blob: 64a6a37dc36d9a0bceb0f863c08cdd119a7ac043 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Implementation of the security services.
*
* Authors : Stephen Smalley, <sds@tycho.nsa.gov>
* James Morris <jmorris@redhat.com>
*
* Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
*
* Support for enhanced MLS infrastructure.
* Support for context based audit filters.
*
* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Updated: Hewlett-Packard <paul@paul-moore.com>
*
* Added support for NetLabel
* Added support for the policy capability bitmap
*
* Updated: Chad Sellers <csellers@tresys.com>
*
* Added validation of kernel classes and permissions
*
* Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
*
* Added support for bounds domain and audit messaged on masked permissions
*
* Updated: Guido Trentalancia <guido@trentalancia.com>
*
* Added support for runtime switching of the policy type
*
* Copyright (C) 2008, 2009 NEC Corporation
* Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
* Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
* Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/sched.h>
#include <linux/audit.h>
#include <linux/vmalloc.h>
#include <linux/lsm_hooks.h>
#include <net/netlabel.h>
#include "flask.h"
#include "avc.h"
#include "avc_ss.h"
#include "security.h"
#include "context.h"
#include "policydb.h"
#include "sidtab.h"
#include "services.h"
#include "conditional.h"
#include "mls.h"
#include "objsec.h"
#include "netlabel.h"
#include "xfrm.h"
#include "ebitmap.h"
#include "audit.h"
#include "policycap_names.h"
#include "ima.h"
struct convert_context_args {
struct selinux_state *state;
struct policydb *oldp;
struct policydb *newp;
};
struct selinux_policy_convert_data {
struct convert_context_args args;
struct sidtab_convert_params sidtab_params;
};
/* Forward declaration. */
static int context_struct_to_string(struct policydb *policydb,
struct context *context,
char **scontext,
u32 *scontext_len);
static int sidtab_entry_to_string(struct policydb *policydb,
struct sidtab *sidtab,
struct sidtab_entry *entry,
char **scontext,
u32 *scontext_len);
static void context_struct_compute_av(struct policydb *policydb,
struct context *scontext,
struct context *tcontext,
u16 tclass,
struct av_decision *avd,
struct extended_perms *xperms);
static int selinux_set_mapping(struct policydb *pol,
const struct security_class_mapping *map,
struct selinux_map *out_map)
{
u16 i, j;
unsigned k;
bool print_unknown_handle = false;
/* Find number of classes in the input mapping */
if (!map)
return -EINVAL;
i = 0;
while (map[i].name)
i++;
/* Allocate space for the class records, plus one for class zero */
out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
if (!out_map->mapping)
return -ENOMEM;
/* Store the raw class and permission values */
j = 0;
while (map[j].name) {
const struct security_class_mapping *p_in = map + (j++);
struct selinux_mapping *p_out = out_map->mapping + j;
/* An empty class string skips ahead */
if (!strcmp(p_in->name, "")) {
p_out->num_perms = 0;
continue;
}
p_out->value = string_to_security_class(pol, p_in->name);
if (!p_out->value) {
pr_info("SELinux: Class %s not defined in policy.\n",
p_in->name);
if (pol->reject_unknown)
goto err;
p_out->num_perms = 0;
print_unknown_handle = true;
continue;
}
k = 0;
while (p_in->perms[k]) {
/* An empty permission string skips ahead */
if (!*p_in->perms[k]) {
k++;
continue;
}
p_out->perms[k] = string_to_av_perm(pol, p_out->value,
p_in->perms[k]);
if (!p_out->perms[k]) {
pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
p_in->perms[k], p_in->name);
if (pol->reject_unknown)
goto err;
print_unknown_handle = true;
}
k++;
}
p_out->num_perms = k;
}
if (print_unknown_handle)
pr_info("SELinux: the above unknown classes and permissions will be %s\n",
pol->allow_unknown ? "allowed" : "denied");
out_map->size = i;
return 0;
err:
kfree(out_map->mapping);
out_map->mapping = NULL;
return -EINVAL;
}
/*
* Get real, policy values from mapped values
*/
static u16 unmap_class(struct selinux_map *map, u16 tclass)
{
if (tclass < map->size)
return map->mapping[tclass].value;
return tclass;
}
/*
* Get kernel value for class from its policy value
*/
static u16 map_class(struct selinux_map *map, u16 pol_value)
{
u16 i;
for (i = 1; i < map->size; i++) {
if (map->mapping[i].value == pol_value)
return i;
}
return SECCLASS_NULL;
}
static void map_decision(struct selinux_map *map,
u16 tclass, struct av_decision *avd,
int allow_unknown)
{
if (tclass < map->size) {
struct selinux_mapping *mapping = &map->mapping[tclass];
unsigned int i, n = mapping->num_perms;
u32 result;
for (i = 0, result = 0; i < n; i++) {
if (avd->allowed & mapping->perms[i])
result |= 1<<i;
if (allow_unknown && !mapping->perms[i])
result |= 1<<i;
}
avd->allowed = result;
for (i = 0, result = 0; i < n; i++)
if (avd->auditallow & mapping->perms[i])
result |= 1<<i;
avd->auditallow = result;
for (i = 0, result = 0; i < n; i++) {
if (avd->auditdeny & mapping->perms[i])
result |= 1<<i;
if (!allow_unknown && !mapping->perms[i])
result |= 1<<i;
}
/*
* In case the kernel has a bug and requests a permission
* between num_perms and the maximum permission number, we
* should audit that denial
*/
for (; i < (sizeof(u32)*8); i++)
result |= 1<<i;
avd->auditdeny = result;
}
}
int security_mls_enabled(struct selinux_state *state)
{
int mls_enabled;
struct selinux_policy *policy;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
mls_enabled = policy->policydb.mls_enabled;
rcu_read_unlock();
return mls_enabled;
}
/*
* Return the boolean value of a constraint expression
* when it is applied to the specified source and target
* security contexts.
*
* xcontext is a special beast... It is used by the validatetrans rules
* only. For these rules, scontext is the context before the transition,
* tcontext is the context after the transition, and xcontext is the context
* of the process performing the transition. All other callers of
* constraint_expr_eval should pass in NULL for xcontext.
*/
static int constraint_expr_eval(struct policydb *policydb,
struct context *scontext,
struct context *tcontext,
struct context *xcontext,
struct constraint_expr *cexpr)
{
u32 val1, val2;
struct context *c;
struct role_datum *r1, *r2;
struct mls_level *l1, *l2;
struct constraint_expr *e;
int s[CEXPR_MAXDEPTH];
int sp = -1;
for (e = cexpr; e; e = e->next) {
switch (e->expr_type) {
case CEXPR_NOT:
BUG_ON(sp < 0);
s[sp] = !s[sp];
break;
case CEXPR_AND:
BUG_ON(sp < 1);
sp--;
s[sp] &= s[sp + 1];
break;
case CEXPR_OR:
BUG_ON(sp < 1);
sp--;
s[sp] |= s[sp + 1];
break;
case CEXPR_ATTR:
if (sp == (CEXPR_MAXDEPTH - 1))
return 0;
switch (e->attr) {
case CEXPR_USER:
val1 = scontext->user;
val2 = tcontext->user;
break;
case CEXPR_TYPE:
val1 = scontext->type;
val2 = tcontext->type;
break;
case CEXPR_ROLE:
val1 = scontext->role;
val2 = tcontext->role;
r1 = policydb->role_val_to_struct[val1 - 1];
r2 = policydb->role_val_to_struct[val2 - 1];
switch (e->op) {
case CEXPR_DOM:
s[++sp] = ebitmap_get_bit(&r1->dominates,
val2 - 1);
continue;
case CEXPR_DOMBY:
s[++sp] = ebitmap_get_bit(&r2->dominates,
val1 - 1);
continue;
case CEXPR_INCOMP:
s[++sp] = (!ebitmap_get_bit(&r1->dominates,
val2 - 1) &&
!ebitmap_get_bit(&r2->dominates,
val1 - 1));
continue;
default:
break;
}
break;
case CEXPR_L1L2:
l1 = &(scontext->range.level[0]);
l2 = &(tcontext->range.level[0]);
goto mls_ops;
case CEXPR_L1H2:
l1 = &(scontext->range.level[0]);
l2 = &(tcontext->range.level[1]);
goto mls_ops;
case CEXPR_H1L2:
l1 = &(scontext->range.level[1]);
l2 = &(tcontext->range.level[0]);
goto mls_ops;
case CEXPR_H1H2:
l1 = &(scontext->range.level[1]);
l2 = &(tcontext->range.level[1]);
goto mls_ops;
case CEXPR_L1H1:
l1 = &(scontext->range.level[0]);
l2 = &(scontext->range.level[1]);
goto mls_ops;
case CEXPR_L2H2:
l1 = &(tcontext->range.level[0]);
l2 = &(tcontext->range.level[1]);
goto mls_ops;
mls_ops:
switch (e->op) {
case CEXPR_EQ:
s[++sp] = mls_level_eq(l1, l2);
continue;
case CEXPR_NEQ:
s[++sp] = !mls_level_eq(l1, l2);
continue;
case CEXPR_DOM:
s[++sp] = mls_level_dom(l1, l2);
continue;
case CEXPR_DOMBY:
s[++sp] = mls_level_dom(l2, l1);
continue;
case CEXPR_INCOMP:
s[++sp] = mls_level_incomp(l2, l1);
continue;
default:
BUG();
return 0;
}
break;
default:
BUG();
return 0;
}
switch (e->op) {
case CEXPR_EQ:
s[++sp] = (val1 == val2);
break;
case CEXPR_NEQ:
s[++sp] = (val1 != val2);
break;
default:
BUG();
return 0;
}
break;
case CEXPR_NAMES:
if (sp == (CEXPR_MAXDEPTH-1))
return 0;
c = scontext;
if (e->attr & CEXPR_TARGET)
c = tcontext;
else if (e->attr & CEXPR_XTARGET) {
c = xcontext;
if (!c) {
BUG();
return 0;
}
}
if (e->attr & CEXPR_USER)
val1 = c->user;
else if (e->attr & CEXPR_ROLE)
val1 = c->role;
else if (e->attr & CEXPR_TYPE)
val1 = c->type;
else {
BUG();
return 0;
}
switch (e->op) {
case CEXPR_EQ:
s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
break;
case CEXPR_NEQ:
s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
break;
default:
BUG();
return 0;
}
break;
default:
BUG();
return 0;
}
}
BUG_ON(sp != 0);
return s[0];
}
/*
* security_dump_masked_av - dumps masked permissions during
* security_compute_av due to RBAC, MLS/Constraint and Type bounds.
*/
static int dump_masked_av_helper(void *k, void *d, void *args)
{
struct perm_datum *pdatum = d;
char **permission_names = args;
BUG_ON(pdatum->value < 1 || pdatum->value > 32);
permission_names[pdatum->value - 1] = (char *)k;
return 0;
}
static void security_dump_masked_av(struct policydb *policydb,
struct context *scontext,
struct context *tcontext,
u16 tclass,
u32 permissions,
const char *reason)
{
struct common_datum *common_dat;
struct class_datum *tclass_dat;
struct audit_buffer *ab;
char *tclass_name;
char *scontext_name = NULL;
char *tcontext_name = NULL;
char *permission_names[32];
int index;
u32 length;
bool need_comma = false;
if (!permissions)
return;
tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
tclass_dat = policydb->class_val_to_struct[tclass - 1];
common_dat = tclass_dat->comdatum;
/* init permission_names */
if (common_dat &&
hashtab_map(&common_dat->permissions.table,
dump_masked_av_helper, permission_names) < 0)
goto out;
if (hashtab_map(&tclass_dat->permissions.table,
dump_masked_av_helper, permission_names) < 0)
goto out;
/* get scontext/tcontext in text form */
if (context_struct_to_string(policydb, scontext,
&scontext_name, &length) < 0)
goto out;
if (context_struct_to_string(policydb, tcontext,
&tcontext_name, &length) < 0)
goto out;
/* audit a message */
ab = audit_log_start(audit_context(),
GFP_ATOMIC, AUDIT_SELINUX_ERR);
if (!ab)
goto out;
audit_log_format(ab, "op=security_compute_av reason=%s "
"scontext=%s tcontext=%s tclass=%s perms=",
reason, scontext_name, tcontext_name, tclass_name);
for (index = 0; index < 32; index++) {
u32 mask = (1 << index);
if ((mask & permissions) == 0)
continue;
audit_log_format(ab, "%s%s",
need_comma ? "," : "",
permission_names[index]
? permission_names[index] : "????");
need_comma = true;
}
audit_log_end(ab);
out:
/* release scontext/tcontext */
kfree(tcontext_name);
kfree(scontext_name);
}
/*
* security_boundary_permission - drops violated permissions
* on boundary constraint.
*/
static void type_attribute_bounds_av(struct policydb *policydb,
struct context *scontext,
struct context *tcontext,
u16 tclass,
struct av_decision *avd)
{
struct context lo_scontext;
struct context lo_tcontext, *tcontextp = tcontext;
struct av_decision lo_avd;
struct type_datum *source;
struct type_datum *target;
u32 masked = 0;
source = policydb->type_val_to_struct[scontext->type - 1];
BUG_ON(!source);
if (!source->bounds)
return;
target = policydb->type_val_to_struct[tcontext->type - 1];
BUG_ON(!target);
memset(&lo_avd, 0, sizeof(lo_avd));
memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
lo_scontext.type = source->bounds;
if (target->bounds) {
memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
lo_tcontext.type = target->bounds;
tcontextp = &lo_tcontext;
}
context_struct_compute_av(policydb, &lo_scontext,
tcontextp,
tclass,
&lo_avd,
NULL);
masked = ~lo_avd.allowed & avd->allowed;
if (likely(!masked))
return; /* no masked permission */
/* mask violated permissions */
avd->allowed &= ~masked;
/* audit masked permissions */
security_dump_masked_av(policydb, scontext, tcontext,
tclass, masked, "bounds");
}
/*
* flag which drivers have permissions
* only looking for ioctl based extended permssions
*/
void services_compute_xperms_drivers(
struct extended_perms *xperms,
struct avtab_node *node)
{
unsigned int i;
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
/* if one or more driver has all permissions allowed */
for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
/* if allowing permissions within a driver */
security_xperm_set(xperms->drivers.p,
node->datum.u.xperms->driver);
}
xperms->len = 1;
}
/*
* Compute access vectors and extended permissions based on a context
* structure pair for the permissions in a particular class.
*/
static void context_struct_compute_av(struct policydb *policydb,
struct context *scontext,
struct context *tcontext,
u16 tclass,
struct av_decision *avd,
struct extended_perms *xperms)
{
struct constraint_node *constraint;
struct role_allow *ra;
struct avtab_key avkey;
struct avtab_node *node;
struct class_datum *tclass_datum;
struct ebitmap *sattr, *tattr;
struct ebitmap_node *snode, *tnode;
unsigned int i, j;
avd->allowed = 0;
avd->auditallow = 0;
avd->auditdeny = 0xffffffff;
if (xperms) {
memset(&xperms->drivers, 0, sizeof(xperms->drivers));
xperms->len = 0;
}
if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
if (printk_ratelimit())
pr_warn("SELinux: Invalid class %hu\n", tclass);
return;
}
tclass_datum = policydb->class_val_to_struct[tclass - 1];
/*
* If a specific type enforcement rule was defined for
* this permission check, then use it.
*/
avkey.target_class = tclass;
avkey.specified = AVTAB_AV | AVTAB_XPERMS;
sattr = &policydb->type_attr_map_array[scontext->type - 1];
tattr = &policydb->type_attr_map_array[tcontext->type - 1];
ebitmap_for_each_positive_bit(sattr, snode, i) {
ebitmap_for_each_positive_bit(tattr, tnode, j) {
avkey.source_type = i + 1;
avkey.target_type = j + 1;
for (node = avtab_search_node(&policydb->te_avtab,
&avkey);
node;
node = avtab_search_node_next(node, avkey.specified)) {
if (node->key.specified == AVTAB_ALLOWED)
avd->allowed |= node->datum.u.data;
else if (node->key.specified == AVTAB_AUDITALLOW)
avd->auditallow |= node->datum.u.data;
else if (node->key.specified == AVTAB_AUDITDENY)
avd->auditdeny &= node->datum.u.data;
else if (xperms && (node->key.specified & AVTAB_XPERMS))
services_compute_xperms_drivers(xperms, node);
}
/* Check conditional av table for additional permissions */
cond_compute_av(&policydb->te_cond_avtab, &avkey,
avd, xperms);
}
}
/*
* Remove any permissions prohibited by a constraint (this includes
* the MLS policy).
*/
constraint = tclass_datum->constraints;
while (constraint) {
if ((constraint->permissions & (avd->allowed)) &&
!constraint_expr_eval(policydb, scontext, tcontext, NULL,
constraint->expr)) {
avd->allowed &= ~(constraint->permissions);
}
constraint = constraint->next;
}
/*
* If checking process transition permission and the
* role is changing, then check the (current_role, new_role)
* pair.
*/
if (tclass == policydb->process_class &&
(avd->allowed & policydb->process_trans_perms) &&
scontext->role != tcontext->role) {
for (ra = policydb->role_allow; ra; ra = ra->next) {
if (scontext->role == ra->role &&
tcontext->role == ra->new_role)
break;
}
if (!ra)
avd->allowed &= ~policydb->process_trans_perms;
}
/*
* If the given source and target types have boundary
* constraint, lazy checks have to mask any violated
* permission and notice it to userspace via audit.
*/
type_attribute_bounds_av(policydb, scontext, tcontext,
tclass, avd);
}
static int security_validtrans_handle_fail(struct selinux_state *state,
struct selinux_policy *policy,
struct sidtab_entry *oentry,
struct sidtab_entry *nentry,
struct sidtab_entry *tentry,
u16 tclass)
{
struct policydb *p = &policy->policydb;
struct sidtab *sidtab = policy->sidtab;
char *o = NULL, *n = NULL, *t = NULL;
u32 olen, nlen, tlen;
if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
goto out;
if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
goto out;
if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
goto out;
audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
"op=security_validate_transition seresult=denied"
" oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
out:
kfree(o);
kfree(n);
kfree(t);
if (!enforcing_enabled(state))
return 0;
return -EPERM;
}
static int security_compute_validatetrans(struct selinux_state *state,
u32 oldsid, u32 newsid, u32 tasksid,
u16 orig_tclass, bool user)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct sidtab_entry *oentry;
struct sidtab_entry *nentry;
struct sidtab_entry *tentry;
struct class_datum *tclass_datum;
struct constraint_node *constraint;
u16 tclass;
int rc = 0;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
if (!user)
tclass = unmap_class(&policy->map, orig_tclass);
else
tclass = orig_tclass;
if (!tclass || tclass > policydb->p_classes.nprim) {
rc = -EINVAL;
goto out;
}
tclass_datum = policydb->class_val_to_struct[tclass - 1];
oentry = sidtab_search_entry(sidtab, oldsid);
if (!oentry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, oldsid);
rc = -EINVAL;
goto out;
}
nentry = sidtab_search_entry(sidtab, newsid);
if (!nentry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, newsid);
rc = -EINVAL;
goto out;
}
tentry = sidtab_search_entry(sidtab, tasksid);
if (!tentry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, tasksid);
rc = -EINVAL;
goto out;
}
constraint = tclass_datum->validatetrans;
while (constraint) {
if (!constraint_expr_eval(policydb, &oentry->context,
&nentry->context, &tentry->context,
constraint->expr)) {
if (user)
rc = -EPERM;
else
rc = security_validtrans_handle_fail(state,
policy,
oentry,
nentry,
tentry,
tclass);
goto out;
}
constraint = constraint->next;
}
out:
rcu_read_unlock();
return rc;
}
int security_validate_transition_user(struct selinux_state *state,
u32 oldsid, u32 newsid, u32 tasksid,
u16 tclass)
{
return security_compute_validatetrans(state, oldsid, newsid, tasksid,
tclass, true);
}
int security_validate_transition(struct selinux_state *state,
u32 oldsid, u32 newsid, u32 tasksid,
u16 orig_tclass)
{
return security_compute_validatetrans(state, oldsid, newsid, tasksid,
orig_tclass, false);
}
/*
* security_bounded_transition - check whether the given
* transition is directed to bounded, or not.
* It returns 0, if @newsid is bounded by @oldsid.
* Otherwise, it returns error code.
*
* @state: SELinux state
* @oldsid : current security identifier
* @newsid : destinated security identifier
*/
int security_bounded_transition(struct selinux_state *state,
u32 old_sid, u32 new_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct sidtab_entry *old_entry, *new_entry;
struct type_datum *type;
int index;
int rc;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
rc = -EINVAL;
old_entry = sidtab_search_entry(sidtab, old_sid);
if (!old_entry) {
pr_err("SELinux: %s: unrecognized SID %u\n",
__func__, old_sid);
goto out;
}
rc = -EINVAL;
new_entry = sidtab_search_entry(sidtab, new_sid);
if (!new_entry) {
pr_err("SELinux: %s: unrecognized SID %u\n",
__func__, new_sid);
goto out;
}
rc = 0;
/* type/domain unchanged */
if (old_entry->context.type == new_entry->context.type)
goto out;
index = new_entry->context.type;
while (true) {
type = policydb->type_val_to_struct[index - 1];
BUG_ON(!type);
/* not bounded anymore */
rc = -EPERM;
if (!type->bounds)
break;
/* @newsid is bounded by @oldsid */
rc = 0;
if (type->bounds == old_entry->context.type)
break;
index = type->bounds;
}
if (rc) {
char *old_name = NULL;
char *new_name = NULL;
u32 length;
if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
&old_name, &length) &&
!sidtab_entry_to_string(policydb, sidtab, new_entry,
&new_name, &length)) {
audit_log(audit_context(),
GFP_ATOMIC, AUDIT_SELINUX_ERR,
"op=security_bounded_transition "
"seresult=denied "
"oldcontext=%s newcontext=%s",
old_name, new_name);
}
kfree(new_name);
kfree(old_name);
}
out:
rcu_read_unlock();
return rc;
}
static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
{
avd->allowed = 0;
avd->auditallow = 0;
avd->auditdeny = 0xffffffff;
if (policy)
avd->seqno = policy->latest_granting;
else
avd->seqno = 0;
avd->flags = 0;
}
void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
struct avtab_node *node)
{
unsigned int i;
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
if (xpermd->driver != node->datum.u.xperms->driver)
return;
} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
if (!security_xperm_test(node->datum.u.xperms->perms.p,
xpermd->driver))
return;
} else {
BUG();
}
if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
xpermd->used |= XPERMS_ALLOWED;
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
memset(xpermd->allowed->p, 0xff,
sizeof(xpermd->allowed->p));
}
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
xpermd->allowed->p[i] |=
node->datum.u.xperms->perms.p[i];
}
} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
xpermd->used |= XPERMS_AUDITALLOW;
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
memset(xpermd->auditallow->p, 0xff,
sizeof(xpermd->auditallow->p));
}
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
xpermd->auditallow->p[i] |=
node->datum.u.xperms->perms.p[i];
}
} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
xpermd->used |= XPERMS_DONTAUDIT;
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
memset(xpermd->dontaudit->p, 0xff,
sizeof(xpermd->dontaudit->p));
}
if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
xpermd->dontaudit->p[i] |=
node->datum.u.xperms->perms.p[i];
}
} else {
BUG();
}
}
void security_compute_xperms_decision(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 orig_tclass,
u8 driver,
struct extended_perms_decision *xpermd)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
u16 tclass;
struct context *scontext, *tcontext;
struct avtab_key avkey;
struct avtab_node *node;
struct ebitmap *sattr, *tattr;
struct ebitmap_node *snode, *tnode;
unsigned int i, j;
xpermd->driver = driver;
xpermd->used = 0;
memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
rcu_read_lock();
if (!selinux_initialized(state))
goto allow;
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
scontext = sidtab_search(sidtab, ssid);
if (!scontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, ssid);
goto out;
}
tcontext = sidtab_search(sidtab, tsid);
if (!tcontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, tsid);
goto out;
}
tclass = unmap_class(&policy->map, orig_tclass);
if (unlikely(orig_tclass && !tclass)) {
if (policydb->allow_unknown)
goto allow;
goto out;
}
if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
goto out;
}
avkey.target_class = tclass;
avkey.specified = AVTAB_XPERMS;
sattr = &policydb->type_attr_map_array[scontext->type - 1];
tattr = &policydb->type_attr_map_array[tcontext->type - 1];
ebitmap_for_each_positive_bit(sattr, snode, i) {
ebitmap_for_each_positive_bit(tattr, tnode, j) {
avkey.source_type = i + 1;
avkey.target_type = j + 1;
for (node = avtab_search_node(&policydb->te_avtab,
&avkey);
node;
node = avtab_search_node_next(node, avkey.specified))
services_compute_xperms_decision(xpermd, node);
cond_compute_xperms(&policydb->te_cond_avtab,
&avkey, xpermd);
}
}
out:
rcu_read_unlock();
return;
allow:
memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
goto out;
}
/**
* security_compute_av - Compute access vector decisions.
* @state: SELinux state
* @ssid: source security identifier
* @tsid: target security identifier
* @orig_tclass: target security class
* @avd: access vector decisions
* @xperms: extended permissions
*
* Compute a set of access vector decisions based on the
* SID pair (@ssid, @tsid) for the permissions in @tclass.
*/
void security_compute_av(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 orig_tclass,
struct av_decision *avd,
struct extended_perms *xperms)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
u16 tclass;
struct context *scontext = NULL, *tcontext = NULL;
rcu_read_lock();
policy = rcu_dereference(state->policy);
avd_init(policy, avd);
xperms->len = 0;
if (!selinux_initialized(state))
goto allow;
policydb = &policy->policydb;
sidtab = policy->sidtab;
scontext = sidtab_search(sidtab, ssid);
if (!scontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, ssid);
goto out;
}
/* permissive domain? */
if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
avd->flags |= AVD_FLAGS_PERMISSIVE;
tcontext = sidtab_search(sidtab, tsid);
if (!tcontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, tsid);
goto out;
}
tclass = unmap_class(&policy->map, orig_tclass);
if (unlikely(orig_tclass && !tclass)) {
if (policydb->allow_unknown)
goto allow;
goto out;
}
context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
xperms);
map_decision(&policy->map, orig_tclass, avd,
policydb->allow_unknown);
out:
rcu_read_unlock();
return;
allow:
avd->allowed = 0xffffffff;
goto out;
}
void security_compute_av_user(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 tclass,
struct av_decision *avd)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct context *scontext = NULL, *tcontext = NULL;
rcu_read_lock();
policy = rcu_dereference(state->policy);
avd_init(policy, avd);
if (!selinux_initialized(state))
goto allow;
policydb = &policy->policydb;
sidtab = policy->sidtab;
scontext = sidtab_search(sidtab, ssid);
if (!scontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, ssid);
goto out;
}
/* permissive domain? */
if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
avd->flags |= AVD_FLAGS_PERMISSIVE;
tcontext = sidtab_search(sidtab, tsid);
if (!tcontext) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, tsid);
goto out;
}
if (unlikely(!tclass)) {
if (policydb->allow_unknown)
goto allow;
goto out;
}
context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
NULL);
out:
rcu_read_unlock();
return;
allow:
avd->allowed = 0xffffffff;
goto out;
}
/*
* Write the security context string representation of
* the context structure `context' into a dynamically
* allocated string of the correct size. Set `*scontext'
* to point to this string and set `*scontext_len' to
* the length of the string.
*/
static int context_struct_to_string(struct policydb *p,
struct context *context,
char **scontext, u32 *scontext_len)
{
char *scontextp;
if (scontext)
*scontext = NULL;
*scontext_len = 0;
if (context->len) {
*scontext_len = context->len;
if (scontext) {
*scontext = kstrdup(context->str, GFP_ATOMIC);
if (!(*scontext))
return -ENOMEM;
}
return 0;
}
/* Compute the size of the context. */
*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
*scontext_len += mls_compute_context_len(p, context);
if (!scontext)
return 0;
/* Allocate space for the context; caller must free this space. */
scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
if (!scontextp)
return -ENOMEM;
*scontext = scontextp;
/*
* Copy the user name, role name and type name into the context.
*/
scontextp += sprintf(scontextp, "%s:%s:%s",
sym_name(p, SYM_USERS, context->user - 1),
sym_name(p, SYM_ROLES, context->role - 1),
sym_name(p, SYM_TYPES, context->type - 1));
mls_sid_to_context(p, context, &scontextp);
*scontextp = 0;
return 0;
}
static int sidtab_entry_to_string(struct policydb *p,
struct sidtab *sidtab,
struct sidtab_entry *entry,
char **scontext, u32 *scontext_len)
{
int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
if (rc != -ENOENT)
return rc;
rc = context_struct_to_string(p, &entry->context, scontext,
scontext_len);
if (!rc && scontext)
sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
return rc;
}
#include "initial_sid_to_string.h"
int security_sidtab_hash_stats(struct selinux_state *state, char *page)
{
struct selinux_policy *policy;
int rc;
if (!selinux_initialized(state)) {
pr_err("SELinux: %s: called before initial load_policy\n",
__func__);
return -EINVAL;
}
rcu_read_lock();
policy = rcu_dereference(state->policy);
rc = sidtab_hash_stats(policy->sidtab, page);
rcu_read_unlock();
return rc;
}
const char *security_get_initial_sid_context(u32 sid)
{
if (unlikely(sid > SECINITSID_NUM))
return NULL;
return initial_sid_to_string[sid];
}
static int security_sid_to_context_core(struct selinux_state *state,
u32 sid, char **scontext,
u32 *scontext_len, int force,
int only_invalid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct sidtab_entry *entry;
int rc = 0;
if (scontext)
*scontext = NULL;
*scontext_len = 0;
if (!selinux_initialized(state)) {
if (sid <= SECINITSID_NUM) {
char *scontextp;
const char *s = initial_sid_to_string[sid];
if (!s)
return -EINVAL;
*scontext_len = strlen(s) + 1;
if (!scontext)
return 0;
scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
if (!scontextp)
return -ENOMEM;
*scontext = scontextp;
return 0;
}
pr_err("SELinux: %s: called before initial "
"load_policy on unknown SID %d\n", __func__, sid);
return -EINVAL;
}
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
if (force)
entry = sidtab_search_entry_force(sidtab, sid);
else
entry = sidtab_search_entry(sidtab, sid);
if (!entry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, sid);
rc = -EINVAL;
goto out_unlock;
}
if (only_invalid && !entry->context.len)
goto out_unlock;
rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
scontext_len);
out_unlock:
rcu_read_unlock();
return rc;
}
/**
* security_sid_to_context - Obtain a context for a given SID.
* @state: SELinux state
* @sid: security identifier, SID
* @scontext: security context
* @scontext_len: length in bytes
*
* Write the string representation of the context associated with @sid
* into a dynamically allocated string of the correct size. Set @scontext
* to point to this string and set @scontext_len to the length of the string.
*/
int security_sid_to_context(struct selinux_state *state,
u32 sid, char **scontext, u32 *scontext_len)
{
return security_sid_to_context_core(state, sid, scontext,
scontext_len, 0, 0);
}
int security_sid_to_context_force(struct selinux_state *state, u32 sid,
char **scontext, u32 *scontext_len)
{
return security_sid_to_context_core(state, sid, scontext,
scontext_len, 1, 0);
}
/**
* security_sid_to_context_inval - Obtain a context for a given SID if it
* is invalid.
* @state: SELinux state
* @sid: security identifier, SID
* @scontext: security context
* @scontext_len: length in bytes
*
* Write the string representation of the context associated with @sid
* into a dynamically allocated string of the correct size, but only if the
* context is invalid in the current policy. Set @scontext to point to
* this string (or NULL if the context is valid) and set @scontext_len to
* the length of the string (or 0 if the context is valid).
*/
int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
char **scontext, u32 *scontext_len)
{
return security_sid_to_context_core(state, sid, scontext,
scontext_len, 1, 1);
}
/*
* Caveat: Mutates scontext.
*/
static int string_to_context_struct(struct policydb *pol,
struct sidtab *sidtabp,
char *scontext,
struct context *ctx,
u32 def_sid)
{
struct role_datum *role;
struct type_datum *typdatum;
struct user_datum *usrdatum;
char *scontextp, *p, oldc;
int rc = 0;
context_init(ctx);
/* Parse the security context. */
rc = -EINVAL;
scontextp = scontext;
/* Extract the user. */
p = scontextp;
while (*p && *p != ':')
p++;
if (*p == 0)
goto out;
*p++ = 0;
usrdatum = symtab_search(&pol->p_users, scontextp);
if (!usrdatum)
goto out;
ctx->user = usrdatum->value;
/* Extract role. */
scontextp = p;
while (*p && *p != ':')
p++;
if (*p == 0)
goto out;
*p++ = 0;
role = symtab_search(&pol->p_roles, scontextp);
if (!role)
goto out;
ctx->role = role->value;
/* Extract type. */
scontextp = p;
while (*p && *p != ':')
p++;
oldc = *p;
*p++ = 0;
typdatum = symtab_search(&pol->p_types, scontextp);
if (!typdatum || typdatum->attribute)
goto out;
ctx->type = typdatum->value;
rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
if (rc)
goto out;
/* Check the validity of the new context. */
rc = -EINVAL;
if (!policydb_context_isvalid(pol, ctx))
goto out;
rc = 0;
out:
if (rc)
context_destroy(ctx);
return rc;
}
static int security_context_to_sid_core(struct selinux_state *state,
const char *scontext, u32 scontext_len,
u32 *sid, u32 def_sid, gfp_t gfp_flags,
int force)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
char *scontext2, *str = NULL;
struct context context;
int rc = 0;
/* An empty security context is never valid. */
if (!scontext_len)
return -EINVAL;
/* Copy the string to allow changes and ensure a NUL terminator */
scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
if (!scontext2)
return -ENOMEM;
if (!selinux_initialized(state)) {
int i;
for (i = 1; i < SECINITSID_NUM; i++) {
const char *s = initial_sid_to_string[i];
if (s && !strcmp(s, scontext2)) {
*sid = i;
goto out;
}
}
*sid = SECINITSID_KERNEL;
goto out;
}
*sid = SECSID_NULL;
if (force) {
/* Save another copy for storing in uninterpreted form */
rc = -ENOMEM;
str = kstrdup(scontext2, gfp_flags);
if (!str)
goto out;
}
retry:
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
rc = string_to_context_struct(policydb, sidtab, scontext2,
&context, def_sid);
if (rc == -EINVAL && force) {
context.str = str;
context.len = strlen(str) + 1;
str = NULL;
} else if (rc)
goto out_unlock;
rc = sidtab_context_to_sid(sidtab, &context, sid);
if (rc == -ESTALE) {
rcu_read_unlock();
if (context.str) {
str = context.str;
context.str = NULL;
}
context_destroy(&context);
goto retry;
}
context_destroy(&context);
out_unlock:
rcu_read_unlock();
out:
kfree(scontext2);
kfree(str);
return rc;
}
/**
* security_context_to_sid - Obtain a SID for a given security context.
* @state: SELinux state
* @scontext: security context
* @scontext_len: length in bytes
* @sid: security identifier, SID
* @gfp: context for the allocation
*
* Obtains a SID associated with the security context that
* has the string representation specified by @scontext.
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
* memory is available, or 0 on success.
*/
int security_context_to_sid(struct selinux_state *state,
const char *scontext, u32 scontext_len, u32 *sid,
gfp_t gfp)
{
return security_context_to_sid_core(state, scontext, scontext_len,
sid, SECSID_NULL, gfp, 0);
}
int security_context_str_to_sid(struct selinux_state *state,
const char *scontext, u32 *sid, gfp_t gfp)
{
return security_context_to_sid(state, scontext, strlen(scontext),
sid, gfp);
}
/**
* security_context_to_sid_default - Obtain a SID for a given security context,
* falling back to specified default if needed.
*
* @state: SELinux state
* @scontext: security context
* @scontext_len: length in bytes
* @sid: security identifier, SID
* @def_sid: default SID to assign on error
* @gfp_flags: the allocator get-free-page (GFP) flags
*
* Obtains a SID associated with the security context that
* has the string representation specified by @scontext.
* The default SID is passed to the MLS layer to be used to allow
* kernel labeling of the MLS field if the MLS field is not present
* (for upgrading to MLS without full relabel).
* Implicitly forces adding of the context even if it cannot be mapped yet.
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
* memory is available, or 0 on success.
*/
int security_context_to_sid_default(struct selinux_state *state,
const char *scontext, u32 scontext_len,
u32 *sid, u32 def_sid, gfp_t gfp_flags)
{
return security_context_to_sid_core(state, scontext, scontext_len,
sid, def_sid, gfp_flags, 1);
}
int security_context_to_sid_force(struct selinux_state *state,
const char *scontext, u32 scontext_len,
u32 *sid)
{
return security_context_to_sid_core(state, scontext, scontext_len,
sid, SECSID_NULL, GFP_KERNEL, 1);
}
static int compute_sid_handle_invalid_context(
struct selinux_state *state,
struct selinux_policy *policy,
struct sidtab_entry *sentry,
struct sidtab_entry *tentry,
u16 tclass,
struct context *newcontext)
{
struct policydb *policydb = &policy->policydb;
struct sidtab *sidtab = policy->sidtab;
char *s = NULL, *t = NULL, *n = NULL;
u32 slen, tlen, nlen;
struct audit_buffer *ab;
if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
goto out;
if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
goto out;
if (context_struct_to_string(policydb, newcontext, &n, &nlen))
goto out;
ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
if (!ab)
goto out;
audit_log_format(ab,
"op=security_compute_sid invalid_context=");
/* no need to record the NUL with untrusted strings */
audit_log_n_untrustedstring(ab, n, nlen - 1);
audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
audit_log_end(ab);
out:
kfree(s);
kfree(t);
kfree(n);
if (!enforcing_enabled(state))
return 0;
return -EACCES;
}
static void filename_compute_type(struct policydb *policydb,
struct context *newcontext,
u32 stype, u32 ttype, u16 tclass,
const char *objname)
{
struct filename_trans_key ft;
struct filename_trans_datum *datum;
/*
* Most filename trans rules are going to live in specific directories
* like /dev or /var/run. This bitmap will quickly skip rule searches
* if the ttype does not contain any rules.
*/
if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
return;
ft.ttype = ttype;
ft.tclass = tclass;
ft.name = objname;
datum = policydb_filenametr_search(policydb, &ft);
while (datum) {
if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
newcontext->type = datum->otype;
return;
}
datum = datum->next;
}
}
static int security_compute_sid(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 orig_tclass,
u32 specified,
const char *objname,
u32 *out_sid,
bool kern)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct class_datum *cladatum;
struct context *scontext, *tcontext, newcontext;
struct sidtab_entry *sentry, *tentry;
struct avtab_key avkey;
struct avtab_datum *avdatum;
struct avtab_node *node;
u16 tclass;
int rc = 0;
bool sock;
if (!selinux_initialized(state)) {
switch (orig_tclass) {
case SECCLASS_PROCESS: /* kernel value */
*out_sid = ssid;
break;
default:
*out_sid = tsid;
break;
}
goto out;
}
retry:
cladatum = NULL;
context_init(&newcontext);
rcu_read_lock();
policy = rcu_dereference(state->policy);
if (kern) {
tclass = unmap_class(&policy->map, orig_tclass);
sock = security_is_socket_class(orig_tclass);
} else {
tclass = orig_tclass;
sock = security_is_socket_class(map_class(&policy->map,
tclass));
}
policydb = &policy->policydb;
sidtab = policy->sidtab;
sentry = sidtab_search_entry(sidtab, ssid);
if (!sentry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, ssid);
rc = -EINVAL;
goto out_unlock;
}
tentry = sidtab_search_entry(sidtab, tsid);
if (!tentry) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, tsid);
rc = -EINVAL;
goto out_unlock;
}
scontext = &sentry->context;
tcontext = &tentry->context;
if (tclass && tclass <= policydb->p_classes.nprim)
cladatum = policydb->class_val_to_struct[tclass - 1];
/* Set the user identity. */
switch (specified) {
case AVTAB_TRANSITION:
case AVTAB_CHANGE:
if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
newcontext.user = tcontext->user;
} else {
/* notice this gets both DEFAULT_SOURCE and unset */
/* Use the process user identity. */
newcontext.user = scontext->user;
}
break;
case AVTAB_MEMBER:
/* Use the related object owner. */
newcontext.user = tcontext->user;
break;
}
/* Set the role to default values. */
if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
newcontext.role = scontext->role;
} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
newcontext.role = tcontext->role;
} else {
if ((tclass == policydb->process_class) || sock)
newcontext.role = scontext->role;
else
newcontext.role = OBJECT_R_VAL;
}
/* Set the type to default values. */
if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
newcontext.type = scontext->type;
} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
newcontext.type = tcontext->type;
} else {
if ((tclass == policydb->process_class) || sock) {
/* Use the type of process. */
newcontext.type = scontext->type;
} else {
/* Use the type of the related object. */
newcontext.type = tcontext->type;
}
}
/* Look for a type transition/member/change rule. */
avkey.source_type = scontext->type;
avkey.target_type = tcontext->type;
avkey.target_class = tclass;
avkey.specified = specified;
avdatum = avtab_search(&policydb->te_avtab, &avkey);
/* If no permanent rule, also check for enabled conditional rules */
if (!avdatum) {
node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
for (; node; node = avtab_search_node_next(node, specified)) {
if (node->key.specified & AVTAB_ENABLED) {
avdatum = &node->datum;
break;
}
}
}
if (avdatum) {
/* Use the type from the type transition/member/change rule. */
newcontext.type = avdatum->u.data;
}
/* if we have a objname this is a file trans check so check those rules */
if (objname)
filename_compute_type(policydb, &newcontext, scontext->type,
tcontext->type, tclass, objname);
/* Check for class-specific changes. */
if (specified & AVTAB_TRANSITION) {
/* Look for a role transition rule. */
struct role_trans_datum *rtd;
struct role_trans_key rtk = {
.role = scontext->role,
.type = tcontext->type,
.tclass = tclass,
};
rtd = policydb_roletr_search(policydb, &rtk);
if (rtd)
newcontext.role = rtd->new_role;
}
/* Set the MLS attributes.
This is done last because it may allocate memory. */
rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
&newcontext, sock);
if (rc)
goto out_unlock;
/* Check the validity of the context. */
if (!policydb_context_isvalid(policydb, &newcontext)) {
rc = compute_sid_handle_invalid_context(state, policy, sentry,
tentry, tclass,
&newcontext);
if (rc)
goto out_unlock;
}
/* Obtain the sid for the context. */
rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
context_destroy(&newcontext);
goto retry;
}
out_unlock:
rcu_read_unlock();
context_destroy(&newcontext);
out:
return rc;
}
/**
* security_transition_sid - Compute the SID for a new subject/object.
* @state: SELinux state
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @qstr: object name
* @out_sid: security identifier for new subject/object
*
* Compute a SID to use for labeling a new subject or object in the
* class @tclass based on a SID pair (@ssid, @tsid).
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
* if insufficient memory is available, or %0 if the new SID was
* computed successfully.
*/
int security_transition_sid(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass,
const struct qstr *qstr, u32 *out_sid)
{
return security_compute_sid(state, ssid, tsid, tclass,
AVTAB_TRANSITION,
qstr ? qstr->name : NULL, out_sid, true);
}
int security_transition_sid_user(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass,
const char *objname, u32 *out_sid)
{
return security_compute_sid(state, ssid, tsid, tclass,
AVTAB_TRANSITION,
objname, out_sid, false);
}
/**
* security_member_sid - Compute the SID for member selection.
* @state: SELinux state
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @out_sid: security identifier for selected member
*
* Compute a SID to use when selecting a member of a polyinstantiated
* object of class @tclass based on a SID pair (@ssid, @tsid).
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
* if insufficient memory is available, or %0 if the SID was
* computed successfully.
*/
int security_member_sid(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 tclass,
u32 *out_sid)
{
return security_compute_sid(state, ssid, tsid, tclass,
AVTAB_MEMBER, NULL,
out_sid, false);
}
/**
* security_change_sid - Compute the SID for object relabeling.
* @state: SELinux state
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @out_sid: security identifier for selected member
*
* Compute a SID to use for relabeling an object of class @tclass
* based on a SID pair (@ssid, @tsid).
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
* if insufficient memory is available, or %0 if the SID was
* computed successfully.
*/
int security_change_sid(struct selinux_state *state,
u32 ssid,
u32 tsid,
u16 tclass,
u32 *out_sid)
{
return security_compute_sid(state,
ssid, tsid, tclass, AVTAB_CHANGE, NULL,
out_sid, false);
}
static inline int convert_context_handle_invalid_context(
struct selinux_state *state,
struct policydb *policydb,
struct context *context)
{
char *s;
u32 len;
if (enforcing_enabled(state))
return -EINVAL;
if (!context_struct_to_string(policydb, context, &s, &len)) {
pr_warn("SELinux: Context %s would be invalid if enforcing\n",
s);
kfree(s);
}
return 0;
}
/*
* Convert the values in the security context
* structure `oldc' from the values specified
* in the policy `p->oldp' to the values specified
* in the policy `p->newp', storing the new context
* in `newc'. Verify that the context is valid
* under the new policy.
*/
static int convert_context(struct context *oldc, struct context *newc, void *p,
gfp_t gfp_flags)
{
struct convert_context_args *args;
struct ocontext *oc;
struct role_datum *role;
struct type_datum *typdatum;
struct user_datum *usrdatum;
char *s;
u32 len;
int rc;
args = p;
if (oldc->str) {
s = kstrdup(oldc->str, gfp_flags);
if (!s)
return -ENOMEM;
rc = string_to_context_struct(args->newp, NULL, s,
newc, SECSID_NULL);
if (rc == -EINVAL) {
/*
* Retain string representation for later mapping.
*
* IMPORTANT: We need to copy the contents of oldc->str
* back into s again because string_to_context_struct()
* may have garbled it.
*/
memcpy(s, oldc->str, oldc->len);
context_init(newc);
newc->str = s;
newc->len = oldc->len;
return 0;
}
kfree(s);
if (rc) {
/* Other error condition, e.g. ENOMEM. */
pr_err("SELinux: Unable to map context %s, rc = %d.\n",
oldc->str, -rc);
return rc;
}
pr_info("SELinux: Context %s became valid (mapped).\n",
oldc->str);
return 0;
}
context_init(newc);
/* Convert the user. */
usrdatum = symtab_search(&args->newp->p_users,
sym_name(args->oldp,
SYM_USERS, oldc->user - 1));
if (!usrdatum)
goto bad;
newc->user = usrdatum->value;
/* Convert the role. */
role = symtab_search(&args->newp->p_roles,
sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
if (!role)
goto bad;
newc->role = role->value;
/* Convert the type. */
typdatum = symtab_search(&args->newp->p_types,
sym_name(args->oldp,
SYM_TYPES, oldc->type - 1));
if (!typdatum)
goto bad;
newc->type = typdatum->value;
/* Convert the MLS fields if dealing with MLS policies */
if (args->oldp->mls_enabled && args->newp->mls_enabled) {
rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
if (rc)
goto bad;
} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
/*
* Switching between non-MLS and MLS policy:
* ensure that the MLS fields of the context for all
* existing entries in the sidtab are filled in with a
* suitable default value, likely taken from one of the
* initial SIDs.
*/
oc = args->newp->ocontexts[OCON_ISID];
while (oc && oc->sid[0] != SECINITSID_UNLABELED)
oc = oc->next;
if (!oc) {
pr_err("SELinux: unable to look up"
" the initial SIDs list\n");
goto bad;
}
rc = mls_range_set(newc, &oc->context[0].range);
if (rc)
goto bad;
}
/* Check the validity of the new context. */
if (!policydb_context_isvalid(args->newp, newc)) {
rc = convert_context_handle_invalid_context(args->state,
args->oldp,
oldc);
if (rc)
goto bad;
}
return 0;
bad:
/* Map old representation to string and save it. */
rc = context_struct_to_string(args->oldp, oldc, &s, &len);
if (rc)
return rc;
context_destroy(newc);
newc->str = s;
newc->len = len;
pr_info("SELinux: Context %s became invalid (unmapped).\n",
newc->str);
return 0;
}
static void security_load_policycaps(struct selinux_state *state,
struct selinux_policy *policy)
{
struct policydb *p;
unsigned int i;
struct ebitmap_node *node;
p = &policy->policydb;
for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
WRITE_ONCE(state->policycap[i],
ebitmap_get_bit(&p->policycaps, i));
for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
pr_info("SELinux: policy capability %s=%d\n",
selinux_policycap_names[i],
ebitmap_get_bit(&p->policycaps, i));
ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
if (i >= ARRAY_SIZE(selinux_policycap_names))
pr_info("SELinux: unknown policy capability %u\n",
i);
}
}
static int security_preserve_bools(struct selinux_policy *oldpolicy,
struct selinux_policy *newpolicy);
static void selinux_policy_free(struct selinux_policy *policy)
{
if (!policy)
return;
sidtab_destroy(policy->sidtab);
kfree(policy->map.mapping);
policydb_destroy(&policy->policydb);
kfree(policy->sidtab);
kfree(policy);
}
static void selinux_policy_cond_free(struct selinux_policy *policy)
{
cond_policydb_destroy_dup(&policy->policydb);
kfree(policy);
}
void selinux_policy_cancel(struct selinux_state *state,
struct selinux_load_state *load_state)
{
struct selinux_policy *oldpolicy;
oldpolicy = rcu_dereference_protected(state->policy,
lockdep_is_held(&state->policy_mutex));
sidtab_cancel_convert(oldpolicy->sidtab);
selinux_policy_free(load_state->policy);
kfree(load_state->convert_data);
}
static void selinux_notify_policy_change(struct selinux_state *state,
u32 seqno)
{
/* Flush external caches and notify userspace of policy load */
avc_ss_reset(state->avc, seqno);
selnl_notify_policyload(seqno);
selinux_status_update_policyload(state, seqno);
selinux_netlbl_cache_invalidate();
selinux_xfrm_notify_policyload();
selinux_ima_measure_state_locked(state);
}
void selinux_policy_commit(struct selinux_state *state,
struct selinux_load_state *load_state)
{
struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
unsigned long flags;
u32 seqno;
oldpolicy = rcu_dereference_protected(state->policy,
lockdep_is_held(&state->policy_mutex));
/* If switching between different policy types, log MLS status */
if (oldpolicy) {
if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
pr_info("SELinux: Disabling MLS support...\n");
else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
pr_info("SELinux: Enabling MLS support...\n");
}
/* Set latest granting seqno for new policy. */
if (oldpolicy)
newpolicy->latest_granting = oldpolicy->latest_granting + 1;
else
newpolicy->latest_granting = 1;
seqno = newpolicy->latest_granting;
/* Install the new policy. */
if (oldpolicy) {
sidtab_freeze_begin(oldpolicy->sidtab, &flags);
rcu_assign_pointer(state->policy, newpolicy);
sidtab_freeze_end(oldpolicy->sidtab, &flags);
} else {
rcu_assign_pointer(state->policy, newpolicy);
}
/* Load the policycaps from the new policy */
security_load_policycaps(state, newpolicy);
if (!selinux_initialized(state)) {
/*
* After first policy load, the security server is
* marked as initialized and ready to handle requests and
* any objects created prior to policy load are then labeled.
*/
selinux_mark_initialized(state);
selinux_complete_init();
}
/* Free the old policy */
synchronize_rcu();
selinux_policy_free(oldpolicy);
kfree(load_state->convert_data);
/* Notify others of the policy change */
selinux_notify_policy_change(state, seqno);
}
/**
* security_load_policy - Load a security policy configuration.
* @state: SELinux state
* @data: binary policy data
* @len: length of data in bytes
* @load_state: policy load state
*
* Load a new set of security policy configuration data,
* validate it and convert the SID table as necessary.
* This function will flush the access vector cache after
* loading the new policy.
*/
int security_load_policy(struct selinux_state *state, void *data, size_t len,
struct selinux_load_state *load_state)
{
struct selinux_policy *newpolicy, *oldpolicy;
struct selinux_policy_convert_data *convert_data;
int rc = 0;
struct policy_file file = { data, len }, *fp = &file;
newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
if (!newpolicy)
return -ENOMEM;
newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
if (!newpolicy->sidtab) {
rc = -ENOMEM;
goto err_policy;
}
rc = policydb_read(&newpolicy->policydb, fp);
if (rc)
goto err_sidtab;
newpolicy->policydb.len = len;
rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
&newpolicy->map);
if (rc)
goto err_policydb;
rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
if (rc) {
pr_err("SELinux: unable to load the initial SIDs\n");
goto err_mapping;
}
if (!selinux_initialized(state)) {
/* First policy load, so no need to preserve state from old policy */
load_state->policy = newpolicy;
load_state->convert_data = NULL;
return 0;
}
oldpolicy = rcu_dereference_protected(state->policy,
lockdep_is_held(&state->policy_mutex));
/* Preserve active boolean values from the old policy */
rc = security_preserve_bools(oldpolicy, newpolicy);
if (rc) {
pr_err("SELinux: unable to preserve booleans\n");
goto err_free_isids;
}
convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
if (!convert_data) {
rc = -ENOMEM;
goto err_free_isids;
}
/*
* Convert the internal representations of contexts
* in the new SID table.
*/
convert_data->args.state = state;
convert_data->args.oldp = &oldpolicy->policydb;
convert_data->args.newp = &newpolicy->policydb;
convert_data->sidtab_params.func = convert_context;
convert_data->sidtab_params.args = &convert_data->args;
convert_data->sidtab_params.target = newpolicy->sidtab;
rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
if (rc) {
pr_err("SELinux: unable to convert the internal"
" representation of contexts in the new SID"
" table\n");
goto err_free_convert_data;
}
load_state->policy = newpolicy;
load_state->convert_data = convert_data;
return 0;
err_free_convert_data:
kfree(convert_data);
err_free_isids:
sidtab_destroy(newpolicy->sidtab);
err_mapping:
kfree(newpolicy->map.mapping);
err_policydb:
policydb_destroy(&newpolicy->policydb);
err_sidtab:
kfree(newpolicy->sidtab);
err_policy:
kfree(newpolicy);
return rc;
}
/**
* ocontext_to_sid - Helper to safely get sid for an ocontext
* @sidtab: SID table
* @c: ocontext structure
* @index: index of the context entry (0 or 1)
* @out_sid: pointer to the resulting SID value
*
* For all ocontexts except OCON_ISID the SID fields are populated
* on-demand when needed. Since updating the SID value is an SMP-sensitive
* operation, this helper must be used to do that safely.
*
* WARNING: This function may return -ESTALE, indicating that the caller
* must retry the operation after re-acquiring the policy pointer!
*/
static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
size_t index, u32 *out_sid)
{
int rc;
u32 sid;
/* Ensure the associated sidtab entry is visible to this thread. */
sid = smp_load_acquire(&c->sid[index]);
if (!sid) {
rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
if (rc)
return rc;
/*
* Ensure the new sidtab entry is visible to other threads
* when they see the SID.
*/
smp_store_release(&c->sid[index], sid);
}
*out_sid = sid;
return 0;
}
/**
* security_port_sid - Obtain the SID for a port.
* @state: SELinux state
* @protocol: protocol number
* @port: port number
* @out_sid: security identifier
*/
int security_port_sid(struct selinux_state *state,
u8 protocol, u16 port, u32 *out_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct ocontext *c;
int rc;
if (!selinux_initialized(state)) {
*out_sid = SECINITSID_PORT;
return 0;
}
retry:
rc = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
c = policydb->ocontexts[OCON_PORT];
while (c) {
if (c->u.port.protocol == protocol &&
c->u.port.low_port <= port &&
c->u.port.high_port >= port)
break;
c = c->next;
}
if (c) {
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else {
*out_sid = SECINITSID_PORT;
}
out:
rcu_read_unlock();
return rc;
}
/**
* security_ib_pkey_sid - Obtain the SID for a pkey.
* @state: SELinux state
* @subnet_prefix: Subnet Prefix
* @pkey_num: pkey number
* @out_sid: security identifier
*/
int security_ib_pkey_sid(struct selinux_state *state,
u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct ocontext *c;
int rc;
if (!selinux_initialized(state)) {
*out_sid = SECINITSID_UNLABELED;
return 0;
}
retry:
rc = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
c = policydb->ocontexts[OCON_IBPKEY];
while (c) {
if (c->u.ibpkey.low_pkey <= pkey_num &&
c->u.ibpkey.high_pkey >= pkey_num &&
c->u.ibpkey.subnet_prefix == subnet_prefix)
break;
c = c->next;
}
if (c) {
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else
*out_sid = SECINITSID_UNLABELED;
out:
rcu_read_unlock();
return rc;
}
/**
* security_ib_endport_sid - Obtain the SID for a subnet management interface.
* @state: SELinux state
* @dev_name: device name
* @port_num: port number
* @out_sid: security identifier
*/
int security_ib_endport_sid(struct selinux_state *state,
const char *dev_name, u8 port_num, u32 *out_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct ocontext *c;
int rc;
if (!selinux_initialized(state)) {
*out_sid = SECINITSID_UNLABELED;
return 0;
}
retry:
rc = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
c = policydb->ocontexts[OCON_IBENDPORT];
while (c) {
if (c->u.ibendport.port == port_num &&
!strncmp(c->u.ibendport.dev_name,
dev_name,
IB_DEVICE_NAME_MAX))
break;
c = c->next;
}
if (c) {
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else
*out_sid = SECINITSID_UNLABELED;
out:
rcu_read_unlock();
return rc;
}
/**
* security_netif_sid - Obtain the SID for a network interface.
* @state: SELinux state
* @name: interface name
* @if_sid: interface SID
*/
int security_netif_sid(struct selinux_state *state,
char *name, u32 *if_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
int rc;
struct ocontext *c;
if (!selinux_initialized(state)) {
*if_sid = SECINITSID_NETIF;
return 0;
}
retry:
rc = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
c = policydb->ocontexts[OCON_NETIF];
while (c) {
if (strcmp(name, c->u.name) == 0)
break;
c = c->next;
}
if (c) {
rc = ocontext_to_sid(sidtab, c, 0, if_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else
*if_sid = SECINITSID_NETIF;
out:
rcu_read_unlock();
return rc;
}
static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
{
int i, fail = 0;
for (i = 0; i < 4; i++)
if (addr[i] != (input[i] & mask[i])) {
fail = 1;
break;
}
return !fail;
}
/**
* security_node_sid - Obtain the SID for a node (host).
* @state: SELinux state
* @domain: communication domain aka address family
* @addrp: address
* @addrlen: address length in bytes
* @out_sid: security identifier
*/
int security_node_sid(struct selinux_state *state,
u16 domain,
void *addrp,
u32 addrlen,
u32 *out_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
int rc;
struct ocontext *c;
if (!selinux_initialized(state)) {
*out_sid = SECINITSID_NODE;
return 0;
}
retry:
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
switch (domain) {
case AF_INET: {
u32 addr;
rc = -EINVAL;
if (addrlen != sizeof(u32))
goto out;
addr = *((u32 *)addrp);
c = policydb->ocontexts[OCON_NODE];
while (c) {
if (c->u.node.addr == (addr & c->u.node.mask))
break;
c = c->next;
}
break;
}
case AF_INET6:
rc = -EINVAL;
if (addrlen != sizeof(u64) * 2)
goto out;
c = policydb->ocontexts[OCON_NODE6];
while (c) {
if (match_ipv6_addrmask(addrp, c->u.node6.addr,
c->u.node6.mask))
break;
c = c->next;
}
break;
default:
rc = 0;
*out_sid = SECINITSID_NODE;
goto out;
}
if (c) {
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else {
*out_sid = SECINITSID_NODE;
}
rc = 0;
out:
rcu_read_unlock();
return rc;
}
#define SIDS_NEL 25
/**
* security_get_user_sids - Obtain reachable SIDs for a user.
* @state: SELinux state
* @fromsid: starting SID
* @username: username
* @sids: array of reachable SIDs for user
* @nel: number of elements in @sids
*
* Generate the set of SIDs for legal security contexts
* for a given user that can be reached by @fromsid.
* Set *@sids to point to a dynamically allocated
* array containing the set of SIDs. Set *@nel to the
* number of elements in the array.
*/
int security_get_user_sids(struct selinux_state *state,
u32 fromsid,
char *username,
u32 **sids,
u32 *nel)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct context *fromcon, usercon;
u32 *mysids = NULL, *mysids2, sid;
u32 i, j, mynel, maxnel = SIDS_NEL;
struct user_datum *user;
struct role_datum *role;
struct ebitmap_node *rnode, *tnode;
int rc;
*sids = NULL;
*nel = 0;
if (!selinux_initialized(state))
return 0;
mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
if (!mysids)
return -ENOMEM;
retry:
mynel = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
context_init(&usercon);
rc = -EINVAL;
fromcon = sidtab_search(sidtab, fromsid);
if (!fromcon)
goto out_unlock;
rc = -EINVAL;
user = symtab_search(&policydb->p_users, username);
if (!user)
goto out_unlock;
usercon.user = user->value;
ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
role = policydb->role_val_to_struct[i];
usercon.role = i + 1;
ebitmap_for_each_positive_bit(&role->types, tnode, j) {
usercon.type = j + 1;
if (mls_setup_user_range(policydb, fromcon, user,
&usercon))
continue;
rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out_unlock;
if (mynel < maxnel) {
mysids[mynel++] = sid;
} else {
rc = -ENOMEM;
maxnel += SIDS_NEL;
mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
if (!mysids2)
goto out_unlock;
memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
kfree(mysids);
mysids = mysids2;
mysids[mynel++] = sid;
}
}
}
rc = 0;
out_unlock:
rcu_read_unlock();
if (rc || !mynel) {
kfree(mysids);
return rc;
}
rc = -ENOMEM;
mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
if (!mysids2) {
kfree(mysids);
return rc;
}
for (i = 0, j = 0; i < mynel; i++) {
struct av_decision dummy_avd;
rc = avc_has_perm_noaudit(state,
fromsid, mysids[i],
SECCLASS_PROCESS, /* kernel value */
PROCESS__TRANSITION, AVC_STRICT,
&dummy_avd);
if (!rc)
mysids2[j++] = mysids[i];
cond_resched();
}
kfree(mysids);
*sids = mysids2;
*nel = j;
return 0;
}
/**
* __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
* @policy: policy
* @fstype: filesystem type
* @path: path from root of mount
* @orig_sclass: file security class
* @sid: SID for path
*
* Obtain a SID to use for a file in a filesystem that
* cannot support xattr or use a fixed labeling behavior like
* transition SIDs or task SIDs.
*
* WARNING: This function may return -ESTALE, indicating that the caller
* must retry the operation after re-acquiring the policy pointer!
*/
static inline int __security_genfs_sid(struct selinux_policy *policy,
const char *fstype,
const char *path,
u16 orig_sclass,
u32 *sid)
{
struct policydb *policydb = &policy->policydb;
struct sidtab *sidtab = policy->sidtab;
int len;
u16 sclass;
struct genfs *genfs;
struct ocontext *c;
int cmp = 0;
while (path[0] == '/' && path[1] == '/')
path++;
sclass = unmap_class(&policy->map, orig_sclass);
*sid = SECINITSID_UNLABELED;
for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
cmp = strcmp(fstype, genfs->fstype);
if (cmp <= 0)
break;
}
if (!genfs || cmp)
return -ENOENT;
for (c = genfs->head; c; c = c->next) {
len = strlen(c->u.name);
if ((!c->v.sclass || sclass == c->v.sclass) &&
(strncmp(c->u.name, path, len) == 0))
break;
}
if (!c)
return -ENOENT;
return ocontext_to_sid(sidtab, c, 0, sid);
}
/**
* security_genfs_sid - Obtain a SID for a file in a filesystem
* @state: SELinux state
* @fstype: filesystem type
* @path: path from root of mount
* @orig_sclass: file security class
* @sid: SID for path
*
* Acquire policy_rwlock before calling __security_genfs_sid() and release
* it afterward.
*/
int security_genfs_sid(struct selinux_state *state,
const char *fstype,
const char *path,
u16 orig_sclass,
u32 *sid)
{
struct selinux_policy *policy;
int retval;
if (!selinux_initialized(state)) {
*sid = SECINITSID_UNLABELED;
return 0;
}
do {
rcu_read_lock();
policy = rcu_dereference(state->policy);
retval = __security_genfs_sid(policy, fstype, path,
orig_sclass, sid);
rcu_read_unlock();
} while (retval == -ESTALE);
return retval;
}
int selinux_policy_genfs_sid(struct selinux_policy *policy,
const char *fstype,
const char *path,
u16 orig_sclass,
u32 *sid)
{
/* no lock required, policy is not yet accessible by other threads */
return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
}
/**
* security_fs_use - Determine how to handle labeling for a filesystem.
* @state: SELinux state
* @sb: superblock in question
*/
int security_fs_use(struct selinux_state *state, struct super_block *sb)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
int rc;
struct ocontext *c;
struct superblock_security_struct *sbsec = selinux_superblock(sb);
const char *fstype = sb->s_type->name;
if (!selinux_initialized(state)) {
sbsec->behavior = SECURITY_FS_USE_NONE;
sbsec->sid = SECINITSID_UNLABELED;
return 0;
}
retry:
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
c = policydb->ocontexts[OCON_FSUSE];
while (c) {
if (strcmp(fstype, c->u.name) == 0)
break;
c = c->next;
}
if (c) {
sbsec->behavior = c->v.behavior;
rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
} else {
rc = __security_genfs_sid(policy, fstype, "/",
SECCLASS_DIR, &sbsec->sid);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc) {
sbsec->behavior = SECURITY_FS_USE_NONE;
rc = 0;
} else {
sbsec->behavior = SECURITY_FS_USE_GENFS;
}
}
out:
rcu_read_unlock();
return rc;
}
int security_get_bools(struct selinux_policy *policy,
u32 *len, char ***names, int **values)
{
struct policydb *policydb;
u32 i;
int rc;
policydb = &policy->policydb;
*names = NULL;
*values = NULL;
rc = 0;
*len = policydb->p_bools.nprim;
if (!*len)
goto out;
rc = -ENOMEM;
*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
if (!*names)
goto err;
rc = -ENOMEM;
*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
if (!*values)
goto err;
for (i = 0; i < *len; i++) {
(*values)[i] = policydb->bool_val_to_struct[i]->state;
rc = -ENOMEM;
(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
GFP_ATOMIC);
if (!(*names)[i])
goto err;
}
rc = 0;
out:
return rc;
err:
if (*names) {
for (i = 0; i < *len; i++)
kfree((*names)[i]);
kfree(*names);
}
kfree(*values);
*len = 0;
*names = NULL;
*values = NULL;
goto out;
}
int security_set_bools(struct selinux_state *state, u32 len, int *values)
{
struct selinux_policy *newpolicy, *oldpolicy;
int rc;
u32 i, seqno = 0;
if (!selinux_initialized(state))
return -EINVAL;
oldpolicy = rcu_dereference_protected(state->policy,
lockdep_is_held(&state->policy_mutex));
/* Consistency check on number of booleans, should never fail */
if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
return -EINVAL;
newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
if (!newpolicy)
return -ENOMEM;
/*
* Deep copy only the parts of the policydb that might be
* modified as a result of changing booleans.
*/
rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
if (rc) {
kfree(newpolicy);
return -ENOMEM;
}
/* Update the boolean states in the copy */
for (i = 0; i < len; i++) {
int new_state = !!values[i];
int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
if (new_state != old_state) {
audit_log(audit_context(), GFP_ATOMIC,
AUDIT_MAC_CONFIG_CHANGE,
"bool=%s val=%d old_val=%d auid=%u ses=%u",
sym_name(&newpolicy->policydb, SYM_BOOLS, i),
new_state,
old_state,
from_kuid(&init_user_ns, audit_get_loginuid(current)),
audit_get_sessionid(current));
newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
}
}
/* Re-evaluate the conditional rules in the copy */
evaluate_cond_nodes(&newpolicy->policydb);
/* Set latest granting seqno for new policy */
newpolicy->latest_granting = oldpolicy->latest_granting + 1;
seqno = newpolicy->latest_granting;
/* Install the new policy */
rcu_assign_pointer(state->policy, newpolicy);
/*
* Free the conditional portions of the old policydb
* that were copied for the new policy, and the oldpolicy
* structure itself but not what it references.
*/
synchronize_rcu();
selinux_policy_cond_free(oldpolicy);
/* Notify others of the policy change */
selinux_notify_policy_change(state, seqno);
return 0;
}
int security_get_bool_value(struct selinux_state *state,
u32 index)
{
struct selinux_policy *policy;
struct policydb *policydb;
int rc;
u32 len;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
rc = -EFAULT;
len = policydb->p_bools.nprim;
if (index >= len)
goto out;
rc = policydb->bool_val_to_struct[index]->state;
out:
rcu_read_unlock();
return rc;
}
static int security_preserve_bools(struct selinux_policy *oldpolicy,
struct selinux_policy *newpolicy)
{
int rc, *bvalues = NULL;
char **bnames = NULL;
struct cond_bool_datum *booldatum;
u32 i, nbools = 0;
rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
if (rc)
goto out;
for (i = 0; i < nbools; i++) {
booldatum = symtab_search(&newpolicy->policydb.p_bools,
bnames[i]);
if (booldatum)
booldatum->state = bvalues[i];
}
evaluate_cond_nodes(&newpolicy->policydb);
out:
if (bnames) {
for (i = 0; i < nbools; i++)
kfree(bnames[i]);
}
kfree(bnames);
kfree(bvalues);
return rc;
}
/*
* security_sid_mls_copy() - computes a new sid based on the given
* sid and the mls portion of mls_sid.
*/
int security_sid_mls_copy(struct selinux_state *state,
u32 sid, u32 mls_sid, u32 *new_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
struct context *context1;
struct context *context2;
struct context newcon;
char *s;
u32 len;
int rc;
if (!selinux_initialized(state)) {
*new_sid = sid;
return 0;
}
retry:
rc = 0;
context_init(&newcon);
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
if (!policydb->mls_enabled) {
*new_sid = sid;
goto out_unlock;
}
rc = -EINVAL;
context1 = sidtab_search(sidtab, sid);
if (!context1) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, sid);
goto out_unlock;
}
rc = -EINVAL;
context2 = sidtab_search(sidtab, mls_sid);
if (!context2) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, mls_sid);
goto out_unlock;
}
newcon.user = context1->user;
newcon.role = context1->role;
newcon.type = context1->type;
rc = mls_context_cpy(&newcon, context2);
if (rc)
goto out_unlock;
/* Check the validity of the new context. */
if (!policydb_context_isvalid(policydb, &newcon)) {
rc = convert_context_handle_invalid_context(state, policydb,
&newcon);
if (rc) {
if (!context_struct_to_string(policydb, &newcon, &s,
&len)) {
struct audit_buffer *ab;
ab = audit_log_start(audit_context(),
GFP_ATOMIC,
AUDIT_SELINUX_ERR);
audit_log_format(ab,
"op=security_sid_mls_copy invalid_context=");
/* don't record NUL with untrusted strings */
audit_log_n_untrustedstring(ab, s, len - 1);
audit_log_end(ab);
kfree(s);
}
goto out_unlock;
}
}
rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
if (rc == -ESTALE) {
rcu_read_unlock();
context_destroy(&newcon);
goto retry;
}
out_unlock:
rcu_read_unlock();
context_destroy(&newcon);
return rc;
}
/**
* security_net_peersid_resolve - Compare and resolve two network peer SIDs
* @state: SELinux state
* @nlbl_sid: NetLabel SID
* @nlbl_type: NetLabel labeling protocol type
* @xfrm_sid: XFRM SID
* @peer_sid: network peer sid
*
* Description:
* Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
* resolved into a single SID it is returned via @peer_sid and the function
* returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
* returns a negative value. A table summarizing the behavior is below:
*
* | function return | @sid
* ------------------------------+-----------------+-----------------
* no peer labels | 0 | SECSID_NULL
* single peer label | 0 | <peer_label>
* multiple, consistent labels | 0 | <peer_label>
* multiple, inconsistent labels | -<errno> | SECSID_NULL
*
*/
int security_net_peersid_resolve(struct selinux_state *state,
u32 nlbl_sid, u32 nlbl_type,
u32 xfrm_sid,
u32 *peer_sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
int rc;
struct context *nlbl_ctx;
struct context *xfrm_ctx;
*peer_sid = SECSID_NULL;
/* handle the common (which also happens to be the set of easy) cases
* right away, these two if statements catch everything involving a
* single or absent peer SID/label */
if (xfrm_sid == SECSID_NULL) {
*peer_sid = nlbl_sid;
return 0;
}
/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
* and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
* is present */
if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
*peer_sid = xfrm_sid;
return 0;
}
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
/*
* We don't need to check initialized here since the only way both
* nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
* security server was initialized and state->initialized was true.
*/
if (!policydb->mls_enabled) {
rc = 0;
goto out;
}
rc = -EINVAL;
nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
if (!nlbl_ctx) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, nlbl_sid);
goto out;
}
rc = -EINVAL;
xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
if (!xfrm_ctx) {
pr_err("SELinux: %s: unrecognized SID %d\n",
__func__, xfrm_sid);
goto out;
}
rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
if (rc)
goto out;
/* at present NetLabel SIDs/labels really only carry MLS
* information so if the MLS portion of the NetLabel SID
* matches the MLS portion of the labeled XFRM SID/label
* then pass along the XFRM SID as it is the most
* expressive */
*peer_sid = xfrm_sid;
out:
rcu_read_unlock();
return rc;
}
static int get_classes_callback(void *k, void *d, void *args)
{
struct class_datum *datum = d;
char *name = k, **classes = args;
int value = datum->value - 1;
classes[value] = kstrdup(name, GFP_ATOMIC);
if (!classes[value])
return -ENOMEM;
return 0;
}
int security_get_classes(struct selinux_policy *policy,
char ***classes, int *nclasses)
{
struct policydb *policydb;
int rc;
policydb = &policy->policydb;
rc = -ENOMEM;
*nclasses = policydb->p_classes.nprim;
*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
if (!*classes)
goto out;
rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
*classes);
if (rc) {
int i;
for (i = 0; i < *nclasses; i++)
kfree((*classes)[i]);
kfree(*classes);
}
out:
return rc;
}
static int get_permissions_callback(void *k, void *d, void *args)
{
struct perm_datum *datum = d;
char *name = k, **perms = args;
int value = datum->value - 1;
perms[value] = kstrdup(name, GFP_ATOMIC);
if (!perms[value])
return -ENOMEM;
return 0;
}
int security_get_permissions(struct selinux_policy *policy,
char *class, char ***perms, int *nperms)
{
struct policydb *policydb;
int rc, i;
struct class_datum *match;
policydb = &policy->policydb;
rc = -EINVAL;
match = symtab_search(&policydb->p_classes, class);
if (!match) {
pr_err("SELinux: %s: unrecognized class %s\n",
__func__, class);
goto out;
}
rc = -ENOMEM;
*nperms = match->permissions.nprim;
*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
if (!*perms)
goto out;
if (match->comdatum) {
rc = hashtab_map(&match->comdatum->permissions.table,
get_permissions_callback, *perms);
if (rc)
goto err;
}
rc = hashtab_map(&match->permissions.table, get_permissions_callback,
*perms);
if (rc)
goto err;
out:
return rc;
err:
for (i = 0; i < *nperms; i++)
kfree((*perms)[i]);
kfree(*perms);
return rc;
}
int security_get_reject_unknown(struct selinux_state *state)
{
struct selinux_policy *policy;
int value;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
value = policy->policydb.reject_unknown;
rcu_read_unlock();
return value;
}
int security_get_allow_unknown(struct selinux_state *state)
{
struct selinux_policy *policy;
int value;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
value = policy->policydb.allow_unknown;
rcu_read_unlock();
return value;
}
/**
* security_policycap_supported - Check for a specific policy capability
* @state: SELinux state
* @req_cap: capability
*
* Description:
* This function queries the currently loaded policy to see if it supports the
* capability specified by @req_cap. Returns true (1) if the capability is
* supported, false (0) if it isn't supported.
*
*/
int security_policycap_supported(struct selinux_state *state,
unsigned int req_cap)
{
struct selinux_policy *policy;
int rc;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
rcu_read_unlock();
return rc;
}
struct selinux_audit_rule {
u32 au_seqno;
struct context au_ctxt;
};
void selinux_audit_rule_free(void *vrule)
{
struct selinux_audit_rule *rule = vrule;
if (rule) {
context_destroy(&rule->au_ctxt);
kfree(rule);
}
}
int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
{
struct selinux_state *state = &selinux_state;
struct selinux_policy *policy;
struct policydb *policydb;
struct selinux_audit_rule *tmprule;
struct role_datum *roledatum;
struct type_datum *typedatum;
struct user_datum *userdatum;
struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
int rc = 0;
*rule = NULL;
if (!selinux_initialized(state))
return -EOPNOTSUPP;
switch (field) {
case AUDIT_SUBJ_USER:
case AUDIT_SUBJ_ROLE:
case AUDIT_SUBJ_TYPE:
case AUDIT_OBJ_USER:
case AUDIT_OBJ_ROLE:
case AUDIT_OBJ_TYPE:
/* only 'equals' and 'not equals' fit user, role, and type */
if (op != Audit_equal && op != Audit_not_equal)
return -EINVAL;
break;
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
/* we do not allow a range, indicated by the presence of '-' */
if (strchr(rulestr, '-'))
return -EINVAL;
break;
default:
/* only the above fields are valid */
return -EINVAL;
}
tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
if (!tmprule)
return -ENOMEM;
context_init(&tmprule->au_ctxt);
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
tmprule->au_seqno = policy->latest_granting;
switch (field) {
case AUDIT_SUBJ_USER:
case AUDIT_OBJ_USER:
rc = -EINVAL;
userdatum = symtab_search(&policydb->p_users, rulestr);
if (!userdatum)
goto out;
tmprule->au_ctxt.user = userdatum->value;
break;
case AUDIT_SUBJ_ROLE:
case AUDIT_OBJ_ROLE:
rc = -EINVAL;
roledatum = symtab_search(&policydb->p_roles, rulestr);
if (!roledatum)
goto out;
tmprule->au_ctxt.role = roledatum->value;
break;
case AUDIT_SUBJ_TYPE:
case AUDIT_OBJ_TYPE:
rc = -EINVAL;
typedatum = symtab_search(&policydb->p_types, rulestr);
if (!typedatum)
goto out;
tmprule->au_ctxt.type = typedatum->value;
break;
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
GFP_ATOMIC);
if (rc)
goto out;
break;
}
rc = 0;
out:
rcu_read_unlock();
if (rc) {
selinux_audit_rule_free(tmprule);
tmprule = NULL;
}
*rule = tmprule;
return rc;
}
/* Check to see if the rule contains any selinux fields */
int selinux_audit_rule_known(struct audit_krule *rule)
{
int i;
for (i = 0; i < rule->field_count; i++) {
struct audit_field *f = &rule->fields[i];
switch (f->type) {
case AUDIT_SUBJ_USER:
case AUDIT_SUBJ_ROLE:
case AUDIT_SUBJ_TYPE:
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
case AUDIT_OBJ_USER:
case AUDIT_OBJ_ROLE:
case AUDIT_OBJ_TYPE:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
return 1;
}
}
return 0;
}
int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
{
struct selinux_state *state = &selinux_state;
struct selinux_policy *policy;
struct context *ctxt;
struct mls_level *level;
struct selinux_audit_rule *rule = vrule;
int match = 0;
if (unlikely(!rule)) {
WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
return -ENOENT;
}
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
if (rule->au_seqno < policy->latest_granting) {
match = -ESTALE;
goto out;
}
ctxt = sidtab_search(policy->sidtab, sid);
if (unlikely(!ctxt)) {
WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
sid);
match = -ENOENT;
goto out;
}
/* a field/op pair that is not caught here will simply fall through
without a match */
switch (field) {
case AUDIT_SUBJ_USER:
case AUDIT_OBJ_USER:
switch (op) {
case Audit_equal:
match = (ctxt->user == rule->au_ctxt.user);
break;
case Audit_not_equal:
match = (ctxt->user != rule->au_ctxt.user);
break;
}
break;
case AUDIT_SUBJ_ROLE:
case AUDIT_OBJ_ROLE:
switch (op) {
case Audit_equal:
match = (ctxt->role == rule->au_ctxt.role);
break;
case Audit_not_equal:
match = (ctxt->role != rule->au_ctxt.role);
break;
}
break;
case AUDIT_SUBJ_TYPE:
case AUDIT_OBJ_TYPE:
switch (op) {
case Audit_equal:
match = (ctxt->type == rule->au_ctxt.type);
break;
case Audit_not_equal:
match = (ctxt->type != rule->au_ctxt.type);
break;
}
break;
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
level = ((field == AUDIT_SUBJ_SEN ||
field == AUDIT_OBJ_LEV_LOW) ?
&ctxt->range.level[0] : &ctxt->range.level[1]);
switch (op) {
case Audit_equal:
match = mls_level_eq(&rule->au_ctxt.range.level[0],
level);
break;
case Audit_not_equal:
match = !mls_level_eq(&rule->au_ctxt.range.level[0],
level);
break;
case Audit_lt:
match = (mls_level_dom(&rule->au_ctxt.range.level[0],
level) &&
!mls_level_eq(&rule->au_ctxt.range.level[0],
level));
break;
case Audit_le:
match = mls_level_dom(&rule->au_ctxt.range.level[0],
level);
break;
case Audit_gt:
match = (mls_level_dom(level,
&rule->au_ctxt.range.level[0]) &&
!mls_level_eq(level,
&rule->au_ctxt.range.level[0]));
break;
case Audit_ge:
match = mls_level_dom(level,
&rule->au_ctxt.range.level[0]);
break;
}
}
out:
rcu_read_unlock();
return match;
}
static int aurule_avc_callback(u32 event)
{
if (event == AVC_CALLBACK_RESET)
return audit_update_lsm_rules();
return 0;
}
static int __init aurule_init(void)
{
int err;
err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
if (err)
panic("avc_add_callback() failed, error %d\n", err);
return err;
}
__initcall(aurule_init);
#ifdef CONFIG_NETLABEL
/**
* security_netlbl_cache_add - Add an entry to the NetLabel cache
* @secattr: the NetLabel packet security attributes
* @sid: the SELinux SID
*
* Description:
* Attempt to cache the context in @ctx, which was derived from the packet in
* @skb, in the NetLabel subsystem cache. This function assumes @secattr has
* already been initialized.
*
*/
static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
u32 sid)
{
u32 *sid_cache;
sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
if (sid_cache == NULL)
return;
secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
if (secattr->cache == NULL) {
kfree(sid_cache);
return;
}
*sid_cache = sid;
secattr->cache->free = kfree;
secattr->cache->data = sid_cache;
secattr->flags |= NETLBL_SECATTR_CACHE;
}
/**
* security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
* @state: SELinux state
* @secattr: the NetLabel packet security attributes
* @sid: the SELinux SID
*
* Description:
* Convert the given NetLabel security attributes in @secattr into a
* SELinux SID. If the @secattr field does not contain a full SELinux
* SID/context then use SECINITSID_NETMSG as the foundation. If possible the
* 'cache' field of @secattr is set and the CACHE flag is set; this is to
* allow the @secattr to be used by NetLabel to cache the secattr to SID
* conversion for future lookups. Returns zero on success, negative values on
* failure.
*
*/
int security_netlbl_secattr_to_sid(struct selinux_state *state,
struct netlbl_lsm_secattr *secattr,
u32 *sid)
{
struct selinux_policy *policy;
struct policydb *policydb;
struct sidtab *sidtab;
int rc;
struct context *ctx;
struct context ctx_new;
if (!selinux_initialized(state)) {
*sid = SECSID_NULL;
return 0;
}
retry:
rc = 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
sidtab = policy->sidtab;
if (secattr->flags & NETLBL_SECATTR_CACHE)
*sid = *(u32 *)secattr->cache->data;
else if (secattr->flags & NETLBL_SECATTR_SECID)
*sid = secattr->attr.secid;
else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
rc = -EIDRM;
ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
if (ctx == NULL)
goto out;
context_init(&ctx_new);
ctx_new.user = ctx->user;
ctx_new.role = ctx->role;
ctx_new.type = ctx->type;
mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
if (rc)
goto out;
}
rc = -EIDRM;
if (!mls_context_isvalid(policydb, &ctx_new)) {
ebitmap_destroy(&ctx_new.range.level[0].cat);
goto out;
}
rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
ebitmap_destroy(&ctx_new.range.level[0].cat);
if (rc == -ESTALE) {
rcu_read_unlock();
goto retry;
}
if (rc)
goto out;
security_netlbl_cache_add(secattr, *sid);
} else
*sid = SECSID_NULL;
out:
rcu_read_unlock();
return rc;
}
/**
* security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
* @state: SELinux state
* @sid: the SELinux SID
* @secattr: the NetLabel packet security attributes
*
* Description:
* Convert the given SELinux SID in @sid into a NetLabel security attribute.
* Returns zero on success, negative values on failure.
*
*/
int security_netlbl_sid_to_secattr(struct selinux_state *state,
u32 sid, struct netlbl_lsm_secattr *secattr)
{
struct selinux_policy *policy;
struct policydb *policydb;
int rc;
struct context *ctx;
if (!selinux_initialized(state))
return 0;
rcu_read_lock();
policy = rcu_dereference(state->policy);
policydb = &policy->policydb;
rc = -ENOENT;
ctx = sidtab_search(policy->sidtab, sid);
if (ctx == NULL)
goto out;
rc = -ENOMEM;
secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
GFP_ATOMIC);
if (secattr->domain == NULL)
goto out;
secattr->attr.secid = sid;
secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
mls_export_netlbl_lvl(policydb, ctx, secattr);
rc = mls_export_netlbl_cat(policydb, ctx, secattr);
out:
rcu_read_unlock();
return rc;
}
#endif /* CONFIG_NETLABEL */
/**
* __security_read_policy - read the policy.
* @policy: SELinux policy
* @data: binary policy data
* @len: length of data in bytes
*
*/
static int __security_read_policy(struct selinux_policy *policy,
void *data, size_t *len)
{
int rc;
struct policy_file fp;
fp.data = data;
fp.len = *len;
rc = policydb_write(&policy->policydb, &fp);
if (rc)
return rc;
*len = (unsigned long)fp.data - (unsigned long)data;
return 0;
}
/**
* security_read_policy - read the policy.
* @state: selinux_state
* @data: binary policy data
* @len: length of data in bytes
*
*/
int security_read_policy(struct selinux_state *state,
void **data, size_t *len)
{
struct selinux_policy *policy;
policy = rcu_dereference_protected(
state->policy, lockdep_is_held(&state->policy_mutex));
if (!policy)
return -EINVAL;
*len = policy->policydb.len;
*data = vmalloc_user(*len);
if (!*data)
return -ENOMEM;
return __security_read_policy(policy, *data, len);
}
/**
* security_read_state_kernel - read the policy.
* @state: selinux_state
* @data: binary policy data
* @len: length of data in bytes
*
* Allocates kernel memory for reading SELinux policy.
* This function is for internal use only and should not
* be used for returning data to user space.
*
* This function must be called with policy_mutex held.
*/
int security_read_state_kernel(struct selinux_state *state,
void **data, size_t *len)
{
int err;
struct selinux_policy *policy;
policy = rcu_dereference_protected(
state->policy, lockdep_is_held(&state->policy_mutex));
if (!policy)
return -EINVAL;
*len = policy->policydb.len;
*data = vmalloc(*len);
if (!*data)
return -ENOMEM;
err = __security_read_policy(policy, *data, len);
if (err) {
vfree(*data);
*data = NULL;
*len = 0;
}
return err;
}