| |
| call_rcu(&table->rcu, em_destroy_table_rcu); |
| } |
| |
| /** |
| * em_table_free() - Handles safe free of the EM table when needed |
| * @table : EM table which is going to be freed |
| * |
| * No return values. |
| */ |
| void em_table_free(struct em_perf_table __rcu *table) |
| { |
| kref_put(&table->kref, em_release_table_kref); |
| } |
| |
| /** |
| * em_table_alloc() - Allocate a new EM table |
| * @pd : EM performance domain for which this must be done |
| * |
| * Allocate a new EM table and initialize its kref to indicate that it |
| * has a user. |
| * Returns allocated table or NULL. |
| */ |
| struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd) |
| { |
| struct em_perf_table __rcu *table; |
| int table_size; |
| |
| table_size = sizeof(struct em_perf_state) * pd->nr_perf_states; |
| |
| table = kzalloc(sizeof(*table) + table_size, GFP_KERNEL); |
| if (!table) |
| return NULL; |
| |
| kref_init(&table->kref); |
| |
| return table; |
| } |
| |
| static void em_init_performance(struct device *dev, struct em_perf_domain *pd, |
| struct em_perf_state *table, int nr_states) |
| { |
| u64 fmax, max_cap; |
| int i, cpu; |
| |
| /* This is needed only for CPUs and EAS skip other devices */ |
| if (!_is_cpu_device(dev)) |
| return; |
| |
| cpu = cpumask_first(em_span_cpus(pd)); |
| |
| /* |
| * Calculate the performance value for each frequency with |
| * linear relationship. The final CPU capacity might not be ready at |
| * boot time, but the EM will be updated a bit later with correct one. |
| */ |
| fmax = (u64) table[nr_states - 1].frequency; |
| max_cap = (u64) arch_scale_cpu_capacity(cpu); |
| for (i = 0; i < nr_states; i++) |
| table[i].performance = div64_u64(max_cap * table[i].frequency, |
| fmax); |
| } |
| |
| static int em_compute_costs(struct device *dev, struct em_perf_state *table, |
| struct em_data_callback *cb, int nr_states, |
| unsigned long flags) |
| { |
| unsigned long prev_cost = ULONG_MAX; |
| int i, ret; |
| |
| /* Compute the cost of each performance state. */ |
| for (i = nr_states - 1; i >= 0; i--) { |
| unsigned long power_res, cost; |
| |
| if ((flags & EM_PERF_DOMAIN_ARTIFICIAL) && cb->get_cost) { |
| ret = cb->get_cost(dev, table[i].frequency, &cost); |
| if (ret || !cost || cost > EM_MAX_POWER) { |
| dev_err(dev, "EM: invalid cost %lu %d\n", |
| cost, ret); |
| return -EINVAL; |
| } |
| } else { |
| /* increase resolution of 'cost' precision */ |
| power_res = table[i].power * 10; |
| cost = power_res / table[i].performance; |
| } |
| |
| table[i].cost = cost; |
| |
| if (table[i].cost >= prev_cost) { |
| table[i].flags = EM_PERF_STATE_INEFFICIENT; |
| dev_dbg(dev, "EM: OPP:%lu is inefficient\n", |
| table[i].frequency); |
| } else { |
| prev_cost = table[i].cost; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * em_dev_compute_costs() - Calculate cost values for new runtime EM table |
| * @dev : Device for which the EM table is to be updated |
| * @table : The new EM table that is going to get the costs calculated |
| * @nr_states : Number of performance states |
| * |
| * Calculate the em_perf_state::cost values for new runtime EM table. The |
| * values are used for EAS during task placement. It also calculates and sets |
| * the efficiency flag for each performance state. When the function finish |
| * successfully the EM table is ready to be updated and used by EAS. |
| * |
| * Return 0 on success or a proper error in case of failure. |
| */ |
| int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, |
| int nr_states) |
| { |
| return em_compute_costs(dev, table, NULL, nr_states, 0); |
| } |
| |
| /** |
| * em_dev_update_perf_domain() - Update runtime EM table for a device |
| * @dev : Device for which the EM is to be updated |
| * @new_table : The new EM table that is going to be used from now |
| * |
| * Update EM runtime modifiable table for the @dev using the provided @table. |
| * |
| * This function uses a mutex to serialize writers, so it must not be called |
| * from a non-sleeping context. |
| * |
| * Return 0 on success or an error code on failure. |
| */ |
| int em_dev_update_perf_domain(struct device *dev, |
| struct em_perf_table __rcu *new_table) |
| { |
| struct em_perf_table __rcu *old_table; |
| struct em_perf_domain *pd; |
| |
| if (!dev) |
| return -EINVAL; |
| |
| /* Serialize update/unregister or concurrent updates */ |
| mutex_lock(&em_pd_mutex); |
| |
| if (!dev->em_pd) { |
| mutex_unlock(&em_pd_mutex); |
| return -EINVAL; |
| } |
| pd = dev->em_pd; |
| |
| kref_get(&new_table->kref); |
| |
| old_table = pd->em_table; |
| rcu_assign_pointer(pd->em_table, new_table); |
| |
| em_cpufreq_update_efficiencies(dev, new_table->state); |
| |
| em_table_free(old_table); |
| |
| mutex_unlock(&em_pd_mutex); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(em_dev_update_perf_domain); |
| |
| static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd, |
| struct em_perf_state *table, |
| struct em_data_callback *cb, |
| unsigned long flags) |
| { |
| unsigned long power, freq, prev_freq = 0; |
| int nr_states = pd->nr_perf_states; |
| int i, ret; |
| |
| /* Build the list of performance states for this performance domain */ |
| for (i = 0, freq = 0; i < nr_states; i++, freq++) { |
| /* |
| * active_power() is a driver callback which ceils 'freq' to |
| * lowest performance state of 'dev' above 'freq' and updates |
| * 'power' and 'freq' accordingly. |
| */ |
| ret = cb->active_power(dev, &power, &freq); |
| if (ret) { |
| dev_err(dev, "EM: invalid perf. state: %d\n", |
| ret); |
| return -EINVAL; |
| } |
| |
| /* |
| * We expect the driver callback to increase the frequency for |
| * higher performance states. |
| */ |
| if (freq <= prev_freq) { |
| dev_err(dev, "EM: non-increasing freq: %lu\n", |
| freq); |
| return -EINVAL; |
| } |
| |
| /* |
| * The power returned by active_state() is expected to be |
| * positive and be in range. |
| */ |
| if (!power || power > EM_MAX_POWER) { |
| dev_err(dev, "EM: invalid power: %lu\n", |
| power); |
| return -EINVAL; |
| } |
| |
| table[i].power = power; |
| table[i].frequency = prev_freq = freq; |
| } |
| |
| em_init_performance(dev, pd, table, nr_states); |
| |
| ret = em_compute_costs(dev, table, cb, nr_states, flags); |
| if (ret) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int em_create_pd(struct device *dev, int nr_states, |
| struct em_data_callback *cb, cpumask_t *cpus, |
| unsigned long flags) |
| { |
| struct em_perf_table __rcu *em_table; |
| struct em_perf_domain *pd; |
| struct device *cpu_dev; |
| int cpu, ret, num_cpus; |
| |
| if (_is_cpu_device(dev)) { |
| num_cpus = cpumask_weight(cpus); |
| |
| /* Prevent max possible energy calculation to not overflow */ |
| if (num_cpus > EM_MAX_NUM_CPUS) { |
| dev_err(dev, "EM: too many CPUs, overflow possible\n"); |
| return -EINVAL; |
| } |
| |
| pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); |
| if (!pd) |
| return -ENOMEM; |
| |
| cpumask_copy(em_span_cpus(pd), cpus); |
| } else { |
| pd = kzalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return -ENOMEM; |
| } |
| |
| pd->nr_perf_states = nr_states; |
| |
| em_table = em_table_alloc(pd); |
| if (!em_table) |
| goto free_pd; |
| |
| ret = em_create_perf_table(dev, pd, em_table->state, cb, flags); |
| if (ret) |
| goto free_pd_table; |
| |
| rcu_assign_pointer(pd->em_table, em_table); |
| |
| if (_is_cpu_device(dev)) |
| for_each_cpu(cpu, cpus) { |
| cpu_dev = get_cpu_device(cpu); |
| cpu_dev->em_pd = pd; |
| } |
| |
| dev->em_pd = pd; |
| |
| return 0; |
| |
| free_pd_table: |
| kfree(em_table); |
| free_pd: |
| kfree(pd); |
| return -EINVAL; |
| } |
| |
| static void |
| em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table) |
| { |
| struct em_perf_domain *pd = dev->em_pd; |
| struct cpufreq_policy *policy; |
| int found = 0; |
| int i, cpu; |
| |
| if (!_is_cpu_device(dev)) |
| return; |
| |
| /* Try to get a CPU which is active and in this PD */ |
| cpu = cpumask_first_and(em_span_cpus(pd), cpu_active_mask); |
| if (cpu >= nr_cpu_ids) { |
| dev_warn(dev, "EM: No online CPU for CPUFreq policy\n"); |
| return; |
| } |
| |
| policy = cpufreq_cpu_get(cpu); |
| if (!policy) { |
| dev_warn(dev, "EM: Access to CPUFreq policy failed\n"); |
| return; |
| } |
| |
| for (i = 0; i < pd->nr_perf_states; i++) { |
| if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT)) |
| continue; |
| |
| if (!cpufreq_table_set_inefficient(policy, table[i].frequency)) |
| found++; |
| } |
| |
| cpufreq_cpu_put(policy); |
| |
| if (!found) |
| return; |
| |
| /* |
| * Efficiencies have been installed in CPUFreq, inefficient frequencies |
| * will be skipped. The EM can do the same. |
| */ |
| pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES; |
| } |
| |
| /** |
| * em_pd_get() - Return the performance domain for a device |
| * @dev : Device to find the performance domain for |
| * |
| * Returns the performance domain to which @dev belongs, or NULL if it doesn't |
| * exist. |
| */ |
| struct em_perf_domain *em_pd_get(struct device *dev) |
| { |
| if (IS_ERR_OR_NULL(dev)) |
| return NULL; |
| |
| return dev->em_pd; |
| } |
| EXPORT_SYMBOL_GPL(em_pd_get); |
| |
| /** |
| * em_cpu_get() - Return the performance domain for a CPU |
| * @cpu : CPU to find the performance domain for |
| * |
| * Returns the performance domain to which @cpu belongs, or NULL if it doesn't |
| * exist. |
| */ |
| struct em_perf_domain *em_cpu_get(int cpu) |
| { |
| struct device *cpu_dev; |
| |
| cpu_dev = get_cpu_device(cpu); |
| if (!cpu_dev) |
| return NULL; |
| |
| return em_pd_get(cpu_dev); |
| } |
| EXPORT_SYMBOL_GPL(em_cpu_get); |
| |
| /** |
| * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device |
| * @dev : Device for which the EM is to register |
| * @nr_states : Number of performance states to register |
| * @cb : Callback functions providing the data of the Energy Model |
| * @cpus : Pointer to cpumask_t, which in case of a CPU device is |
| * obligatory. It can be taken from i.e. 'policy->cpus'. For other |
| * type of devices this should be set to NULL. |
| * @microwatts : Flag indicating that the power values are in micro-Watts or |
| * in some other scale. It must be set properly. |
| * |
| * Create Energy Model tables for a performance domain using the callbacks |
| * defined in cb. |
| * |
| * The @microwatts is important to set with correct value. Some kernel |
| * sub-systems might rely on this flag and check if all devices in the EM are |
| * using the same scale. |
| * |
| * If multiple clients register the same performance domain, all but the first |
| * registration will be ignored. |
| * |
| * Return 0 on success |
| */ |
| int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, |
| struct em_data_callback *cb, cpumask_t *cpus, |
| bool microwatts) |
| { |
| unsigned long cap, prev_cap = 0; |
| unsigned long flags = 0; |
| int cpu, ret; |
| |
| if (!dev || !nr_states || !cb) |
| return -EINVAL; |
| |
| /* |
| * Use a mutex to serialize the registration of performance domains and |
| * let the driver-defined callback functions sleep. |
| */ |
| mutex_lock(&em_pd_mutex); |
| |
| if (dev->em_pd) { |
| ret = -EEXIST; |
| goto unlock; |
| } |
| |
| if (_is_cpu_device(dev)) { |
| if (!cpus) { |
| dev_err(dev, "EM: invalid CPU mask\n"); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| for_each_cpu(cpu, cpus) { |
| if (em_cpu_get(cpu)) { |
| dev_err(dev, "EM: exists for CPU%d\n", cpu); |
| ret = -EEXIST; |
| goto unlock; |
| } |
| /* |
| * All CPUs of a domain must have the same |
| * micro-architecture since they all share the same |
| * table. |
| */ |
| cap = arch_scale_cpu_capacity(cpu); |
| if (prev_cap && prev_cap != cap) { |
| dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n", |
| cpumask_pr_args(cpus)); |
| |
| ret = -EINVAL; |
| goto unlock; |
| } |
| prev_cap = cap; |
| } |
| } |
| |
| if (microwatts) |
| flags |= EM_PERF_DOMAIN_MICROWATTS; |
| else if (cb->get_cost) |
| flags |= EM_PERF_DOMAIN_ARTIFICIAL; |
| |
| /* |
| * EM only supports uW (exception is artificial EM). |
| * Therefore, check and force the drivers to provide |
| * power in uW. |
| */ |
| if (!microwatts && !(flags & EM_PERF_DOMAIN_ARTIFICIAL)) { |
| dev_err(dev, "EM: only supports uW power values\n"); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| ret = em_create_pd(dev, nr_states, cb, cpus, flags); |
| if (ret) |
| goto unlock; |
| |
| dev->em_pd->flags |= flags; |
| |
| em_cpufreq_update_efficiencies(dev, dev->em_pd->em_table->state); |
| |
| em_debug_create_pd(dev); |
| dev_info(dev, "EM: created perf domain\n"); |
| |
| unlock: |
| mutex_unlock(&em_pd_mutex); |
| |
| if (_is_cpu_device(dev)) |
| em_check_capacity_update(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(em_dev_register_perf_domain); |
| |
| /** |
| * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device |
| * @dev : Device for which the EM is registered |
| * |
| * Unregister the EM for the specified @dev (but not a CPU device). |
| */ |
| void em_dev_unregister_perf_domain(struct device *dev) |
| { |
| if (IS_ERR_OR_NULL(dev) || !dev->em_pd) |
| return; |
| |
| if (_is_cpu_device(dev)) |
| return; |
| |
| /* |
| * The mutex separates all register/unregister requests and protects |
| * from potential clean-up/setup issues in the debugfs directories. |
| * The debugfs directory name is the same as device's name. |
| */ |
| mutex_lock(&em_pd_mutex); |
| em_debug_remove_pd(dev); |
| |
| em_table_free(dev->em_pd->em_table); |
| |
| kfree(dev->em_pd); |
| dev->em_pd = NULL; |
| mutex_unlock(&em_pd_mutex); |
| } |
| EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain); |
| |
| static struct em_perf_table __rcu *em_table_dup(struct em_perf_domain *pd) |
| { |
| struct em_perf_table __rcu *em_table; |
| struct em_perf_state *ps, *new_ps; |
| int ps_size; |
| |
| em_table = em_table_alloc(pd); |
| if (!em_table) |
| return NULL; |
| |
| new_ps = em_table->state; |
| |
| rcu_read_lock(); |
| ps = em_perf_state_from_pd(pd); |
| /* Initialize data based on old table */ |
| ps_size = sizeof(struct em_perf_state) * pd->nr_perf_states; |
| memcpy(new_ps, ps, ps_size); |
| |
| rcu_read_unlock(); |
| |
| return em_table; |
| } |
| |
| static int em_recalc_and_update(struct device *dev, struct em_perf_domain *pd, |
| struct em_perf_table __rcu *em_table) |
| { |
| int ret; |
| |
| ret = em_compute_costs(dev, em_table->state, NULL, pd->nr_perf_states, |
| pd->flags); |
| if (ret) |
| goto free_em_table; |
| |
| ret = em_dev_update_perf_domain(dev, em_table); |
| if (ret) |
| goto free_em_table; |
| |
| /* |
| * This is one-time-update, so give up the ownership in this updater. |
| * The EM framework has incremented the usage counter and from now |
| * will keep the reference (then free the memory when needed). |
| */ |
| free_em_table: |
| em_table_free(em_table); |
| return ret; |
| } |
| |
| /* |
| * Adjustment of CPU performance values after boot, when all CPUs capacites |
| * are correctly calculated. |
| */ |
| static void em_adjust_new_capacity(struct device *dev, |
| struct em_perf_domain *pd, |
| u64 max_cap) |
| { |
| struct em_perf_table __rcu *em_table; |
| |
| em_table = em_table_dup(pd); |
| if (!em_table) { |
| dev_warn(dev, "EM: allocation failed\n"); |
| return; |
| } |
| |
| em_init_performance(dev, pd, em_table->state, pd->nr_perf_states); |
| |
| em_recalc_and_update(dev, pd, em_table); |
| } |
| |
| static void em_check_capacity_update(void) |
| { |
| cpumask_var_t cpu_done_mask; |
| struct em_perf_state *table; |
| struct em_perf_domain *pd; |
| unsigned long cpu_capacity; |
| int cpu; |
| |
| if (!zalloc_cpumask_var(&cpu_done_mask, GFP_KERNEL)) { |
| pr_warn("no free memory\n"); |
| return; |
| } |
| |
| /* Check if CPUs capacity has changed than update EM */ |
| for_each_possible_cpu(cpu) { |
| struct cpufreq_policy *policy; |
| unsigned long em_max_perf; |
| struct device *dev; |
| |
| if (cpumask_test_cpu(cpu, cpu_done_mask)) |
| continue; |
| |
| policy = cpufreq_cpu_get(cpu); |
| if (!policy) { |
| pr_debug("Accessing cpu%d policy failed\n", cpu); |
| schedule_delayed_work(&em_update_work, |
| msecs_to_jiffies(1000)); |
| break; |
| } |
| cpufreq_cpu_put(policy); |
| |
| pd = em_cpu_get(cpu); |
| if (!pd || em_is_artificial(pd)) |
| continue; |
| |
| cpumask_or(cpu_done_mask, cpu_done_mask, |
| em_span_cpus(pd)); |
| |
| cpu_capacity = arch_scale_cpu_capacity(cpu); |
| |
| rcu_read_lock(); |
| table = em_perf_state_from_pd(pd); |
| em_max_perf = table[pd->nr_perf_states - 1].performance; |
| rcu_read_unlock(); |
| |
| /* |
| * Check if the CPU capacity has been adjusted during boot |
| * and trigger the update for new performance values. |
| */ |
| if (em_max_perf == cpu_capacity) |
| continue; |
| |
| pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n", |
| cpu, cpu_capacity, em_max_perf); |
| |
| dev = get_cpu_device(cpu); |
| em_adjust_new_capacity(dev, pd, cpu_capacity); |
| } |
| |
| free_cpumask_var(cpu_done_mask); |
| } |
| |
| static void em_update_workfn(struct work_struct *work) |
| { |
| em_check_capacity_update(); |
| } |
| |
| /** |
| * em_dev_update_chip_binning() - Update Energy Model after the new voltage |
| * information is present in the OPPs. |
| * @dev : Device for which the Energy Model has to be updated. |
| * |
| * This function allows to update easily the EM with new values available in |
| * the OPP framework and DT. It can be used after the chip has been properly |
| * verified by device drivers and the voltages adjusted for the 'chip binning'. |
| */ |
| int em_dev_update_chip_binning(struct device *dev) |
| { |
| struct em_perf_table __rcu *em_table; |
| struct em_perf_domain *pd; |
| int i, ret; |
| |
| if (IS_ERR_OR_NULL(dev)) |
| return -EINVAL; |
| |
| pd = em_pd_get(dev); |
| if (!pd) { |
| dev_warn(dev, "Couldn't find Energy Model\n"); |
| return -EINVAL; |
| } |
| |
| em_table = em_table_dup(pd); |
| if (!em_table) { |
| dev_warn(dev, "EM: allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* Update power values which might change due to new voltage in OPPs */ |
| for (i = 0; i < pd->nr_perf_states; i++) { |
| unsigned long freq = em_table->state[i].frequency; |
| unsigned long power; |
| |
| ret = dev_pm_opp_calc_power(dev, &power, &freq); |
| if (ret) { |
| em_table_free(em_table); |
| return ret; |
| } |
| |
| em_table->state[i].power = power; |
| } |
| |
| return em_recalc_and_update(dev, pd, em_table); |
| } |
| EXPORT_SYMBOL_GPL(em_dev_update_chip_binning); |