blob: 094737e5084a49bd5e8ad66381a42df76a952baa [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Mediatek MT7530 DSA Switch driver
* Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phylink.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <net/dsa.h>
#include "mt7530.h"
/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
MIB_DESC(1, 0x00, "TxDrop"),
MIB_DESC(1, 0x04, "TxCrcErr"),
MIB_DESC(1, 0x08, "TxUnicast"),
MIB_DESC(1, 0x0c, "TxMulticast"),
MIB_DESC(1, 0x10, "TxBroadcast"),
MIB_DESC(1, 0x14, "TxCollision"),
MIB_DESC(1, 0x18, "TxSingleCollision"),
MIB_DESC(1, 0x1c, "TxMultipleCollision"),
MIB_DESC(1, 0x20, "TxDeferred"),
MIB_DESC(1, 0x24, "TxLateCollision"),
MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
MIB_DESC(1, 0x2c, "TxPause"),
MIB_DESC(1, 0x30, "TxPktSz64"),
MIB_DESC(1, 0x34, "TxPktSz65To127"),
MIB_DESC(1, 0x38, "TxPktSz128To255"),
MIB_DESC(1, 0x3c, "TxPktSz256To511"),
MIB_DESC(1, 0x40, "TxPktSz512To1023"),
MIB_DESC(1, 0x44, "Tx1024ToMax"),
MIB_DESC(2, 0x48, "TxBytes"),
MIB_DESC(1, 0x60, "RxDrop"),
MIB_DESC(1, 0x64, "RxFiltering"),
MIB_DESC(1, 0x68, "RxUnicast"),
MIB_DESC(1, 0x6c, "RxMulticast"),
MIB_DESC(1, 0x70, "RxBroadcast"),
MIB_DESC(1, 0x74, "RxAlignErr"),
MIB_DESC(1, 0x78, "RxCrcErr"),
MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
MIB_DESC(1, 0x80, "RxFragErr"),
MIB_DESC(1, 0x84, "RxOverSzErr"),
MIB_DESC(1, 0x88, "RxJabberErr"),
MIB_DESC(1, 0x8c, "RxPause"),
MIB_DESC(1, 0x90, "RxPktSz64"),
MIB_DESC(1, 0x94, "RxPktSz65To127"),
MIB_DESC(1, 0x98, "RxPktSz128To255"),
MIB_DESC(1, 0x9c, "RxPktSz256To511"),
MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
MIB_DESC(2, 0xa8, "RxBytes"),
MIB_DESC(1, 0xb0, "RxCtrlDrop"),
MIB_DESC(1, 0xb4, "RxIngressDrop"),
MIB_DESC(1, 0xb8, "RxArlDrop"),
};
/* Since phy_device has not yet been created and
* phy_{read,write}_mmd_indirect is not available, we provide our own
* core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
* to complete this function.
*/
static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
struct mii_bus *bus = priv->bus;
int value, ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Read the content of the MMD's selected register */
value = bus->read(bus, 0, MII_MMD_DATA);
return value;
err:
dev_err(&bus->dev, "failed to read mmd register\n");
return ret;
}
static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
int devad, u32 data)
{
struct mii_bus *bus = priv->bus;
int ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Write the data into MMD's selected register */
ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mmd register\n");
return ret;
}
static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
val &= ~mask;
val |= set;
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, 0, val);
}
static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, val, 0);
}
static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
lo = val & 0xffff;
hi = val >> 16;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, r, lo);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, 0x10, hi);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mt7530 register\n");
return ret;
}
static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0) {
dev_err(&bus->dev,
"failed to read mt7530 register\n");
return ret;
}
lo = bus->read(bus, 0x1f, r);
hi = bus->read(bus, 0x1f, 0x10);
return (hi << 16) | (lo & 0xffff);
}
static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
{
return mt7530_mii_read(p->priv, p->reg);
}
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
struct mii_bus *bus = p->priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(p->priv, p->reg);
mutex_unlock(&bus->mdio_lock);
return val;
}
static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
struct mt7530_dummy_poll p;
INIT_MT7530_DUMMY_POLL(&p, priv, reg);
return _mt7530_read(&p);
}
static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(priv, reg);
val &= ~mask;
val |= set;
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, 0, val);
}
static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, val, 0);
}
static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
u32 val;
int ret;
struct mt7530_dummy_poll p;
/* Set the command operating upon the MAC address entries */
val = ATC_BUSY | ATC_MAT(0) | cmd;
mt7530_write(priv, MT7530_ATC, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & ATC_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
/* Additional sanity for read command if the specified
* entry is invalid
*/
val = mt7530_read(priv, MT7530_ATC);
if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
return -EINVAL;
if (rsp)
*rsp = val;
return 0;
}
static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
u32 reg[3];
int i;
/* Read from ARL table into an array */
for (i = 0; i < 3; i++) {
reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
__func__, __LINE__, i, reg[i]);
}
fdb->vid = (reg[1] >> CVID) & CVID_MASK;
fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}
static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
u8 port_mask, const u8 *mac,
u8 aging, u8 type)
{
u32 reg[3] = { 0 };
int i;
reg[1] |= vid & CVID_MASK;
reg[1] |= ATA2_IVL;
reg[1] |= ATA2_FID(FID_BRIDGED);
reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
/* STATIC_ENT indicate that entry is static wouldn't
* be aged out and STATIC_EMP specified as erasing an
* entry
*/
reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
reg[1] |= mac[5] << MAC_BYTE_5;
reg[1] |= mac[4] << MAC_BYTE_4;
reg[0] |= mac[3] << MAC_BYTE_3;
reg[0] |= mac[2] << MAC_BYTE_2;
reg[0] |= mac[1] << MAC_BYTE_1;
reg[0] |= mac[0] << MAC_BYTE_0;
/* Write array into the ARL table */
for (i = 0; i < 3; i++)
mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}
/* Setup TX circuit including relevant PAD and driving */
static int
mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u32 ncpo1, ssc_delta, trgint, i, xtal;
xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
if (xtal == HWTRAP_XTAL_20MHZ) {
dev_err(priv->dev,
"%s: MT7530 with a 20MHz XTAL is not supported!\n",
__func__);
return -EINVAL;
}
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
trgint = 0;
/* PLL frequency: 125MHz */
ncpo1 = 0x0c80;
break;
case PHY_INTERFACE_MODE_TRGMII:
trgint = 1;
if (priv->id == ID_MT7621) {
/* PLL frequency: 150MHz: 1.2GBit */
if (xtal == HWTRAP_XTAL_40MHZ)
ncpo1 = 0x0780;
if (xtal == HWTRAP_XTAL_25MHZ)
ncpo1 = 0x0a00;
} else { /* PLL frequency: 250MHz: 2.0Gbit */
if (xtal == HWTRAP_XTAL_40MHZ)
ncpo1 = 0x0c80;
if (xtal == HWTRAP_XTAL_25MHZ)
ncpo1 = 0x1400;
}
break;
default:
dev_err(priv->dev, "xMII interface %d not supported\n",
interface);
return -EINVAL;
}
if (xtal == HWTRAP_XTAL_25MHZ)
ssc_delta = 0x57;
else
ssc_delta = 0x87;
mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
P6_INTF_MODE(trgint));
/* Lower Tx Driving for TRGMII path */
for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
TD_DM_DRVP(8) | TD_DM_DRVN(8));
/* Disable MT7530 core and TRGMII Tx clocks */
core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
REG_GSWCK_EN | REG_TRGMIICK_EN);
/* Setup core clock for MT7530 */
/* Disable PLL */
core_write(priv, CORE_GSWPLL_GRP1, 0);
/* Set core clock into 500Mhz */
core_write(priv, CORE_GSWPLL_GRP2,
RG_GSWPLL_POSDIV_500M(1) |
RG_GSWPLL_FBKDIV_500M(25));
/* Enable PLL */
core_write(priv, CORE_GSWPLL_GRP1,
RG_GSWPLL_EN_PRE |
RG_GSWPLL_POSDIV_200M(2) |
RG_GSWPLL_FBKDIV_200M(32));
/* Setup the MT7530 TRGMII Tx Clock */
core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
core_write(priv, CORE_PLL_GROUP4,
RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
RG_SYSPLL_BIAS_LPF_EN);
core_write(priv, CORE_PLL_GROUP2,
RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
RG_SYSPLL_POSDIV(1));
core_write(priv, CORE_PLL_GROUP7,
RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
/* Enable MT7530 core and TRGMII Tx clocks */
core_set(priv, CORE_TRGMII_GSW_CLK_CG,
REG_GSWCK_EN | REG_TRGMIICK_EN);
if (!trgint)
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mt7530_rmw(priv, MT7530_TRGMII_RD(i),
RD_TAP_MASK, RD_TAP(16));
return 0;
}
static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
{
u32 val;
val = mt7530_read(priv, MT7531_TOP_SIG_SR);
return (val & PAD_DUAL_SGMII_EN) != 0;
}
static int
mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u32 top_sig;
u32 hwstrap;
u32 xtal;
u32 val;
if (mt7531_dual_sgmii_supported(priv))
return 0;
val = mt7530_read(priv, MT7531_CREV);
top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
hwstrap = mt7530_read(priv, MT7531_HWTRAP);
if ((val & CHIP_REV_M) > 0)
xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
HWTRAP_XTAL_FSEL_25MHZ;
else
xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
/* Step 1 : Disable MT7531 COREPLL */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val &= ~EN_COREPLL;
mt7530_write(priv, MT7531_PLLGP_EN, val);
/* Step 2: switch to XTAL output */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= SW_CLKSW;
mt7530_write(priv, MT7531_PLLGP_EN, val);
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_EN;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Step 3: disable PLLGP and enable program PLLGP */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= SW_PLLGP;
mt7530_write(priv, MT7531_PLLGP_EN, val);
/* Step 4: program COREPLL output frequency to 500MHz */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_POSDIV_M;
val |= 2 << RG_COREPLL_POSDIV_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
usleep_range(25, 35);
switch (xtal) {
case HWTRAP_XTAL_FSEL_25MHZ:
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_M;
val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
break;
case HWTRAP_XTAL_FSEL_40MHZ:
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_M;
val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
break;
}
/* Set feedback divide ratio update signal to high */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val |= RG_COREPLL_SDM_PCW_CHG;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Wait for at least 16 XTAL clocks */
usleep_range(10, 20);
/* Step 5: set feedback divide ratio update signal to low */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_CHG;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Enable 325M clock for SGMII */
mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
/* Enable 250SSC clock for RGMII */
mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
/* Step 6: Enable MT7531 PLL */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val |= RG_COREPLL_EN;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= EN_COREPLL;
mt7530_write(priv, MT7531_PLLGP_EN, val);
usleep_range(25, 35);
return 0;
}
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}
static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
return mdiobus_read_nested(priv->bus, port, regnum);
}
static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
u16 val)
{
return mdiobus_write_nested(priv->bus, port, regnum, val);
}
static int
mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
int regnum)
{
struct mii_bus *bus = priv->bus;
struct mt7530_dummy_poll p;
u32 reg, val;
int ret;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | regnum;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad);
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
mutex_unlock(&bus->mdio_lock);
return ret;
}
static int
mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
int regnum, u32 data)
{
struct mii_bus *bus = priv->bus;
struct mt7530_dummy_poll p;
u32 val, reg;
int ret;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | regnum;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | data;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
out:
mutex_unlock(&bus->mdio_lock);
return ret;
}
static int
mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
struct mii_bus *bus = priv->bus;
struct mt7530_dummy_poll p;
int ret;
u32 val;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_REG_ADDR(regnum);
mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
mutex_unlock(&bus->mdio_lock);
return ret;
}
static int
mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
u16 data)
{
struct mii_bus *bus = priv->bus;
struct mt7530_dummy_poll p;
int ret;
u32 reg;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
!(reg & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_REG_ADDR(regnum) | data;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
!(reg & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
out:
mutex_unlock(&bus->mdio_lock);
return ret;
}
static int
mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
int devad;
int ret;
if (regnum & MII_ADDR_C45) {
devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
ret = mt7531_ind_c45_phy_read(priv, port, devad,
regnum & MII_REGADDR_C45_MASK);
} else {
ret = mt7531_ind_c22_phy_read(priv, port, regnum);
}
return ret;
}
static int
mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
u16 data)
{
int devad;
int ret;
if (regnum & MII_ADDR_C45) {
devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
ret = mt7531_ind_c45_phy_write(priv, port, devad,
regnum & MII_REGADDR_C45_MASK,
data);
} else {
ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
}
return ret;
}
static int
mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_read(priv, port, regnum);
}
static int
mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_write(priv, port, regnum, val);
}
static void
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
ETH_GSTRING_LEN);
}
static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct mt7530_priv *priv = ds->priv;
const struct mt7530_mib_desc *mib;
u32 reg, i;
u64 hi;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
mib = &mt7530_mib[i];
reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
data[i] = mt7530_read(priv, reg);
if (mib->size == 2) {
hi = mt7530_read(priv, reg + 4);
data[i] |= hi << 32;
}
}
}
static int
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(mt7530_mib);
}
static int
mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
struct mt7530_priv *priv = ds->priv;
unsigned int secs = msecs / 1000;
unsigned int tmp_age_count;
unsigned int error = -1;
unsigned int age_count;
unsigned int age_unit;
/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
return -ERANGE;
/* iterate through all possible age_count to find the closest pair */
for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
if (tmp_age_unit <= AGE_UNIT_MAX) {
unsigned int tmp_error = secs -
(tmp_age_count + 1) * (tmp_age_unit + 1);
/* found a closer pair */
if (error > tmp_error) {
error = tmp_error;
age_count = tmp_age_count;
age_unit = tmp_age_unit;
}
/* found the exact match, so break the loop */
if (!error)
break;
}
}
mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
return 0;
}
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u8 tx_delay = 0;
int val;
mutex_lock(&priv->reg_mutex);
val = mt7530_read(priv, MT7530_MHWTRAP);
val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
switch (priv->p5_intf_sel) {
case P5_INTF_SEL_PHY_P0:
/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
val |= MHWTRAP_PHY0_SEL;
fallthrough;
case P5_INTF_SEL_PHY_P4:
/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
/* Setup the MAC by default for the cpu port */
mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
break;
case P5_INTF_SEL_GMAC5:
/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
val &= ~MHWTRAP_P5_DIS;
break;
case P5_DISABLED:
interface = PHY_INTERFACE_MODE_NA;
break;
default:
dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
priv->p5_intf_sel);
goto unlock_exit;
}
/* Setup RGMII settings */
if (phy_interface_mode_is_rgmii(interface)) {
val |= MHWTRAP_P5_RGMII_MODE;
/* P5 RGMII RX Clock Control: delay setting for 1000M */
mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
/* Don't set delay in DSA mode */
if (!dsa_is_dsa_port(priv->ds, 5) &&
(interface == PHY_INTERFACE_MODE_RGMII_TXID ||
interface == PHY_INTERFACE_MODE_RGMII_ID))
tx_delay = 4; /* n * 0.5 ns */
/* P5 RGMII TX Clock Control: delay x */
mt7530_write(priv, MT7530_P5RGMIITXCR,
CSR_RGMII_TXC_CFG(0x10 + tx_delay));
/* reduce P5 RGMII Tx driving, 8mA */
mt7530_write(priv, MT7530_IO_DRV_CR,
P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
}
mt7530_write(priv, MT7530_MHWTRAP, val);
dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
priv->p5_interface = interface;
unlock_exit:
mutex_unlock(&priv->reg_mutex);
}
static int
mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
int ret;
/* Setup max capability of CPU port at first */
if (priv->info->cpu_port_config) {
ret = priv->info->cpu_port_config(ds, port);
if (ret)
return ret;
}
/* Enable Mediatek header mode on the cpu port */
mt7530_write(priv, MT7530_PVC_P(port),
PORT_SPEC_TAG);
/* Disable flooding by default */
mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
/* Set CPU port number */
if (priv->id == ID_MT7621)
mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
/* CPU port gets connected to all user ports of
* the switch.
*/
mt7530_write(priv, MT7530_PCR_P(port),
PCR_MATRIX(dsa_user_ports(priv->ds)));
/* Set to fallback mode for independent VLAN learning */
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
return 0;
}
static int
mt7530_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct mt7530_priv *priv = ds->priv;
if (!dsa_is_user_port(ds, port))
return 0;
mutex_lock(&priv->reg_mutex);
/* Allow the user port gets connected to the cpu port and also
* restore the port matrix if the port is the member of a certain
* bridge.
*/
priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
priv->ports[port].enable = true;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
priv->ports[port].pm);
mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_disable(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
if (!dsa_is_user_port(ds, port))
return;
mutex_lock(&priv->reg_mutex);
/* Clear up all port matrix which could be restored in the next
* enablement for the port.
*/
priv->ports[port].enable = false;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct mt7530_priv *priv = ds->priv;
struct mii_bus *bus = priv->bus;
int length;
u32 val;
/* When a new MTU is set, DSA always set the CPU port's MTU to the
* largest MTU of the slave ports. Because the switch only has a global
* RX length register, only allowing CPU port here is enough.
*/
if (!dsa_is_cpu_port(ds, port))
return 0;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(priv, MT7530_GMACCR);
val &= ~MAX_RX_PKT_LEN_MASK;
/* RX length also includes Ethernet header, MTK tag, and FCS length */
length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
if (length <= 1522) {
val |= MAX_RX_PKT_LEN_1522;
} else if (length <= 1536) {
val |= MAX_RX_PKT_LEN_1536;
} else if (length <= 1552) {
val |= MAX_RX_PKT_LEN_1552;
} else {
val &= ~MAX_RX_JUMBO_MASK;
val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
val |= MAX_RX_PKT_LEN_JUMBO;
}
mt7530_mii_write(priv, MT7530_GMACCR, val);
mutex_unlock(&bus->mdio_lock);
return 0;
}
static int
mt7530_port_max_mtu(struct dsa_switch *ds, int port)
{
return MT7530_MAX_MTU;
}
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct mt7530_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = MT7530_STP_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = MT7530_STP_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = MT7530_STP_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = MT7530_STP_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = MT7530_STP_FORWARDING;
break;
}
mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
FID_PST(FID_BRIDGED, stp_state));
}
static int
mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
BR_BCAST_FLOOD))
return -EINVAL;
return 0;
}
static int
mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct mt7530_priv *priv = ds->priv;
if (flags.mask & BR_LEARNING)
mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
flags.val & BR_LEARNING ? 0 : SA_DIS);
if (flags.mask & BR_FLOOD)
mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
if (flags.mask & BR_MCAST_FLOOD)
mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
if (flags.mask & BR_BCAST_FLOOD)
mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
return 0;
}
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
u32 port_bitmap = BIT(MT7530_CPU_PORT);
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Add this port to the port matrix of the other ports in the
* same bridge. If the port is disabled, port matrix is kept
* and not being setup until the port becomes enabled.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_set(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm |= PCR_MATRIX(BIT(port));
port_bitmap |= BIT(i);
}
}
/* Add the all other ports to this port matrix. */
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port),
PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
/* Set to fallback mode for independent VLAN learning */
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
bool all_user_ports_removed = true;
int i;
/* This is called after .port_bridge_leave when leaving a VLAN-aware
* bridge. Don't set standalone ports to fallback mode.
*/
if (dsa_to_port(ds, port)->bridge_dev)
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
mt7530_rmw(priv, MT7530_PVC_P(port),
VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
MT7530_VLAN_ACC_ALL);
/* Set PVID to 0 */
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
if (dsa_is_user_port(ds, i) &&
dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
all_user_ports_removed = false;
break;
}
}
/* CPU port also does the same thing until all user ports belonging to
* the CPU port get out of VLAN filtering mode.
*/
if (all_user_ports_removed) {
mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
PCR_MATRIX(dsa_user_ports(priv->ds)));
mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
}
static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
/* Trapped into security mode allows packet forwarding through VLAN
* table lookup.
*/
if (dsa_is_user_port(ds, port)) {
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_SECURITY_MODE);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID(priv->ports[port].pvid));
/* Only accept tagged frames if PVID is not set */
if (!priv->ports[port].pvid)
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
}
/* Set the port as a user port which is to be able to recognize VID
* from incoming packets before fetching entry within the VLAN table.
*/
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
VLAN_ATTR(MT7530_VLAN_USER) |
PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
}
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Remove this port from the port matrix of the other ports
* in the same bridge. If the port is disabled, port matrix
* is kept and not being setup until the port becomes enabled.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_clear(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
}
}
/* Set the cpu port to be the only one in the port matrix of
* this port.
*/
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX(BIT(MT7530_CPU_PORT)));
priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
/* When a port is removed from the bridge, the port would be set up
* back to the default as is at initial boot which is a VLAN-unaware
* port.
*/
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_MATRIX_MODE);
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_fdb _fdb = { 0 };
int cnt = MT7530_NUM_FDB_RECORDS;
int ret = 0;
u32 rsp = 0;
mutex_lock(&priv->reg_mutex);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
if (ret < 0)
goto err;
do {
if (rsp & ATC_SRCH_HIT) {
mt7530_fdb_read(priv, &_fdb);
if (_fdb.port_mask & BIT(port)) {
ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
data);
if (ret < 0)
break;
}
}
} while (--cnt &&
!(rsp & ATC_SRCH_END) &&
!mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct mt7530_priv *priv = ds->priv;
const u8 *addr = mdb->addr;
u16 vid = mdb->vid;
u8 port_mask = 0;
int ret;
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
& PORT_MAP_MASK;
port_mask |= BIT(port);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct mt7530_priv *priv = ds->priv;
const u8 *addr = mdb->addr;
u16 vid = mdb->vid;
u8 port_mask = 0;
int ret;
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
& PORT_MAP_MASK;
port_mask &= ~BIT(port);
mt7530_fdb_write(priv, vid, port_mask, addr, -1,
port_mask ? STATIC_ENT : STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
struct mt7530_dummy_poll p;
u32 val;
int ret;
val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
mt7530_write(priv, MT7530_VTCR, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & VTCR_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
return ret;
}
val = mt7530_read(priv, MT7530_VTCR);
if (val & VTCR_INVALID) {
dev_err(priv->dev, "read VTCR invalid\n");
return -EINVAL;
}
return 0;
}
static int
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
if (vlan_filtering) {
/* The port is being kept as VLAN-unaware port when bridge is
* set up with vlan_filtering not being set, Otherwise, the
* port and the corresponding CPU port is required the setup
* for becoming a VLAN-aware port.
*/
mt7530_port_set_vlan_aware(ds, port);
mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
} else {
mt7530_port_set_vlan_unaware(ds, port);
}
return 0;
}
static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members | BIT(entry->port) |
BIT(MT7530_CPU_PORT);
/* Validate the entry with independent learning, create egress tag per
* VLAN and joining the port as one of the port members.
*/
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
/* Decide whether adding tag or not for those outgoing packets from the
* port inside the VLAN.
*/
val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
MT7530_VLAN_EGRESS_TAG;
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(entry->port),
ETAG_CTRL_P(entry->port, val));
/* CPU port is always taken as a tagged port for serving more than one
* VLANs across and also being applied with egress type stack mode for
* that VLAN tags would be appended after hardware special tag used as
* DSA tag.
*/
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
ETAG_CTRL_P(MT7530_CPU_PORT,
MT7530_VLAN_EGRESS_STACK));
}
static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members & ~BIT(entry->port);
val = mt7530_read(priv, MT7530_VAWD1);
if (!(val & VLAN_VALID)) {
dev_err(priv->dev,
"Cannot be deleted due to invalid entry\n");
return;
}
/* If certain member apart from CPU port is still alive in the VLAN,
* the entry would be kept valid. Otherwise, the entry is got to be
* disabled.
*/
if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
} else {
mt7530_write(priv, MT7530_VAWD1, 0);
mt7530_write(priv, MT7530_VAWD2, 0);
}
}
static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
struct mt7530_hw_vlan_entry *entry,
mt7530_vlan_op vlan_op)
{
u32 val;
/* Fetch entry */
mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
val = mt7530_read(priv, MT7530_VAWD1);
entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
/* Manipulate entry */
vlan_op(priv, entry);
/* Flush result to hardware */
mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}
static int
mt7530_setup_vlan0(struct mt7530_priv *priv)
{
u32 val;
/* Validate the entry with independent learning, keep the original
* ingress tag attribute.
*/
val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
}
static int
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct mt7530_hw_vlan_entry new_entry;
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
if (pvid) {
priv->ports[port].pvid = vlan->vid;
/* Accept all frames if PVID is set */
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_ALL);
/* Only configure PVID if VLAN filtering is enabled */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PPBV1_P(port),
G0_PORT_VID_MASK,
G0_PORT_VID(vlan->vid));
} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
/* This VLAN is overwritten without PVID, so unset it */
priv->ports[port].pvid = G0_PORT_VID_DEF;
/* Only accept tagged frames if the port is VLAN-aware */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mt7530_hw_vlan_entry target_entry;
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_hw_vlan_entry_init(&target_entry, port, 0);
mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
mt7530_hw_vlan_del);
/* PVID is being restored to the default whenever the PVID port
* is being removed from the VLAN.
*/
if (priv->ports[port].pvid == vlan->vid) {
priv->ports[port].pvid = G0_PORT_VID_DEF;
/* Only accept tagged frames if the port is VLAN-aware */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int mt753x_mirror_port_get(unsigned int id, u32 val)
{
return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
MIRROR_PORT(val);
}
static int mt753x_mirror_port_set(unsigned int id, u32 val)
{
return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
MIRROR_PORT(val);
}
static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct mt7530_priv *priv = ds->priv;
int monitor_port;
u32 val;
/* Check for existent entry */
if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
return -EEXIST;
val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
/* MT7530 only supports one monitor port */
monitor_port = mt753x_mirror_port_get(priv->id, val);
if (val & MT753X_MIRROR_EN(priv->id) &&
monitor_port != mirror->to_local_port)
return -EEXIST;
val |= MT753X_MIRROR_EN(priv->id);
val &= ~MT753X_MIRROR_MASK(priv->id);
val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
val = mt7530_read(priv, MT7530_PCR_P(port));
if (ingress) {
val |= PORT_RX_MIR;
priv->mirror_rx |= BIT(port);
} else {
val |= PORT_TX_MIR;
priv->mirror_tx |= BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
return 0;
}
static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct mt7530_priv *priv = ds->priv;
u32 val;
val = mt7530_read(priv, MT7530_PCR_P(port));
if (mirror->ingress) {
val &= ~PORT_RX_MIR;
priv->mirror_rx &= ~BIT(port);
} else {
val &= ~PORT_TX_MIR;
priv->mirror_tx &= ~BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
if (!priv->mirror_rx && !priv->mirror_tx) {
val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
val &= ~MT753X_MIRROR_EN(priv->id);
mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
}
}
static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_MTK;
}
#ifdef CONFIG_GPIOLIB
static inline u32
mt7530_gpio_to_bit(unsigned int offset)
{
/* Map GPIO offset to register bit
* [ 2: 0] port 0 LED 0..2 as GPIO 0..2
* [ 6: 4] port 1 LED 0..2 as GPIO 3..5
* [10: 8] port 2 LED 0..2 as GPIO 6..8
* [14:12] port 3 LED 0..2 as GPIO 9..11
* [18:16] port 4 LED 0..2 as GPIO 12..14
*/
return BIT(offset + offset / 3);
}
static int
mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
}
static void
mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
if (value)
mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
else
mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
}
static int
mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int
mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
return 0;
}
static int
mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
if (value)
mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
else
mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
return 0;
}
static int
mt7530_setup_gpio(struct mt7530_priv *priv)
{
struct device *dev = priv->dev;
struct gpio_chip *gc;
gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
if (!gc)
return -ENOMEM;
mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
mt7530_write(priv, MT7530_LED_IO_MODE, 0);
gc->label = "mt7530";
gc->parent = dev;
gc->owner = THIS_MODULE;
gc->get_direction = mt7530_gpio_get_direction;
gc->direction_input = mt7530_gpio_direction_input;
gc->direction_output = mt7530_gpio_direction_output;
gc->get = mt7530_gpio_get;
gc->set = mt7530_gpio_set;
gc->base = -1;
gc->ngpio = 15;
gc->can_sleep = true;
return devm_gpiochip_add_data(dev, gc, priv);
}
#endif /* CONFIG_GPIOLIB */
static irqreturn_t
mt7530_irq_thread_fn(int irq, void *dev_id)
{
struct mt7530_priv *priv = dev_id;
bool handled = false;
u32 val;
int p;
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
mutex_unlock(&priv->bus->mdio_lock);
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & val) {
unsigned int irq;
irq = irq_find_mapping(priv->irq_domain, p);
handle_nested_irq(irq);
handled = true;
}
}
return IRQ_RETVAL(handled);
}
static void
mt7530_irq_mask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable &= ~BIT(d->hwirq);
}
static void
mt7530_irq_unmask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable |= BIT(d->hwirq);
}
static void
mt7530_irq_bus_lock(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
}
static void
mt7530_irq_bus_sync_unlock(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
mutex_unlock(&priv->bus->mdio_lock);
}
static struct irq_chip mt7530_irq_chip = {
.name = KBUILD_MODNAME,
.irq_mask = mt7530_irq_mask,
.irq_unmask = mt7530_irq_unmask,
.irq_bus_lock = mt7530_irq_bus_lock,
.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
};
static int
mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, domain->host_data);
irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
irq_set_nested_thread(irq, true);
irq_set_noprobe(irq);
return 0;
}
static const struct irq_domain_ops mt7530_irq_domain_ops = {
.map = mt7530_irq_map,
.xlate = irq_domain_xlate_onecell,
};
static void
mt7530_setup_mdio_irq(struct mt7530_priv *priv)
{
struct dsa_switch *ds = priv->ds;
int p;
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & ds->phys_mii_mask) {
unsigned int irq;
irq = irq_create_mapping(priv->irq_domain, p);
ds->slave_mii_bus->irq[p] = irq;
}
}
}
static int
mt7530_setup_irq(struct mt7530_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *np = dev->of_node;
int ret;
if (!of_property_read_bool(np, "interrupt-controller")) {
dev_info(dev, "no interrupt support\n");
return 0;
}
priv->irq = of_irq_get(np, 0);
if (priv->irq <= 0) {
dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
return priv->irq ? : -EINVAL;
}
priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
&mt7530_irq_domain_ops, priv);
if (!priv->irq_domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
/* This register must be set for MT7530 to properly fire interrupts */
if (priv->id != ID_MT7531)
mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
IRQF_ONESHOT, KBUILD_MODNAME, priv);
if (ret) {
irq_domain_remove(priv->irq_domain);
dev_err(dev, "failed to request IRQ: %d\n", ret);
return ret;
}
return 0;
}
static void
mt7530_free_mdio_irq(struct mt7530_priv *priv)
{
int p;
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & priv->ds->phys_mii_mask) {
unsigned int irq;
irq = irq_find_mapping(priv->irq_domain, p);
irq_dispose_mapping(irq);
}
}
}
static void
mt7530_free_irq_common(struct mt7530_priv *priv)
{
free_irq(priv->irq, priv);
irq_domain_remove(priv->irq_domain);
}
static void
mt7530_free_irq(struct mt7530_priv *priv)
{
mt7530_free_mdio_irq(priv);
mt7530_free_irq_common(priv);
}
static int
mt7530_setup_mdio(struct mt7530_priv *priv)
{
struct dsa_switch *ds = priv->ds;
struct device *dev = priv->dev;
struct mii_bus *bus;
static int idx;
int ret;
bus = devm_mdiobus_alloc(dev);
if (!bus)
return -ENOMEM;
ds->slave_mii_bus = bus;
bus->priv = priv;
bus->name = KBUILD_MODNAME "-mii";
snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
bus->read = mt753x_phy_read;
bus->write = mt753x_phy_write;
bus->parent = dev;
bus->phy_mask = ~ds->phys_mii_mask;
if (priv->irq)
mt7530_setup_mdio_irq(priv);
ret = mdiobus_register(bus);
if (ret) {
dev_err(dev, "failed to register MDIO bus: %d\n", ret);
if (priv->irq)
mt7530_free_mdio_irq(priv);
}
return ret;
}
static int
mt7530_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
struct device_node *phy_node;
struct device_node *mac_np;
struct mt7530_dummy_poll p;
phy_interface_t interface;
struct device_node *dn;
u32 id, val;
int ret, i;
/* The parent node of master netdev which holds the common system
* controller also is the container for two GMACs nodes representing
* as two netdev instances.
*/
dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
ds->assisted_learning_on_cpu_port = true;
ds->mtu_enforcement_ingress = true;
if (priv->id == ID_MT7530) {
regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
ret = regulator_enable(priv->core_pwr);
if (ret < 0) {
dev_err(priv->dev,
"Failed to enable core power: %d\n", ret);
return ret;
}
regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
ret = regulator_enable(priv->io_pwr);
if (ret < 0) {
dev_err(priv->dev, "Failed to enable io pwr: %d\n",
ret);
return ret;
}
}
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(1000, 1100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(1000, 1100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7530_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7530_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL,
SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
SYS_CTRL_REG_RST);
/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
val = mt7530_read(priv, MT7530_MHWTRAP);
val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
val |= MHWTRAP_MANUAL;
mt7530_write(priv, MT7530_MHWTRAP, val);
priv->p6_interface = PHY_INTERFACE_MODE_NA;
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
/* Disable learning by default on all ports */
mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
if (dsa_is_cpu_port(ds, i)) {
ret = mt753x_cpu_port_enable(ds, i);
if (ret)
return ret;
} else {
mt7530_port_disable(ds, i);
/* Set default PVID to 0 on all user ports */
mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
/* Enable consistent egress tag */
mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
/* Setup VLAN ID 0 for VLAN-unaware bridges */
ret = mt7530_setup_vlan0(priv);
if (ret)
return ret;
/* Setup port 5 */
priv->p5_intf_sel = P5_DISABLED;
interface = PHY_INTERFACE_MODE_NA;
if (!dsa_is_unused_port(ds, 5)) {
priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
if (ret && ret != -ENODEV)
return ret;
} else {
/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
for_each_child_of_node(dn, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
ret = of_property_read_u32(mac_np, "reg", &id);
if (ret < 0 || id != 1)
continue;
phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
if (!phy_node)
continue;
if (phy_node->parent == priv->dev->of_node->parent) {
ret = of_get_phy_mode(mac_np, &interface);
if (ret && ret != -ENODEV) {
of_node_put(mac_np);
return ret;
}
id = of_mdio_parse_addr(ds->dev, phy_node);
if (id == 0)
priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
if (id == 4)
priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
}
of_node_put(mac_np);
of_node_put(phy_node);
break;
}
}
#ifdef CONFIG_GPIOLIB
if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
ret = mt7530_setup_gpio(priv);
if (ret)
return ret;
}
#endif /* CONFIG_GPIOLIB */
mt7530_setup_port5(ds, interface);
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
if (ret < 0)
return ret;
return 0;
}
static int
mt7531_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_dummy_poll p;
u32 val, id;
int ret, i;
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(1000, 1100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(1000, 1100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7531_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7531_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL,
SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
SYS_CTRL_REG_RST);
if (mt7531_dual_sgmii_supported(priv)) {
priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
/* Let ds->slave_mii_bus be able to access external phy. */
mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
MT7531_EXT_P_MDC_11);
mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
MT7531_EXT_P_MDIO_12);
} else {
priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
}
dev_dbg(ds->dev, "P5 support %s interface\n",
p5_intf_modes(priv->p5_intf_sel));
mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
MT7531_GPIO0_INTERRUPT);
/* Let phylink decide the interface later. */
priv->p5_interface = PHY_INTERFACE_MODE_NA;
priv->p6_interface = PHY_INTERFACE_MODE_NA;
/* Enable PHY core PLL, since phy_device has not yet been created
* provided for phy_[read,write]_mmd_indirect is called, we provide
* our own mt7531_ind_mmd_phy_[read,write] to complete this
* function.
*/
val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
MDIO_MMD_VEND2, CORE_PLL_GROUP4);
val |= MT7531_PHY_PLL_BYPASS_MODE;
val &= ~MT7531_PHY_PLL_OFF;
mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
CORE_PLL_GROUP4, val);
/* BPDU to CPU port */
mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
BIT(MT7530_CPU_PORT));
mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
MT753X_BPDU_CPU_ONLY);
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
/* Disable learning by default on all ports */
mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
if (dsa_is_cpu_port(ds, i)) {
ret = mt753x_cpu_port_enable(ds, i);
if (ret)
return ret;
} else {
mt7530_port_disable(ds, i);
/* Set default PVID to 0 on all user ports */
mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
/* Enable consistent egress tag */
mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
/* Setup VLAN ID 0 for VLAN-unaware bridges */
ret = mt7530_setup_vlan0(priv);
if (ret)
return ret;
ds->assisted_learning_on_cpu_port = true;
ds->mtu_enforcement_ingress = true;
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
if (ret < 0)
return ret;
return 0;
}
static bool
mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
switch (port) {
case 0 ... 4: /* Internal phy */
if (state->interface != PHY_INTERFACE_MODE_GMII)
return false;
break;
case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_GMII)
return false;
break;
case 6: /* 1st cpu port */
if (state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_TRGMII)
return false;
break;
default:
dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
port);
return false;
}
return true;
}
static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
{
return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
}
static bool
mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
switch (port) {
case 0 ... 4: /* Internal phy */
if (state->interface != PHY_INTERFACE_MODE_GMII)
return false;
break;
case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
if (mt7531_is_rgmii_port(priv, port))
return phy_interface_mode_is_rgmii(state->interface);
fallthrough;
case 6: /* 1st cpu port supports sgmii/8023z only */
if (state->interface != PHY_INTERFACE_MODE_SGMII &&
!phy_interface_mode_is_8023z(state->interface))
return false;
break;
default:
dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
port);
return false;
}
return true;
}
static bool
mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
return priv->info->phy_mode_supported(ds, port, state);
}
static int
mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
return priv->info->pad_setup(ds, state->interface);
}
static int
mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
/* Only need to setup port5. */
if (port != 5)
return 0;
mt7530_setup_port5(priv->ds, interface);
return 0;
}
static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
phy_interface_t interface,
struct phy_device *phydev)
{
u32 val;
if (!mt7531_is_rgmii_port(priv, port)) {
dev_err(priv->dev, "RGMII mode is not available for port %d\n",
port);
return -EINVAL;
}
val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
val |= GP_CLK_EN;
val &= ~GP_MODE_MASK;
val |= GP_MODE(MT7531_GP_MODE_RGMII);
val &= ~CLK_SKEW_IN_MASK;
val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
val &= ~CLK_SKEW_OUT_MASK;
val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
/* Do not adjust rgmii delay when vendor phy driver presents. */
if (!phydev || phy_driver_is_genphy(phydev)) {
val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
val |= TXCLK_NO_REVERSE;
val |= RXCLK_NO_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
val |= TXCLK_NO_REVERSE;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
val |= RXCLK_NO_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
break;
default:
return -EINVAL;
}
}
mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
return 0;
}
static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
unsigned long *supported)
{
/* Port5 supports ethier RGMII or SGMII.
* Port6 supports SGMII only.
*/
switch (port) {
case 5:
if (mt7531_is_rgmii_port(priv, port))
break;
fallthrough;
case 6:
phylink_set(supported, 1000baseX_Full);
phylink_set(supported, 2500baseX_Full);
phylink_set(supported, 2500baseT_Full);
}
}
static void
mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
unsigned int mode, phy_interface_t interface,
int speed, int duplex)
{
struct mt7530_priv *priv = ds->priv;
unsigned int val;
/* For adjusting speed and duplex of SGMII force mode. */
if (interface != PHY_INTERFACE_MODE_SGMII ||
phylink_autoneg_inband(mode))
return;
/* SGMII force mode setting */
val = mt7530_read(priv, MT7531_SGMII_MODE(port));
val &= ~MT7531_SGMII_IF_MODE_MASK;
switch (speed) {
case SPEED_10:
val |= MT7531_SGMII_FORCE_SPEED_10;
break;
case SPEED_100:
val |= MT7531_SGMII_FORCE_SPEED_100;
break;
case SPEED_1000:
val |= MT7531_SGMII_FORCE_SPEED_1000;
break;
}
/* MT7531 SGMII 1G force mode can only work in full duplex mode,
* no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
*/
if ((speed == SPEED_10 || speed == SPEED_100) &&
duplex != DUPLEX_FULL)
val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
mt7530_write(priv, MT7531_SGMII_MODE(port), val);
}
static bool mt753x_is_mac_port(u32 port)
{
return (port == 5 || port == 6);
}
static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
phy_interface_t interface)
{
u32 val;
if (!mt753x_is_mac_port(port))
return -EINVAL;
mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
MT7531_SGMII_PHYA_PWD);
val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
val &= ~MT7531_RG_TPHY_SPEED_MASK;
/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
* encoding.
*/
val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
* mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
*/
mt7530_rmw(priv, MT7531_SGMII_MODE(port),
MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
MT7531_SGMII_FORCE_SPEED_1000);
mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
return 0;
}
static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
phy_interface_t interface)
{
if (!mt753x_is_mac_port(port))
return -EINVAL;
mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
MT7531_SGMII_PHYA_PWD);
mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
mt7530_set(priv, MT7531_SGMII_MODE(port),
MT7531_SGMII_REMOTE_FAULT_DIS |
MT7531_SGMII_SPEED_DUPLEX_AN);
mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
MT7531_SGMII_TX_CONFIG_MASK, 1);
mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
return 0;
}
static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
u32 val;
/* Only restart AN when AN is enabled */
val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
if (val & MT7531_SGMII_AN_ENABLE) {
val |= MT7531_SGMII_AN_RESTART;
mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
}
}
static int
mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
struct phy_device *phydev;
struct dsa_port *dp;
if (!mt753x_is_mac_port(port)) {
dev_err(priv->dev, "port %d is not a MAC port\n", port);
return -EINVAL;
}
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
dp = dsa_to_port(ds, port);
phydev = dp->slave->phydev;
return mt7531_rgmii_setup(priv, port, interface, phydev);
case PHY_INTERFACE_MODE_SGMII:
return mt7531_sgmii_setup_mode_an(priv, port, interface);
case PHY_INTERFACE_MODE_NA:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
if (phylink_autoneg_inband(mode))
return -EINVAL;
return mt7531_sgmii_setup_mode_force(priv, port, interface);
default:
return -EINVAL;
}
return -EINVAL;
}
static int
mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
return priv->info->mac_port_config(ds, port, mode, state->interface);
}
static void
mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
u32 mcr_cur, mcr_new;
if (!mt753x_phy_mode_supported(ds, port, state))
goto unsupported;
switch (port) {
case 0 ... 4: /* Internal phy */
if (state->interface != PHY_INTERFACE_MODE_GMII)
goto unsupported;
break;
case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
if (priv->p5_interface == state->interface)
break;
if (mt753x_mac_config(ds, port, mode, state) < 0)
goto unsupported;
if (priv->p5_intf_sel != P5_DISABLED)
priv->p5_interface = state->interface;
break;
case 6: /* 1st cpu port */
if (priv->p6_interface == state->interface)
break;
mt753x_pad_setup(ds, state);
if (mt753x_mac_config(ds, port, mode, state) < 0)
goto unsupported;
priv->p6_interface = state->interface;
break;