| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2010-2011 Picochip Ltd., Jamie Iles |
| * https://www.picochip.com |
| * |
| * This file implements a driver for the Synopsys DesignWare watchdog device |
| * in the many subsystems. The watchdog has 16 different timeout periods |
| * and these are a function of the input clock frequency. |
| * |
| * The DesignWare watchdog cannot be stopped once it has been started so we |
| * do not implement a stop function. The watchdog core will continue to send |
| * heartbeat requests after the watchdog device has been closed. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/limits.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm.h> |
| #include <linux/reset.h> |
| #include <linux/watchdog.h> |
| |
| #define WDOG_CONTROL_REG_OFFSET 0x00 |
| #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01 |
| #define WDOG_CONTROL_REG_RESP_MODE_MASK 0x02 |
| #define WDOG_TIMEOUT_RANGE_REG_OFFSET 0x04 |
| #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT 4 |
| #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08 |
| #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c |
| #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76 |
| #define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10 |
| #define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14 |
| #define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4 |
| #define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8 |
| #define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec |
| #define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0 |
| #define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4 |
| #define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6) |
| #define WDOG_COMP_VERSION_REG_OFFSET 0xf8 |
| #define WDOG_COMP_TYPE_REG_OFFSET 0xfc |
| |
| /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */ |
| #define DW_WDT_NUM_TOPS 16 |
| #define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx)) |
| |
| #define DW_WDT_DEFAULT_SECONDS 30 |
| |
| static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = { |
| DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2), |
| DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5), |
| DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8), |
| DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11), |
| DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14), |
| DW_WDT_FIX_TOP(15) |
| }; |
| |
| static bool nowayout = WATCHDOG_NOWAYOUT; |
| module_param(nowayout, bool, 0); |
| MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started " |
| "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); |
| |
| enum dw_wdt_rmod { |
| DW_WDT_RMOD_RESET = 1, |
| DW_WDT_RMOD_IRQ = 2 |
| }; |
| |
| struct dw_wdt_timeout { |
| u32 top_val; |
| unsigned int sec; |
| unsigned int msec; |
| }; |
| |
| struct dw_wdt { |
| void __iomem *regs; |
| struct clk *clk; |
| struct clk *pclk; |
| unsigned long rate; |
| enum dw_wdt_rmod rmod; |
| struct dw_wdt_timeout timeouts[DW_WDT_NUM_TOPS]; |
| struct watchdog_device wdd; |
| struct reset_control *rst; |
| /* Save/restore */ |
| u32 control; |
| u32 timeout; |
| |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *dbgfs_dir; |
| #endif |
| }; |
| |
| #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd) |
| |
| static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt) |
| { |
| return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) & |
| WDOG_CONTROL_REG_WDT_EN_MASK; |
| } |
| |
| static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod) |
| { |
| u32 val; |
| |
| val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| if (rmod == DW_WDT_RMOD_IRQ) |
| val |= WDOG_CONTROL_REG_RESP_MODE_MASK; |
| else |
| val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; |
| writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| |
| dw_wdt->rmod = rmod; |
| } |
| |
| static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt, |
| unsigned int timeout, u32 *top_val) |
| { |
| int idx; |
| |
| /* |
| * Find a TOP with timeout greater or equal to the requested number. |
| * Note we'll select a TOP with maximum timeout if the requested |
| * timeout couldn't be reached. |
| */ |
| for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { |
| if (dw_wdt->timeouts[idx].sec >= timeout) |
| break; |
| } |
| |
| if (idx == DW_WDT_NUM_TOPS) |
| --idx; |
| |
| *top_val = dw_wdt->timeouts[idx].top_val; |
| |
| return dw_wdt->timeouts[idx].sec; |
| } |
| |
| static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt) |
| { |
| int idx; |
| |
| /* |
| * We'll find a timeout greater or equal to one second anyway because |
| * the driver probe would have failed if there was none. |
| */ |
| for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { |
| if (dw_wdt->timeouts[idx].sec) |
| break; |
| } |
| |
| return dw_wdt->timeouts[idx].sec; |
| } |
| |
| static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt) |
| { |
| struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1]; |
| u64 msec; |
| |
| msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec; |
| |
| return msec < UINT_MAX ? msec : UINT_MAX; |
| } |
| |
| static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt) |
| { |
| int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF; |
| int idx; |
| |
| for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { |
| if (dw_wdt->timeouts[idx].top_val == top_val) |
| break; |
| } |
| |
| /* |
| * In IRQ mode due to the two stages counter, the actual timeout is |
| * twice greater than the TOP setting. |
| */ |
| return dw_wdt->timeouts[idx].sec * dw_wdt->rmod; |
| } |
| |
| static int dw_wdt_ping(struct watchdog_device *wdd) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| |
| writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs + |
| WDOG_COUNTER_RESTART_REG_OFFSET); |
| |
| return 0; |
| } |
| |
| static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| unsigned int timeout; |
| u32 top_val; |
| |
| /* |
| * Note IRQ mode being enabled means having a non-zero pre-timeout |
| * setup. In this case we try to find a TOP as close to the half of the |
| * requested timeout as possible since DW Watchdog IRQ mode is designed |
| * in two stages way - first timeout rises the pre-timeout interrupt, |
| * second timeout performs the system reset. So basically the effective |
| * watchdog-caused reset happens after two watchdog TOPs elapsed. |
| */ |
| timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod), |
| &top_val); |
| if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) |
| wdd->pretimeout = timeout; |
| else |
| wdd->pretimeout = 0; |
| |
| /* |
| * Set the new value in the watchdog. Some versions of dw_wdt |
| * have TOPINIT in the TIMEOUT_RANGE register (as per |
| * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1). On those we |
| * effectively get a pat of the watchdog right here. |
| */ |
| writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT, |
| dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); |
| |
| /* Kick new TOP value into the watchdog counter if activated. */ |
| if (watchdog_active(wdd)) |
| dw_wdt_ping(wdd); |
| |
| /* |
| * In case users set bigger timeout value than HW can support, |
| * kernel(watchdog_dev.c) helps to feed watchdog before |
| * wdd->max_hw_heartbeat_ms |
| */ |
| if (top_s * 1000 <= wdd->max_hw_heartbeat_ms) |
| wdd->timeout = timeout * dw_wdt->rmod; |
| else |
| wdd->timeout = top_s; |
| |
| return 0; |
| } |
| |
| static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| |
| /* |
| * We ignore actual value of the timeout passed from user-space |
| * using it as a flag whether the pretimeout functionality is intended |
| * to be activated. |
| */ |
| dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET); |
| dw_wdt_set_timeout(wdd, wdd->timeout); |
| |
| return 0; |
| } |
| |
| static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt) |
| { |
| u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| |
| /* Disable/enable interrupt mode depending on the RMOD flag. */ |
| if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) |
| val |= WDOG_CONTROL_REG_RESP_MODE_MASK; |
| else |
| val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; |
| /* Enable watchdog. */ |
| val |= WDOG_CONTROL_REG_WDT_EN_MASK; |
| writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| } |
| |
| static int dw_wdt_start(struct watchdog_device *wdd) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| |
| dw_wdt_set_timeout(wdd, wdd->timeout); |
| dw_wdt_ping(&dw_wdt->wdd); |
| dw_wdt_arm_system_reset(dw_wdt); |
| |
| return 0; |
| } |
| |
| static int dw_wdt_stop(struct watchdog_device *wdd) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| |
| if (!dw_wdt->rst) { |
| set_bit(WDOG_HW_RUNNING, &wdd->status); |
| return 0; |
| } |
| |
| reset_control_assert(dw_wdt->rst); |
| reset_control_deassert(dw_wdt->rst); |
| |
| return 0; |
| } |
| |
| static int dw_wdt_restart(struct watchdog_device *wdd, |
| unsigned long action, void *data) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| |
| writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); |
| dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); |
| if (dw_wdt_is_enabled(dw_wdt)) |
| writel(WDOG_COUNTER_RESTART_KICK_VALUE, |
| dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET); |
| else |
| dw_wdt_arm_system_reset(dw_wdt); |
| |
| /* wait for reset to assert... */ |
| mdelay(500); |
| |
| return 0; |
| } |
| |
| static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd) |
| { |
| struct dw_wdt *dw_wdt = to_dw_wdt(wdd); |
| unsigned int sec; |
| u32 val; |
| |
| val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET); |
| sec = val / dw_wdt->rate; |
| |
| if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) { |
| val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); |
| if (!val) |
| sec += wdd->pretimeout; |
| } |
| |
| return sec; |
| } |
| |
| static const struct watchdog_info dw_wdt_ident = { |
| .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | |
| WDIOF_MAGICCLOSE, |
| .identity = "Synopsys DesignWare Watchdog", |
| }; |
| |
| static const struct watchdog_info dw_wdt_pt_ident = { |
| .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | |
| WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE, |
| .identity = "Synopsys DesignWare Watchdog", |
| }; |
| |
| static const struct watchdog_ops dw_wdt_ops = { |
| .owner = THIS_MODULE, |
| .start = dw_wdt_start, |
| .stop = dw_wdt_stop, |
| .ping = dw_wdt_ping, |
| .set_timeout = dw_wdt_set_timeout, |
| .set_pretimeout = dw_wdt_set_pretimeout, |
| .get_timeleft = dw_wdt_get_timeleft, |
| .restart = dw_wdt_restart, |
| }; |
| |
| static irqreturn_t dw_wdt_irq(int irq, void *devid) |
| { |
| struct dw_wdt *dw_wdt = devid; |
| u32 val; |
| |
| /* |
| * We don't clear the IRQ status. It's supposed to be done by the |
| * following ping operations. |
| */ |
| val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); |
| if (!val) |
| return IRQ_NONE; |
| |
| watchdog_notify_pretimeout(&dw_wdt->wdd); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int dw_wdt_suspend(struct device *dev) |
| { |
| struct dw_wdt *dw_wdt = dev_get_drvdata(dev); |
| |
| dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); |
| |
| clk_disable_unprepare(dw_wdt->pclk); |
| clk_disable_unprepare(dw_wdt->clk); |
| |
| return 0; |
| } |
| |
| static int dw_wdt_resume(struct device *dev) |
| { |
| struct dw_wdt *dw_wdt = dev_get_drvdata(dev); |
| int err = clk_prepare_enable(dw_wdt->clk); |
| |
| if (err) |
| return err; |
| |
| err = clk_prepare_enable(dw_wdt->pclk); |
| if (err) { |
| clk_disable_unprepare(dw_wdt->clk); |
| return err; |
| } |
| |
| writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); |
| writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); |
| |
| dw_wdt_ping(&dw_wdt->wdd); |
| |
| return 0; |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume); |
| |
| /* |
| * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the |
| * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers |
| * depending on the system engineer imagination. The next method handles the |
| * passed TOPs array to pre-calculate the effective timeouts and to sort the |
| * TOP items out in the ascending order with respect to the timeouts. |
| */ |
| |
| static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops) |
| { |
| struct dw_wdt_timeout tout, *dst; |
| int val, tidx; |
| u64 msec; |
| |
| /* |
| * We walk over the passed TOPs array and calculate corresponding |
| * timeouts in seconds and milliseconds. The milliseconds granularity |
| * is needed to distinguish the TOPs with very close timeouts and to |
| * set the watchdog max heartbeat setting further. |
| */ |
| for (val = 0; val < DW_WDT_NUM_TOPS; ++val) { |
| tout.top_val = val; |
| tout.sec = tops[val] / dw_wdt->rate; |
| msec = (u64)tops[val] * MSEC_PER_SEC; |
| do_div(msec, dw_wdt->rate); |
| tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC); |
| |
| /* |
| * Find a suitable place for the current TOP in the timeouts |
| * array so that the list is remained in the ascending order. |
| */ |
| for (tidx = 0; tidx < val; ++tidx) { |
| dst = &dw_wdt->timeouts[tidx]; |
| if (tout.sec > dst->sec || (tout.sec == dst->sec && |
| tout.msec >= dst->msec)) |
| continue; |
| else |
| swap(*dst, tout); |
| } |
| |
| dw_wdt->timeouts[val] = tout; |
| } |
| } |
| |
| static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev) |
| { |
| u32 data, of_tops[DW_WDT_NUM_TOPS]; |
| const u32 *tops; |
| int ret; |
| |
| /* |
| * Retrieve custom or fixed counter values depending on the |
| * WDT_USE_FIX_TOP flag found in the component specific parameters |
| * #1 register. |
| */ |
| data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET); |
| if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) { |
| tops = dw_wdt_fix_tops; |
| } else { |
| ret = of_property_read_variable_u32_array(dev_of_node(dev), |
| "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS, |
| DW_WDT_NUM_TOPS); |
| if (ret < 0) { |
| dev_warn(dev, "No valid TOPs array specified\n"); |
| tops = dw_wdt_fix_tops; |
| } else { |
| tops = of_tops; |
| } |
| } |
| |
| /* Convert the specified TOPs into an array of watchdog timeouts. */ |
| dw_wdt_handle_tops(dw_wdt, tops); |
| if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) { |
| dev_err(dev, "No any valid TOP detected\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| #define DW_WDT_DBGFS_REG(_name, _off) \ |
| { \ |
| .name = _name, \ |
| .offset = _off \ |
| } |
| |
| static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = { |
| DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET), |
| DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET), |
| DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET), |
| DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET), |
| DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET), |
| DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET), |
| DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET), |
| DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET), |
| DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET), |
| DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET), |
| DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET), |
| DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET) |
| }; |
| |
| static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) |
| { |
| struct device *dev = dw_wdt->wdd.parent; |
| struct debugfs_regset32 *regset; |
| |
| regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); |
| if (!regset) |
| return; |
| |
| regset->regs = dw_wdt_dbgfs_regs; |
| regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs); |
| regset->base = dw_wdt->regs; |
| |
| dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL); |
| |
| debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset); |
| } |
| |
| static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) |
| { |
| debugfs_remove_recursive(dw_wdt->dbgfs_dir); |
| } |
| |
| #else /* !CONFIG_DEBUG_FS */ |
| |
| static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {} |
| static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {} |
| |
| #endif /* !CONFIG_DEBUG_FS */ |
| |
| static int dw_wdt_drv_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct watchdog_device *wdd; |
| struct dw_wdt *dw_wdt; |
| int ret; |
| |
| dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL); |
| if (!dw_wdt) |
| return -ENOMEM; |
| |
| dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(dw_wdt->regs)) |
| return PTR_ERR(dw_wdt->regs); |
| |
| /* |
| * Try to request the watchdog dedicated timer clock source. It must |
| * be supplied if asynchronous mode is enabled. Otherwise fallback |
| * to the common timer/bus clocks configuration, in which the very |
| * first found clock supply both timer and APB signals. |
| */ |
| dw_wdt->clk = devm_clk_get(dev, "tclk"); |
| if (IS_ERR(dw_wdt->clk)) { |
| dw_wdt->clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(dw_wdt->clk)) |
| return PTR_ERR(dw_wdt->clk); |
| } |
| |
| ret = clk_prepare_enable(dw_wdt->clk); |
| if (ret) |
| return ret; |
| |
| dw_wdt->rate = clk_get_rate(dw_wdt->clk); |
| if (dw_wdt->rate == 0) { |
| ret = -EINVAL; |
| goto out_disable_clk; |
| } |
| |
| /* |
| * Request APB clock if device is configured with async clocks mode. |
| * In this case both tclk and pclk clocks are supposed to be specified. |
| * Alas we can't know for sure whether async mode was really activated, |
| * so the pclk phandle reference is left optional. If it couldn't be |
| * found we consider the device configured in synchronous clocks mode. |
| */ |
| dw_wdt->pclk = devm_clk_get_optional(dev, "pclk"); |
| if (IS_ERR(dw_wdt->pclk)) { |
| ret = PTR_ERR(dw_wdt->pclk); |
| goto out_disable_clk; |
| } |
| |
| ret = clk_prepare_enable(dw_wdt->pclk); |
| if (ret) |
| goto out_disable_clk; |
| |
| dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); |
| if (IS_ERR(dw_wdt->rst)) { |
| ret = PTR_ERR(dw_wdt->rst); |
| goto out_disable_pclk; |
| } |
| |
| /* Enable normal reset without pre-timeout by default. */ |
| dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); |
| |
| /* |
| * Pre-timeout IRQ is optional, since some hardware may lack support |
| * of it. Note we must request rising-edge IRQ, since the lane is left |
| * pending either until the next watchdog kick event or up to the |
| * system reset. |
| */ |
| ret = platform_get_irq_optional(pdev, 0); |
| if (ret > 0) { |
| ret = devm_request_irq(dev, ret, dw_wdt_irq, |
| IRQF_SHARED | IRQF_TRIGGER_RISING, |
| pdev->name, dw_wdt); |
| if (ret) |
| goto out_disable_pclk; |
| |
| dw_wdt->wdd.info = &dw_wdt_pt_ident; |
| } else { |
| if (ret == -EPROBE_DEFER) |
| goto out_disable_pclk; |
| |
| dw_wdt->wdd.info = &dw_wdt_ident; |
| } |
| |
| reset_control_deassert(dw_wdt->rst); |
| |
| ret = dw_wdt_init_timeouts(dw_wdt, dev); |
| if (ret) |
| goto out_assert_rst; |
| |
| wdd = &dw_wdt->wdd; |
| wdd->ops = &dw_wdt_ops; |
| wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt); |
| wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt); |
| wdd->parent = dev; |
| |
| watchdog_set_drvdata(wdd, dw_wdt); |
| watchdog_set_nowayout(wdd, nowayout); |
| watchdog_init_timeout(wdd, 0, dev); |
| |
| /* |
| * If the watchdog is already running, use its already configured |
| * timeout. Otherwise use the default or the value provided through |
| * devicetree. |
| */ |
| if (dw_wdt_is_enabled(dw_wdt)) { |
| wdd->timeout = dw_wdt_get_timeout(dw_wdt); |
| set_bit(WDOG_HW_RUNNING, &wdd->status); |
| } else { |
| wdd->timeout = DW_WDT_DEFAULT_SECONDS; |
| watchdog_init_timeout(wdd, 0, dev); |
| } |
| |
| platform_set_drvdata(pdev, dw_wdt); |
| |
| watchdog_set_restart_priority(wdd, 128); |
| |
| ret = watchdog_register_device(wdd); |
| if (ret) |
| goto out_assert_rst; |
| |
| dw_wdt_dbgfs_init(dw_wdt); |
| |
| return 0; |
| |
| out_assert_rst: |
| reset_control_assert(dw_wdt->rst); |
| |
| out_disable_pclk: |
| clk_disable_unprepare(dw_wdt->pclk); |
| |
| out_disable_clk: |
| clk_disable_unprepare(dw_wdt->clk); |
| return ret; |
| } |
| |
| static int dw_wdt_drv_remove(struct platform_device *pdev) |
| { |
| struct dw_wdt *dw_wdt = platform_get_drvdata(pdev); |
| |
| dw_wdt_dbgfs_clear(dw_wdt); |
| |
| watchdog_unregister_device(&dw_wdt->wdd); |
| reset_control_assert(dw_wdt->rst); |
| clk_disable_unprepare(dw_wdt->pclk); |
| clk_disable_unprepare(dw_wdt->clk); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id dw_wdt_of_match[] = { |
| { .compatible = "snps,dw-wdt", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, dw_wdt_of_match); |
| #endif |
| |
| static struct platform_driver dw_wdt_driver = { |
| .probe = dw_wdt_drv_probe, |
| .remove = dw_wdt_drv_remove, |
| .driver = { |
| .name = "dw_wdt", |
| .of_match_table = of_match_ptr(dw_wdt_of_match), |
| .pm = pm_sleep_ptr(&dw_wdt_pm_ops), |
| }, |
| }; |
| |
| module_platform_driver(dw_wdt_driver); |
| |
| MODULE_AUTHOR("Jamie Iles"); |
| MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver"); |
| MODULE_LICENSE("GPL"); |