| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2008 Advanced Micro Devices, Inc. |
| * |
| * Author: Joerg Roedel <joerg.roedel@amd.com> |
| */ |
| |
| #define pr_fmt(fmt) "DMA-API: " fmt |
| |
| #include <linux/sched/task_stack.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/sched/task.h> |
| #include <linux/stacktrace.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <linux/debugfs.h> |
| #include <linux/uaccess.h> |
| #include <linux/export.h> |
| #include <linux/device.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/ctype.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <asm/sections.h> |
| #include "debug.h" |
| |
| #define HASH_SIZE 16384ULL |
| #define HASH_FN_SHIFT 13 |
| #define HASH_FN_MASK (HASH_SIZE - 1) |
| |
| #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) |
| /* If the pool runs out, add this many new entries at once */ |
| #define DMA_DEBUG_DYNAMIC_ENTRIES (PAGE_SIZE / sizeof(struct dma_debug_entry)) |
| |
| enum { |
| dma_debug_single, |
| dma_debug_sg, |
| dma_debug_coherent, |
| dma_debug_resource, |
| }; |
| |
| enum map_err_types { |
| MAP_ERR_CHECK_NOT_APPLICABLE, |
| MAP_ERR_NOT_CHECKED, |
| MAP_ERR_CHECKED, |
| }; |
| |
| #define DMA_DEBUG_STACKTRACE_ENTRIES 5 |
| |
| /** |
| * struct dma_debug_entry - track a dma_map* or dma_alloc_coherent mapping |
| * @list: node on pre-allocated free_entries list |
| * @dev: 'dev' argument to dma_map_{page|single|sg} or dma_alloc_coherent |
| * @size: length of the mapping |
| * @type: single, page, sg, coherent |
| * @direction: enum dma_data_direction |
| * @sg_call_ents: 'nents' from dma_map_sg |
| * @sg_mapped_ents: 'mapped_ents' from dma_map_sg |
| * @pfn: page frame of the start address |
| * @offset: offset of mapping relative to pfn |
| * @map_err_type: track whether dma_mapping_error() was checked |
| * @stacktrace: support backtraces when a violation is detected |
| */ |
| struct dma_debug_entry { |
| struct list_head list; |
| struct device *dev; |
| u64 dev_addr; |
| u64 size; |
| int type; |
| int direction; |
| int sg_call_ents; |
| int sg_mapped_ents; |
| unsigned long pfn; |
| size_t offset; |
| enum map_err_types map_err_type; |
| #ifdef CONFIG_STACKTRACE |
| unsigned int stack_len; |
| unsigned long stack_entries[DMA_DEBUG_STACKTRACE_ENTRIES]; |
| #endif |
| } ____cacheline_aligned_in_smp; |
| |
| typedef bool (*match_fn)(struct dma_debug_entry *, struct dma_debug_entry *); |
| |
| struct hash_bucket { |
| struct list_head list; |
| spinlock_t lock; |
| }; |
| |
| /* Hash list to save the allocated dma addresses */ |
| static struct hash_bucket dma_entry_hash[HASH_SIZE]; |
| /* List of pre-allocated dma_debug_entry's */ |
| static LIST_HEAD(free_entries); |
| /* Lock for the list above */ |
| static DEFINE_SPINLOCK(free_entries_lock); |
| |
| /* Global disable flag - will be set in case of an error */ |
| static bool global_disable __read_mostly; |
| |
| /* Early initialization disable flag, set at the end of dma_debug_init */ |
| static bool dma_debug_initialized __read_mostly; |
| |
| static inline bool dma_debug_disabled(void) |
| { |
| return global_disable || !dma_debug_initialized; |
| } |
| |
| /* Global error count */ |
| static u32 error_count; |
| |
| /* Global error show enable*/ |
| static u32 show_all_errors __read_mostly; |
| /* Number of errors to show */ |
| static u32 show_num_errors = 1; |
| |
| static u32 num_free_entries; |
| static u32 min_free_entries; |
| static u32 nr_total_entries; |
| |
| /* number of preallocated entries requested by kernel cmdline */ |
| static u32 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; |
| |
| /* per-driver filter related state */ |
| |
| #define NAME_MAX_LEN 64 |
| |
| static char current_driver_name[NAME_MAX_LEN] __read_mostly; |
| static struct device_driver *current_driver __read_mostly; |
| |
| static DEFINE_RWLOCK(driver_name_lock); |
| |
| static const char *const maperr2str[] = { |
| [MAP_ERR_CHECK_NOT_APPLICABLE] = "dma map error check not applicable", |
| [MAP_ERR_NOT_CHECKED] = "dma map error not checked", |
| [MAP_ERR_CHECKED] = "dma map error checked", |
| }; |
| |
| static const char *type2name[] = { |
| [dma_debug_single] = "single", |
| [dma_debug_sg] = "scather-gather", |
| [dma_debug_coherent] = "coherent", |
| [dma_debug_resource] = "resource", |
| }; |
| |
| static const char *dir2name[] = { |
| [DMA_BIDIRECTIONAL] = "DMA_BIDIRECTIONAL", |
| [DMA_TO_DEVICE] = "DMA_TO_DEVICE", |
| [DMA_FROM_DEVICE] = "DMA_FROM_DEVICE", |
| [DMA_NONE] = "DMA_NONE", |
| }; |
| |
| /* |
| * The access to some variables in this macro is racy. We can't use atomic_t |
| * here because all these variables are exported to debugfs. Some of them even |
| * writeable. This is also the reason why a lock won't help much. But anyway, |
| * the races are no big deal. Here is why: |
| * |
| * error_count: the addition is racy, but the worst thing that can happen is |
| * that we don't count some errors |
| * show_num_errors: the subtraction is racy. Also no big deal because in |
| * worst case this will result in one warning more in the |
| * system log than the user configured. This variable is |
| * writeable via debugfs. |
| */ |
| static inline void dump_entry_trace(struct dma_debug_entry *entry) |
| { |
| #ifdef CONFIG_STACKTRACE |
| if (entry) { |
| pr_warn("Mapped at:\n"); |
| stack_trace_print(entry->stack_entries, entry->stack_len, 0); |
| } |
| #endif |
| } |
| |
| static bool driver_filter(struct device *dev) |
| { |
| struct device_driver *drv; |
| unsigned long flags; |
| bool ret; |
| |
| /* driver filter off */ |
| if (likely(!current_driver_name[0])) |
| return true; |
| |
| /* driver filter on and initialized */ |
| if (current_driver && dev && dev->driver == current_driver) |
| return true; |
| |
| /* driver filter on, but we can't filter on a NULL device... */ |
| if (!dev) |
| return false; |
| |
| if (current_driver || !current_driver_name[0]) |
| return false; |
| |
| /* driver filter on but not yet initialized */ |
| drv = dev->driver; |
| if (!drv) |
| return false; |
| |
| /* lock to protect against change of current_driver_name */ |
| read_lock_irqsave(&driver_name_lock, flags); |
| |
| ret = false; |
| if (drv->name && |
| strncmp(current_driver_name, drv->name, NAME_MAX_LEN - 1) == 0) { |
| current_driver = drv; |
| ret = true; |
| } |
| |
| read_unlock_irqrestore(&driver_name_lock, flags); |
| |
| return ret; |
| } |
| |
| #define err_printk(dev, entry, format, arg...) do { \ |
| error_count += 1; \ |
| if (driver_filter(dev) && \ |
| (show_all_errors || show_num_errors > 0)) { \ |
| WARN(1, pr_fmt("%s %s: ") format, \ |
| dev ? dev_driver_string(dev) : "NULL", \ |
| dev ? dev_name(dev) : "NULL", ## arg); \ |
| dump_entry_trace(entry); \ |
| } \ |
| if (!show_all_errors && show_num_errors > 0) \ |
| show_num_errors -= 1; \ |
| } while (0); |
| |
| /* |
| * Hash related functions |
| * |
| * Every DMA-API request is saved into a struct dma_debug_entry. To |
| * have quick access to these structs they are stored into a hash. |
| */ |
| static int hash_fn(struct dma_debug_entry *entry) |
| { |
| /* |
| * Hash function is based on the dma address. |
| * We use bits 20-27 here as the index into the hash |
| */ |
| return (entry->dev_addr >> HASH_FN_SHIFT) & HASH_FN_MASK; |
| } |
| |
| /* |
| * Request exclusive access to a hash bucket for a given dma_debug_entry. |
| */ |
| static struct hash_bucket *get_hash_bucket(struct dma_debug_entry *entry, |
| unsigned long *flags) |
| __acquires(&dma_entry_hash[idx].lock) |
| { |
| int idx = hash_fn(entry); |
| unsigned long __flags; |
| |
| spin_lock_irqsave(&dma_entry_hash[idx].lock, __flags); |
| *flags = __flags; |
| return &dma_entry_hash[idx]; |
| } |
| |
| /* |
| * Give up exclusive access to the hash bucket |
| */ |
| static void put_hash_bucket(struct hash_bucket *bucket, |
| unsigned long flags) |
| __releases(&bucket->lock) |
| { |
| spin_unlock_irqrestore(&bucket->lock, flags); |
| } |
| |
| static bool exact_match(struct dma_debug_entry *a, struct dma_debug_entry *b) |
| { |
| return ((a->dev_addr == b->dev_addr) && |
| (a->dev == b->dev)) ? true : false; |
| } |
| |
| static bool containing_match(struct dma_debug_entry *a, |
| struct dma_debug_entry *b) |
| { |
| if (a->dev != b->dev) |
| return false; |
| |
| if ((b->dev_addr <= a->dev_addr) && |
| ((b->dev_addr + b->size) >= (a->dev_addr + a->size))) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Search a given entry in the hash bucket list |
| */ |
| static struct dma_debug_entry *__hash_bucket_find(struct hash_bucket *bucket, |
| struct dma_debug_entry *ref, |
| match_fn match) |
| { |
| struct dma_debug_entry *entry, *ret = NULL; |
| int matches = 0, match_lvl, last_lvl = -1; |
| |
| list_for_each_entry(entry, &bucket->list, list) { |
| if (!match(ref, entry)) |
| continue; |
| |
| /* |
| * Some drivers map the same physical address multiple |
| * times. Without a hardware IOMMU this results in the |
| * same device addresses being put into the dma-debug |
| * hash multiple times too. This can result in false |
| * positives being reported. Therefore we implement a |
| * best-fit algorithm here which returns the entry from |
| * the hash which fits best to the reference value |
| * instead of the first-fit. |
| */ |
| matches += 1; |
| match_lvl = 0; |
| entry->size == ref->size ? ++match_lvl : 0; |
| entry->type == ref->type ? ++match_lvl : 0; |
| entry->direction == ref->direction ? ++match_lvl : 0; |
| entry->sg_call_ents == ref->sg_call_ents ? ++match_lvl : 0; |
| |
| if (match_lvl == 4) { |
| /* perfect-fit - return the result */ |
| return entry; |
| } else if (match_lvl > last_lvl) { |
| /* |
| * We found an entry that fits better then the |
| * previous one or it is the 1st match. |
| */ |
| last_lvl = match_lvl; |
| ret = entry; |
| } |
| } |
| |
| /* |
| * If we have multiple matches but no perfect-fit, just return |
| * NULL. |
| */ |
| ret = (matches == 1) ? ret : NULL; |
| |
| return ret; |
| } |
| |
| static struct dma_debug_entry *bucket_find_exact(struct hash_bucket *bucket, |
| struct dma_debug_entry *ref) |
| { |
| return __hash_bucket_find(bucket, ref, exact_match); |
| } |
| |
| static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, |
| struct dma_debug_entry *ref, |
| unsigned long *flags) |
| { |
| |
| struct dma_debug_entry *entry, index = *ref; |
| int limit = min(HASH_SIZE, (index.dev_addr >> HASH_FN_SHIFT) + 1); |
| |
| for (int i = 0; i < limit; i++) { |
| entry = __hash_bucket_find(*bucket, ref, containing_match); |
| |
| if (entry) |
| return entry; |
| |
| /* |
| * Nothing found, go back a hash bucket |
| */ |
| put_hash_bucket(*bucket, *flags); |
| index.dev_addr -= (1 << HASH_FN_SHIFT); |
| *bucket = get_hash_bucket(&index, flags); |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Add an entry to a hash bucket |
| */ |
| static void hash_bucket_add(struct hash_bucket *bucket, |
| struct dma_debug_entry *entry) |
| { |
| list_add_tail(&entry->list, &bucket->list); |
| } |
| |
| /* |
| * Remove entry from a hash bucket list |
| */ |
| static void hash_bucket_del(struct dma_debug_entry *entry) |
| { |
| list_del(&entry->list); |
| } |
| |
| static unsigned long long phys_addr(struct dma_debug_entry *entry) |
| { |
| if (entry->type == dma_debug_resource) |
| return __pfn_to_phys(entry->pfn) + entry->offset; |
| |
| return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset; |
| } |
| |
| /* |
| * Dump mapping entries for debugging purposes |
| */ |
| void debug_dma_dump_mappings(struct device *dev) |
| { |
| int idx; |
| |
| for (idx = 0; idx < HASH_SIZE; idx++) { |
| struct hash_bucket *bucket = &dma_entry_hash[idx]; |
| struct dma_debug_entry *entry; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bucket->lock, flags); |
| |
| list_for_each_entry(entry, &bucket->list, list) { |
| if (!dev || dev == entry->dev) { |
| dev_info(entry->dev, |
| "%s idx %d P=%Lx N=%lx D=%Lx L=%Lx %s %s\n", |
| type2name[entry->type], idx, |
| phys_addr(entry), entry->pfn, |
| entry->dev_addr, entry->size, |
| dir2name[entry->direction], |
| maperr2str[entry->map_err_type]); |
| } |
| } |
| |
| spin_unlock_irqrestore(&bucket->lock, flags); |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * For each mapping (initial cacheline in the case of |
| * dma_alloc_coherent/dma_map_page, initial cacheline in each page of a |
| * scatterlist, or the cacheline specified in dma_map_single) insert |
| * into this tree using the cacheline as the key. At |
| * dma_unmap_{single|sg|page} or dma_free_coherent delete the entry. If |
| * the entry already exists at insertion time add a tag as a reference |
| * count for the overlapping mappings. For now, the overlap tracking |
| * just ensures that 'unmaps' balance 'maps' before marking the |
| * cacheline idle, but we should also be flagging overlaps as an API |
| * violation. |
| * |
| * Memory usage is mostly constrained by the maximum number of available |
| * dma-debug entries in that we need a free dma_debug_entry before |
| * inserting into the tree. In the case of dma_map_page and |
| * dma_alloc_coherent there is only one dma_debug_entry and one |
| * dma_active_cacheline entry to track per event. dma_map_sg(), on the |
| * other hand, consumes a single dma_debug_entry, but inserts 'nents' |
| * entries into the tree. |
| */ |
| static RADIX_TREE(dma_active_cacheline, GFP_ATOMIC); |
| static DEFINE_SPINLOCK(radix_lock); |
| #define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) |
| #define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) |
| #define CACHELINES_PER_PAGE (1 << CACHELINE_PER_PAGE_SHIFT) |
| |
| static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry) |
| { |
| return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) + |
| (entry->offset >> L1_CACHE_SHIFT); |
| } |
| |
| static int active_cacheline_read_overlap(phys_addr_t cln) |
| { |
| int overlap = 0, i; |
| |
| for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) |
| if (radix_tree_tag_get(&dma_active_cacheline, cln, i)) |
| overlap |= 1 << i; |
| return overlap; |
| } |
| |
| static int active_cacheline_set_overlap(phys_addr_t cln, int overlap) |
| { |
| int i; |
| |
| if (overlap > ACTIVE_CACHELINE_MAX_OVERLAP || overlap < 0) |
| return overlap; |
| |
| for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) |
| if (overlap & 1 << i) |
| radix_tree_tag_set(&dma_active_cacheline, cln, i); |
| else |
| radix_tree_tag_clear(&dma_active_cacheline, cln, i); |
| |
| return overlap; |
| } |
| |
| static void active_cacheline_inc_overlap(phys_addr_t cln) |
| { |
| int overlap = active_cacheline_read_overlap(cln); |
| |
| overlap = active_cacheline_set_overlap(cln, ++overlap); |
| |
| /* If we overflowed the overlap counter then we're potentially |
| * leaking dma-mappings. |
| */ |
| WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, |
| pr_fmt("exceeded %d overlapping mappings of cacheline %pa\n"), |
| ACTIVE_CACHELINE_MAX_OVERLAP, &cln); |
| } |
| |
| static int active_cacheline_dec_overlap(phys_addr_t cln) |
| { |
| int overlap = active_cacheline_read_overlap(cln); |
| |
| return active_cacheline_set_overlap(cln, --overlap); |
| } |
| |
| static int active_cacheline_insert(struct dma_debug_entry *entry) |
| { |
| phys_addr_t cln = to_cacheline_number(entry); |
| unsigned long flags; |
| int rc; |
| |
| /* If the device is not writing memory then we don't have any |
| * concerns about the cpu consuming stale data. This mitigates |
| * legitimate usages of overlapping mappings. |
| */ |
| if (entry->direction == DMA_TO_DEVICE) |
| return 0; |
| |
| spin_lock_irqsave(&radix_lock, flags); |
| rc = radix_tree_insert(&dma_active_cacheline, cln, entry); |
| if (rc == -EEXIST) |
| active_cacheline_inc_overlap(cln); |
| spin_unlock_irqrestore(&radix_lock, flags); |
| |
| return rc; |
| } |
| |
| static void active_cacheline_remove(struct dma_debug_entry *entry) |
| { |
| phys_addr_t cln = to_cacheline_number(entry); |
| unsigned long flags; |
| |
| /* ...mirror the insert case */ |
| if (entry->direction == DMA_TO_DEVICE) |
| return; |
| |
| spin_lock_irqsave(&radix_lock, flags); |
| /* since we are counting overlaps the final put of the |
| * cacheline will occur when the overlap count is 0. |
| * active_cacheline_dec_overlap() returns -1 in that case |
| */ |
| if (active_cacheline_dec_overlap(cln) < 0) |
| radix_tree_delete(&dma_active_cacheline, cln); |
| spin_unlock_irqrestore(&radix_lock, flags); |
| } |
| |
| /* |
| * Wrapper function for adding an entry to the hash. |
| * This function takes care of locking itself. |
| */ |
| static void add_dma_entry(struct dma_debug_entry *entry, unsigned long attrs) |
| { |
| struct hash_bucket *bucket; |
| unsigned long flags; |
| int rc; |
| |
| bucket = get_hash_bucket(entry, &flags); |
| hash_bucket_add(bucket, entry); |
| put_hash_bucket(bucket, flags); |
| |
| rc = active_cacheline_insert(entry); |
| if (rc == -ENOMEM) { |
| pr_err_once("cacheline tracking ENOMEM, dma-debug disabled\n"); |
| global_disable = true; |
| } else if (rc == -EEXIST && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { |
| err_printk(entry->dev, entry, |
| "cacheline tracking EEXIST, overlapping mappings aren't supported\n"); |
| } |
| } |
| |
| static int dma_debug_create_entries(gfp_t gfp) |
| { |
| struct dma_debug_entry *entry; |
| int i; |
| |
| entry = (void *)get_zeroed_page(gfp); |
| if (!entry) |
| return -ENOMEM; |
| |
| for (i = 0; i < DMA_DEBUG_DYNAMIC_ENTRIES; i++) |
| list_add_tail(&entry[i].list, &free_entries); |
| |
| num_free_entries += DMA_DEBUG_DYNAMIC_ENTRIES; |
| nr_total_entries += DMA_DEBUG_DYNAMIC_ENTRIES; |
| |
| return 0; |
| } |
| |
| static struct dma_debug_entry *__dma_entry_alloc(void) |
| { |
| struct dma_debug_entry *entry; |
| |
| entry = list_entry(free_entries.next, struct dma_debug_entry, list); |
| list_del(&entry->list); |
| memset(entry, 0, sizeof(*entry)); |
| |
| num_free_entries -= 1; |
| if (num_free_entries < min_free_entries) |
| min_free_entries = num_free_entries; |
| |
| return entry; |
| } |
| |
| /* |
| * This should be called outside of free_entries_lock scope to avoid potential |
| * deadlocks with serial consoles that use DMA. |
| */ |
| static void __dma_entry_alloc_check_leak(u32 nr_entries) |
| { |
| u32 tmp = nr_entries % nr_prealloc_entries; |
| |
| /* Shout each time we tick over some multiple of the initial pool */ |
| if (tmp < DMA_DEBUG_DYNAMIC_ENTRIES) { |
| pr_info("dma_debug_entry pool grown to %u (%u00%%)\n", |
| nr_entries, |
| (nr_entries / nr_prealloc_entries)); |
| } |
| } |
| |
| /* struct dma_entry allocator |
| * |
| * The next two functions implement the allocator for |
| * struct dma_debug_entries. |
| */ |
| static struct dma_debug_entry *dma_entry_alloc(void) |
| { |
| bool alloc_check_leak = false; |
| struct dma_debug_entry *entry; |
| unsigned long flags; |
| u32 nr_entries; |
| |
| spin_lock_irqsave(&free_entries_lock, flags); |
| if (num_free_entries == 0) { |
| if (dma_debug_create_entries(GFP_ATOMIC)) { |
| global_disable = true; |
| spin_unlock_irqrestore(&free_entries_lock, flags); |
| pr_err("debugging out of memory - disabling\n"); |
| return NULL; |
| } |
| alloc_check_leak = true; |
| nr_entries = nr_total_entries; |
| } |
| |
| entry = __dma_entry_alloc(); |
| |
| spin_unlock_irqrestore(&free_entries_lock, flags); |
| |
| if (alloc_check_leak) |
| __dma_entry_alloc_check_leak(nr_entries); |
| |
| #ifdef CONFIG_STACKTRACE |
| entry->stack_len = stack_trace_save(entry->stack_entries, |
| ARRAY_SIZE(entry->stack_entries), |
| 1); |
| #endif |
| return entry; |
| } |
| |
| static void dma_entry_free(struct dma_debug_entry *entry) |
| { |
| unsigned long flags; |
| |
| active_cacheline_remove(entry); |
| |
| /* |
| * add to beginning of the list - this way the entries are |
| * more likely cache hot when they are reallocated. |
| */ |
| spin_lock_irqsave(&free_entries_lock, flags); |
| list_add(&entry->list, &free_entries); |
| num_free_entries += 1; |
| spin_unlock_irqrestore(&free_entries_lock, flags); |
| } |
| |
| /* |
| * DMA-API debugging init code |
| * |
| * The init code does two things: |
| * 1. Initialize core data structures |
| * 2. Preallocate a given number of dma_debug_entry structs |
| */ |
| |
| static ssize_t filter_read(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| char buf[NAME_MAX_LEN + 1]; |
| unsigned long flags; |
| int len; |
| |
| if (!current_driver_name[0]) |
| return 0; |
| |
| /* |
| * We can't copy to userspace directly because current_driver_name can |
| * only be read under the driver_name_lock with irqs disabled. So |
| * create a temporary copy first. |
| */ |
| read_lock_irqsave(&driver_name_lock, flags); |
| len = scnprintf(buf, NAME_MAX_LEN + 1, "%s\n", current_driver_name); |
| read_unlock_irqrestore(&driver_name_lock, flags); |
| |
| return simple_read_from_buffer(user_buf, count, ppos, buf, len); |
| } |
| |
| static ssize_t filter_write(struct file *file, const char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| char buf[NAME_MAX_LEN]; |
| unsigned long flags; |
| size_t len; |
| int i; |
| |
| /* |
| * We can't copy from userspace directly. Access to |
| * current_driver_name is protected with a write_lock with irqs |
| * disabled. Since copy_from_user can fault and may sleep we |
| * need to copy to temporary buffer first |
| */ |
| len = min(count, (size_t)(NAME_MAX_LEN - 1)); |
| if (copy_from_user(buf, userbuf, len)) |
| return -EFAULT; |
| |
| buf[len] = 0; |
| |
| write_lock_irqsave(&driver_name_lock, flags); |
| |
| /* |
| * Now handle the string we got from userspace very carefully. |
| * The rules are: |
| * - only use the first token we got |
| * - token delimiter is everything looking like a space |
| * character (' ', '\n', '\t' ...) |
| * |
| */ |
| if (!isalnum(buf[0])) { |
| /* |
| * If the first character userspace gave us is not |
| * alphanumerical then assume the filter should be |
| * switched off. |
| */ |
| if (current_driver_name[0]) |
| pr_info("switching off dma-debug driver filter\n"); |
| current_driver_name[0] = 0; |
| current_driver = NULL; |
| goto out_unlock; |
| } |
| |
| /* |
| * Now parse out the first token and use it as the name for the |
| * driver to filter for. |
| */ |
| for (i = 0; i < NAME_MAX_LEN - 1; ++i) { |
| current_driver_name[i] = buf[i]; |
| if (isspace(buf[i]) || buf[i] == ' ' || buf[i] == 0) |
| break; |
| } |
| current_driver_name[i] = 0; |
| current_driver = NULL; |
| |
| pr_info("enable driver filter for driver [%s]\n", |
| current_driver_name); |
| |
| out_unlock: |
| write_unlock_irqrestore(&driver_name_lock, flags); |
| |
| return count; |
| } |
| |
| static const struct file_operations filter_fops = { |
| .read = filter_read, |
| .write = filter_write, |
| .llseek = default_llseek, |
| }; |
| |
| static int dump_show(struct seq_file *seq, void *v) |
| { |
| int idx; |
| |
| for (idx = 0; idx < HASH_SIZE; idx++) { |
| struct hash_bucket *bucket = &dma_entry_hash[idx]; |
| struct dma_debug_entry *entry; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bucket->lock, flags); |
| list_for_each_entry(entry, &bucket->list, list) { |
| seq_printf(seq, |
| "%s %s %s idx %d P=%llx N=%lx D=%llx L=%llx %s %s\n", |
| dev_name(entry->dev), |
| dev_driver_string(entry->dev), |
| type2name[entry->type], idx, |
| phys_addr(entry), entry->pfn, |
| entry->dev_addr, entry->size, |
| dir2name[entry->direction], |
| maperr2str[entry->map_err_type]); |
| } |
| spin_unlock_irqrestore(&bucket->lock, flags); |
| } |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(dump); |
| |
| static int __init dma_debug_fs_init(void) |
| { |
| struct dentry *dentry = debugfs_create_dir("dma-api", NULL); |
| |
| debugfs_create_bool("disabled", 0444, dentry, &global_disable); |
| debugfs_create_u32("error_count", 0444, dentry, &error_count); |
| debugfs_create_u32("all_errors", 0644, dentry, &show_all_errors); |
| debugfs_create_u32("num_errors", 0644, dentry, &show_num_errors); |
| debugfs_create_u32("num_free_entries", 0444, dentry, &num_free_entries); |
| debugfs_create_u32("min_free_entries", 0444, dentry, &min_free_entries); |
| debugfs_create_u32("nr_total_entries", 0444, dentry, &nr_total_entries); |
| debugfs_create_file("driver_filter", 0644, dentry, NULL, &filter_fops); |
| debugfs_create_file("dump", 0444, dentry, NULL, &dump_fops); |
| |
| return 0; |
| } |
| core_initcall_sync(dma_debug_fs_init); |
| |
| static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) |
| { |
| struct dma_debug_entry *entry; |
| unsigned long flags; |
| int count = 0, i; |
| |
| for (i = 0; i < HASH_SIZE; ++i) { |
| spin_lock_irqsave(&dma_entry_hash[i].lock, flags); |
| list_for_each_entry(entry, &dma_entry_hash[i].list, list) { |
| if (entry->dev == dev) { |
| count += 1; |
| *out_entry = entry; |
| } |
| } |
| spin_unlock_irqrestore(&dma_entry_hash[i].lock, flags); |
| } |
| |
| return count; |
| } |
| |
| static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) |
| { |
| struct device *dev = data; |
| struct dma_debug_entry *entry; |
| int count; |
| |
| if (dma_debug_disabled()) |
| return 0; |
| |
| switch (action) { |
| case BUS_NOTIFY_UNBOUND_DRIVER: |
| count = device_dma_allocations(dev, &entry); |
| if (count == 0) |
| break; |
| err_printk(dev, entry, "device driver has pending " |
| "DMA allocations while released from device " |
| "[count=%d]\n" |
| "One of leaked entries details: " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped with %s] [mapped as %s]\n", |
| count, entry->dev_addr, entry->size, |
| dir2name[entry->direction], type2name[entry->type]); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void dma_debug_add_bus(struct bus_type *bus) |
| { |
| struct notifier_block *nb; |
| |
| if (dma_debug_disabled()) |
| return; |
| |
| nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); |
| if (nb == NULL) { |
| pr_err("dma_debug_add_bus: out of memory\n"); |
| return; |
| } |
| |
| nb->notifier_call = dma_debug_device_change; |
| |
| bus_register_notifier(bus, nb); |
| } |
| |
| static int dma_debug_init(void) |
| { |
| int i, nr_pages; |
| |
| /* Do not use dma_debug_initialized here, since we really want to be |
| * called to set dma_debug_initialized |
| */ |
| if (global_disable) |
| return 0; |
| |
| for (i = 0; i < HASH_SIZE; ++i) { |
| INIT_LIST_HEAD(&dma_entry_hash[i].list); |
| spin_lock_init(&dma_entry_hash[i].lock); |
| } |
| |
| nr_pages = DIV_ROUND_UP(nr_prealloc_entries, DMA_DEBUG_DYNAMIC_ENTRIES); |
| for (i = 0; i < nr_pages; ++i) |
| dma_debug_create_entries(GFP_KERNEL); |
| if (num_free_entries >= nr_prealloc_entries) { |
| pr_info("preallocated %d debug entries\n", nr_total_entries); |
| } else if (num_free_entries > 0) { |
| pr_warn("%d debug entries requested but only %d allocated\n", |
| nr_prealloc_entries, nr_total_entries); |
| } else { |
| pr_err("debugging out of memory error - disabled\n"); |
| global_disable = true; |
| |
| return 0; |
| } |
| min_free_entries = num_free_entries; |
| |
| dma_debug_initialized = true; |
| |
| pr_info("debugging enabled by kernel config\n"); |
| return 0; |
| } |
| core_initcall(dma_debug_init); |
| |
| static __init int dma_debug_cmdline(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (strncmp(str, "off", 3) == 0) { |
| pr_info("debugging disabled on kernel command line\n"); |
| global_disable = true; |
| } |
| |
| return 1; |
| } |
| |
| static __init int dma_debug_entries_cmdline(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (!get_option(&str, &nr_prealloc_entries)) |
| nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; |
| return 1; |
| } |
| |
| __setup("dma_debug=", dma_debug_cmdline); |
| __setup("dma_debug_entries=", dma_debug_entries_cmdline); |
| |
| static void check_unmap(struct dma_debug_entry *ref) |
| { |
| struct dma_debug_entry *entry; |
| struct hash_bucket *bucket; |
| unsigned long flags; |
| |
| bucket = get_hash_bucket(ref, &flags); |
| entry = bucket_find_exact(bucket, ref); |
| |
| if (!entry) { |
| /* must drop lock before calling dma_mapping_error */ |
| put_hash_bucket(bucket, flags); |
| |
| if (dma_mapping_error(ref->dev, ref->dev_addr)) { |
| err_printk(ref->dev, NULL, |
| "device driver tries to free an " |
| "invalid DMA memory address\n"); |
| } else { |
| err_printk(ref->dev, NULL, |
| "device driver tries to free DMA " |
| "memory it has not allocated [device " |
| "address=0x%016llx] [size=%llu bytes]\n", |
| ref->dev_addr, ref->size); |
| } |
| return; |
| } |
| |
| if (ref->size != entry->size) { |
| err_printk(ref->dev, entry, "device driver frees " |
| "DMA memory with different size " |
| "[device address=0x%016llx] [map size=%llu bytes] " |
| "[unmap size=%llu bytes]\n", |
| ref->dev_addr, entry->size, ref->size); |
| } |
| |
| if (ref->type != entry->type) { |
| err_printk(ref->dev, entry, "device driver frees " |
| "DMA memory with wrong function " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped as %s] [unmapped as %s]\n", |
| ref->dev_addr, ref->size, |
| type2name[entry->type], type2name[ref->type]); |
| } else if ((entry->type == dma_debug_coherent) && |
| (phys_addr(ref) != phys_addr(entry))) { |
| err_printk(ref->dev, entry, "device driver frees " |
| "DMA memory with different CPU address " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[cpu alloc address=0x%016llx] " |
| "[cpu free address=0x%016llx]", |
| ref->dev_addr, ref->size, |
| phys_addr(entry), |
| phys_addr(ref)); |
| } |
| |
| if (ref->sg_call_ents && ref->type == dma_debug_sg && |
| ref->sg_call_ents != entry->sg_call_ents) { |
| err_printk(ref->dev, entry, "device driver frees " |
| "DMA sg list with different entry count " |
| "[map count=%d] [unmap count=%d]\n", |
| entry->sg_call_ents, ref->sg_call_ents); |
| } |
| |
| /* |
| * This may be no bug in reality - but most implementations of the |
| * DMA API don't handle this properly, so check for it here |
| */ |
| if (ref->direction != entry->direction) { |
| err_printk(ref->dev, entry, "device driver frees " |
| "DMA memory with different direction " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped with %s] [unmapped with %s]\n", |
| ref->dev_addr, ref->size, |
| dir2name[entry->direction], |
| dir2name[ref->direction]); |
| } |
| |
| /* |
| * Drivers should use dma_mapping_error() to check the returned |
| * addresses of dma_map_single() and dma_map_page(). |
| * If not, print this warning message. See Documentation/core-api/dma-api.rst. |
| */ |
| if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { |
| err_printk(ref->dev, entry, |
| "device driver failed to check map error" |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped as %s]", |
| ref->dev_addr, ref->size, |
| type2name[entry->type]); |
| } |
| |
| hash_bucket_del(entry); |
| dma_entry_free(entry); |
| |
| put_hash_bucket(bucket, flags); |
| } |
| |
| static void check_for_stack(struct device *dev, |
| struct page *page, size_t offset) |
| { |
| void *addr; |
| struct vm_struct *stack_vm_area = task_stack_vm_area(current); |
| |
| if (!stack_vm_area) { |
| /* Stack is direct-mapped. */ |
| if (PageHighMem(page)) |
| return; |
| addr = page_address(page) + offset; |
| if (object_is_on_stack(addr)) |
| err_printk(dev, NULL, "device driver maps memory from stack [addr=%p]\n", addr); |
| } else { |
| /* Stack is vmalloced. */ |
| int i; |
| |
| for (i = 0; i < stack_vm_area->nr_pages; i++) { |
| if (page != stack_vm_area->pages[i]) |
| continue; |
| |
| addr = (u8 *)current->stack + i * PAGE_SIZE + offset; |
| err_printk(dev, NULL, "device driver maps memory from stack [probable addr=%p]\n", addr); |
| break; |
| } |
| } |
| } |
| |
| static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) |
| { |
| if (memory_intersects(_stext, _etext, addr, len) || |
| memory_intersects(__start_rodata, __end_rodata, addr, len)) |
| err_printk(dev, NULL, "device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); |
| } |
| |
| static void check_sync(struct device *dev, |
| struct dma_debug_entry *ref, |
| bool to_cpu) |
| { |
| struct dma_debug_entry *entry; |
| struct hash_bucket *bucket; |
| unsigned long flags; |
| |
| bucket = get_hash_bucket(ref, &flags); |
| |
| entry = bucket_find_contain(&bucket, ref, &flags); |
| |
| if (!entry) { |
| err_printk(dev, NULL, "device driver tries " |
| "to sync DMA memory it has not allocated " |
| "[device address=0x%016llx] [size=%llu bytes]\n", |
| (unsigned long long)ref->dev_addr, ref->size); |
| goto out; |
| } |
| |
| if (ref->size > entry->size) { |
| err_printk(dev, entry, "device driver syncs" |
| " DMA memory outside allocated range " |
| "[device address=0x%016llx] " |
| "[allocation size=%llu bytes] " |
| "[sync offset+size=%llu]\n", |
| entry->dev_addr, entry->size, |
| ref->size); |
| } |
| |
| if (entry->direction == DMA_BIDIRECTIONAL) |
| goto out; |
| |
| if (ref->direction != entry->direction) { |
| err_printk(dev, entry, "device driver syncs " |
| "DMA memory with different direction " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped with %s] [synced with %s]\n", |
| (unsigned long long)ref->dev_addr, entry->size, |
| dir2name[entry->direction], |
| dir2name[ref->direction]); |
| } |
| |
| if (to_cpu && !(entry->direction == DMA_FROM_DEVICE) && |
| !(ref->direction == DMA_TO_DEVICE)) |
| err_printk(dev, entry, "device driver syncs " |
| "device read-only DMA memory for cpu " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped with %s] [synced with %s]\n", |
| (unsigned long long)ref->dev_addr, entry->size, |
| dir2name[entry->direction], |
| dir2name[ref->direction]); |
| |
| if (!to_cpu && !(entry->direction == DMA_TO_DEVICE) && |
| !(ref->direction == DMA_FROM_DEVICE)) |
| err_printk(dev, entry, "device driver syncs " |
| "device write-only DMA memory to device " |
| "[device address=0x%016llx] [size=%llu bytes] " |
| "[mapped with %s] [synced with %s]\n", |
| (unsigned long long)ref->dev_addr, entry->size, |
| dir2name[entry->direction], |
| dir2name[ref->direction]); |
| |
| /* sg list count can be less than map count when partial cache sync */ |
| if (ref->sg_call_ents && ref->type == dma_debug_sg && |
| ref->sg_call_ents > entry->sg_call_ents) { |
| err_printk(ref->dev, entry, "device driver syncs " |
| "DMA sg list count larger than map count " |
| "[map count=%d] [sync count=%d]\n", |
| entry->sg_call_ents, ref->sg_call_ents); |
| } |
| |
| out: |
| put_hash_bucket(bucket, flags); |
| } |
| |
| static void check_sg_segment(struct device *dev, struct scatterlist *sg) |
| { |
| #ifdef CONFIG_DMA_API_DEBUG_SG |
| unsigned int max_seg = dma_get_max_seg_size(dev); |
| u64 start, end, boundary = dma_get_seg_boundary(dev); |
| |
| /* |
| * Either the driver forgot to set dma_parms appropriately, or |
| * whoever generated the list forgot to check them. |
| */ |
| if (sg->length > max_seg) |
| err_printk(dev, NULL, "mapping sg segment longer than device claims to support [len=%u] [max=%u]\n", |
| sg->length, max_seg); |
| /* |
| * In some cases this could potentially be the DMA API |
| * implementation's fault, but it would usually imply that |
| * the scatterlist was built inappropriately to begin with. |
| */ |
| start = sg_dma_address(sg); |
| end = start + sg_dma_len(sg) - 1; |
| if ((start ^ end) & ~boundary) |
| err_printk(dev, NULL, "mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n", |
| start, end, boundary); |
| #endif |
| } |
| |
| void debug_dma_map_single(struct device *dev, const void *addr, |
| unsigned long len) |
| { |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| if (!virt_addr_valid(addr)) |
| err_printk(dev, NULL, "device driver maps memory from invalid area [addr=%p] [len=%lu]\n", |
| addr, len); |
| |
| if (is_vmalloc_addr(addr)) |
| err_printk(dev, NULL, "device driver maps memory from vmalloc area [addr=%p] [len=%lu]\n", |
| addr, len); |
| } |
| EXPORT_SYMBOL(debug_dma_map_single); |
| |
| void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, |
| size_t size, int direction, dma_addr_t dma_addr, |
| unsigned long attrs) |
| { |
| struct dma_debug_entry *entry; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| if (dma_mapping_error(dev, dma_addr)) |
| return; |
| |
| entry = dma_entry_alloc(); |
| if (!entry) |
| return; |
| |
| entry->dev = dev; |
| entry->type = dma_debug_single; |
| entry->pfn = page_to_pfn(page); |
| entry->offset = offset; |
| entry->dev_addr = dma_addr; |
| entry->size = size; |
| entry->direction = direction; |
| entry->map_err_type = MAP_ERR_NOT_CHECKED; |
| |
| check_for_stack(dev, page, offset); |
| |
| if (!PageHighMem(page)) { |
| void *addr = page_address(page) + offset; |
| |
| check_for_illegal_area(dev, addr, size); |
| } |
| |
| add_dma_entry(entry, attrs); |
| } |
| |
| void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| struct dma_debug_entry ref; |
| struct dma_debug_entry *entry; |
| struct hash_bucket *bucket; |
| unsigned long flags; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| ref.dev = dev; |
| ref.dev_addr = dma_addr; |
| bucket = get_hash_bucket(&ref, &flags); |
| |
| list_for_each_entry(entry, &bucket->list, list) { |
| if (!exact_match(&ref, entry)) |
| continue; |
| |
| /* |
| * The same physical address can be mapped multiple |
| * times. Without a hardware IOMMU this results in the |
| * same device addresses being put into the dma-debug |
| * hash multiple times too. This can result in false |
| * positives being reported. Therefore we implement a |
| * best-fit algorithm here which updates the first entry |
| * from the hash which fits the reference value and is |
| * not currently listed as being checked. |
| */ |
| if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { |
| entry->map_err_type = MAP_ERR_CHECKED; |
| break; |
| } |
| } |
| |
| put_hash_bucket(bucket, flags); |
| } |
| EXPORT_SYMBOL(debug_dma_mapping_error); |
| |
| void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, |
| size_t size, int direction) |
| { |
| struct dma_debug_entry ref = { |
| .type = dma_debug_single, |
| .dev = dev, |
| .dev_addr = addr, |
| .size = size, |
| .direction = direction, |
| }; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| check_unmap(&ref); |
| } |
| |
| void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, int mapped_ents, int direction, |
| unsigned long attrs) |
| { |
| struct dma_debug_entry *entry; |
| struct scatterlist *s; |
| int i; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| for_each_sg(sg, s, nents, i) { |
| check_for_stack(dev, sg_page(s), s->offset); |
| if (!PageHighMem(sg_page(s))) |
| check_for_illegal_area(dev, sg_virt(s), s->length); |
| } |
| |
| for_each_sg(sg, s, mapped_ents, i) { |
| entry = dma_entry_alloc(); |
| if (!entry) |
| return; |
| |
| entry->type = dma_debug_sg; |
| entry->dev = dev; |
| entry->pfn = page_to_pfn(sg_page(s)); |
| entry->offset = s->offset; |
| entry->size = sg_dma_len(s); |
| entry->dev_addr = sg_dma_address(s); |
| entry->direction = direction; |
| entry->sg_call_ents = nents; |
| entry->sg_mapped_ents = mapped_ents; |
| |
| check_sg_segment(dev, s); |
| |
| add_dma_entry(entry, attrs); |
| } |
| } |
| |
| static int get_nr_mapped_entries(struct device *dev, |
| struct dma_debug_entry *ref) |
| { |
| struct dma_debug_entry *entry; |
| struct hash_bucket *bucket; |
| unsigned long flags; |
| int mapped_ents; |
| |
| bucket = get_hash_bucket(ref, &flags); |
| entry = bucket_find_exact(bucket, ref); |
| mapped_ents = 0; |
| |
| if (entry) |
| mapped_ents = entry->sg_mapped_ents; |
| put_hash_bucket(bucket, flags); |
| |
| return mapped_ents; |
| } |
| |
| void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, int dir) |
| { |
| struct scatterlist *s; |
| int mapped_ents = 0, i; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| for_each_sg(sglist, s, nelems, i) { |
| |
| struct dma_debug_entry ref = { |
| .type = dma_debug_sg, |
| .dev = dev, |
| .pfn = page_to_pfn(sg_page(s)), |
| .offset = s->offset, |
| .dev_addr = sg_dma_address(s), |
| .size = sg_dma_len(s), |
| .direction = dir, |
| .sg_call_ents = nelems, |
| }; |
| |
| if (mapped_ents && i >= mapped_ents) |
| break; |
| |
| if (!i) |
| mapped_ents = get_nr_mapped_entries(dev, &ref); |
| |
| check_unmap(&ref); |
| } |
| } |
| |
| void debug_dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t dma_addr, void *virt, |
| unsigned long attrs) |
| { |
| struct dma_debug_entry *entry; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| if (unlikely(virt == NULL)) |
| return; |
| |
| /* handle vmalloc and linear addresses */ |
| if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) |
| return; |
| |
| entry = dma_entry_alloc(); |
| if (!entry) |
| return; |
| |
| entry->type = dma_debug_coherent; |
| entry->dev = dev; |
| entry->offset = offset_in_page(virt); |
| entry->size = size; |
| entry->dev_addr = dma_addr; |
| entry->direction = DMA_BIDIRECTIONAL; |
| |
| if (is_vmalloc_addr(virt)) |
| entry->pfn = vmalloc_to_pfn(virt); |
| else |
| entry->pfn = page_to_pfn(virt_to_page(virt)); |
| |
| add_dma_entry(entry, attrs); |
| } |
| |
| void debug_dma_free_coherent(struct device *dev, size_t size, |
| void *virt, dma_addr_t addr) |
| { |
| struct dma_debug_entry ref = { |
| .type = dma_debug_coherent, |
| .dev = dev, |
| .offset = offset_in_page(virt), |
| .dev_addr = addr, |
| .size = size, |
| .direction = DMA_BIDIRECTIONAL, |
| }; |
| |
| /* handle vmalloc and linear addresses */ |
| if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) |
| return; |
| |
| if (is_vmalloc_addr(virt)) |
| ref.pfn = vmalloc_to_pfn(virt); |
| else |
| ref.pfn = page_to_pfn(virt_to_page(virt)); |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| check_unmap(&ref); |
| } |
| |
| void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, |
| int direction, dma_addr_t dma_addr, |
| unsigned long attrs) |
| { |
| struct dma_debug_entry *entry; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| entry = dma_entry_alloc(); |
| if (!entry) |
| return; |
| |
| entry->type = dma_debug_resource; |
| entry->dev = dev; |
| entry->pfn = PHYS_PFN(addr); |
| entry->offset = offset_in_page(addr); |
| entry->size = size; |
| entry->dev_addr = dma_addr; |
| entry->direction = direction; |
| entry->map_err_type = MAP_ERR_NOT_CHECKED; |
| |
| add_dma_entry(entry, attrs); |
| } |
| |
| void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, |
| size_t size, int direction) |
| { |
| struct dma_debug_entry ref = { |
| .type = dma_debug_resource, |
| .dev = dev, |
| .dev_addr = dma_addr, |
| .size = size, |
| .direction = direction, |
| }; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| check_unmap(&ref); |
| } |
| |
| void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| size_t size, int direction) |
| { |
| struct dma_debug_entry ref; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| ref.type = dma_debug_single; |
| ref.dev = dev; |
| ref.dev_addr = dma_handle; |
| ref.size = size; |
| ref.direction = direction; |
| ref.sg_call_ents = 0; |
| |
| check_sync(dev, &ref, true); |
| } |
| |
| void debug_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| int direction) |
| { |
| struct dma_debug_entry ref; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| ref.type = dma_debug_single; |
| ref.dev = dev; |
| ref.dev_addr = dma_handle; |
| ref.size = size; |
| ref.direction = direction; |
| ref.sg_call_ents = 0; |
| |
| check_sync(dev, &ref, false); |
| } |
| |
| void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nelems, int direction) |
| { |
| struct scatterlist *s; |
| int mapped_ents = 0, i; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| for_each_sg(sg, s, nelems, i) { |
| |
| struct dma_debug_entry ref = { |
| .type = dma_debug_sg, |
| .dev = dev, |
| .pfn = page_to_pfn(sg_page(s)), |
| .offset = s->offset, |
| .dev_addr = sg_dma_address(s), |
| .size = sg_dma_len(s), |
| .direction = direction, |
| .sg_call_ents = nelems, |
| }; |
| |
| if (!i) |
| mapped_ents = get_nr_mapped_entries(dev, &ref); |
| |
| if (i >= mapped_ents) |
| break; |
| |
| check_sync(dev, &ref, true); |
| } |
| } |
| |
| void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nelems, int direction) |
| { |
| struct scatterlist *s; |
| int mapped_ents = 0, i; |
| |
| if (unlikely(dma_debug_disabled())) |
| return; |
| |
| for_each_sg(sg, s, nelems, i) { |
| |
| struct dma_debug_entry ref = { |
| .type = dma_debug_sg, |
| .dev = dev, |
| .pfn = page_to_pfn(sg_page(s)), |
| .offset = s->offset, |
| .dev_addr = sg_dma_address(s), |
| .size = sg_dma_len(s), |
| .direction = direction, |
| .sg_call_ents = nelems, |
| }; |
| if (!i) |
| mapped_ents = get_nr_mapped_entries(dev, &ref); |
| |
| if (i >= mapped_ents) |
| break; |
| |
| check_sync(dev, &ref, false); |
| } |
| } |
| |
| static int __init dma_debug_driver_setup(char *str) |
| { |
| int i; |
| |
| for (i = 0; i < NAME_MAX_LEN - 1; ++i, ++str) { |
| current_driver_name[i] = *str; |
| if (*str == 0) |
| break; |
| } |
| |
| if (current_driver_name[0]) |
| pr_info("enable driver filter for driver [%s]\n", |
| current_driver_name); |
| |
| |
| return 1; |
| } |
| __setup("dma_debug_driver=", dma_debug_driver_setup); |