blob: 06ac9badee7748e57a99e14a075fec85f1f5e8a6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_common.h"
#include "ice_flex_pipe.h"
#include "ice_flow.h"
/* To support tunneling entries by PF, the package will append the PF number to
* the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
*/
static const struct ice_tunnel_type_scan tnls[] = {
{ TNL_VXLAN, "TNL_VXLAN_PF" },
{ TNL_GENEVE, "TNL_GENEVE_PF" },
{ TNL_LAST, "" }
};
static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
/* SWITCH */
{
ICE_SID_XLT0_SW,
ICE_SID_XLT_KEY_BUILDER_SW,
ICE_SID_XLT1_SW,
ICE_SID_XLT2_SW,
ICE_SID_PROFID_TCAM_SW,
ICE_SID_PROFID_REDIR_SW,
ICE_SID_FLD_VEC_SW,
ICE_SID_CDID_KEY_BUILDER_SW,
ICE_SID_CDID_REDIR_SW
},
/* ACL */
{
ICE_SID_XLT0_ACL,
ICE_SID_XLT_KEY_BUILDER_ACL,
ICE_SID_XLT1_ACL,
ICE_SID_XLT2_ACL,
ICE_SID_PROFID_TCAM_ACL,
ICE_SID_PROFID_REDIR_ACL,
ICE_SID_FLD_VEC_ACL,
ICE_SID_CDID_KEY_BUILDER_ACL,
ICE_SID_CDID_REDIR_ACL
},
/* FD */
{
ICE_SID_XLT0_FD,
ICE_SID_XLT_KEY_BUILDER_FD,
ICE_SID_XLT1_FD,
ICE_SID_XLT2_FD,
ICE_SID_PROFID_TCAM_FD,
ICE_SID_PROFID_REDIR_FD,
ICE_SID_FLD_VEC_FD,
ICE_SID_CDID_KEY_BUILDER_FD,
ICE_SID_CDID_REDIR_FD
},
/* RSS */
{
ICE_SID_XLT0_RSS,
ICE_SID_XLT_KEY_BUILDER_RSS,
ICE_SID_XLT1_RSS,
ICE_SID_XLT2_RSS,
ICE_SID_PROFID_TCAM_RSS,
ICE_SID_PROFID_REDIR_RSS,
ICE_SID_FLD_VEC_RSS,
ICE_SID_CDID_KEY_BUILDER_RSS,
ICE_SID_CDID_REDIR_RSS
},
/* PE */
{
ICE_SID_XLT0_PE,
ICE_SID_XLT_KEY_BUILDER_PE,
ICE_SID_XLT1_PE,
ICE_SID_XLT2_PE,
ICE_SID_PROFID_TCAM_PE,
ICE_SID_PROFID_REDIR_PE,
ICE_SID_FLD_VEC_PE,
ICE_SID_CDID_KEY_BUILDER_PE,
ICE_SID_CDID_REDIR_PE
}
};
/**
* ice_sect_id - returns section ID
* @blk: block type
* @sect: section type
*
* This helper function returns the proper section ID given a block type and a
* section type.
*/
static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
{
return ice_sect_lkup[blk][sect];
}
/**
* ice_pkg_val_buf
* @buf: pointer to the ice buffer
*
* This helper function validates a buffer's header.
*/
static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
{
struct ice_buf_hdr *hdr;
u16 section_count;
u16 data_end;
hdr = (struct ice_buf_hdr *)buf->buf;
/* verify data */
section_count = le16_to_cpu(hdr->section_count);
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
return NULL;
data_end = le16_to_cpu(hdr->data_end);
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
return NULL;
return hdr;
}
/**
* ice_find_buf_table
* @ice_seg: pointer to the ice segment
*
* Returns the address of the buffer table within the ice segment.
*/
static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
{
struct ice_nvm_table *nvms;
nvms = (struct ice_nvm_table *)
(ice_seg->device_table +
le32_to_cpu(ice_seg->device_table_count));
return (__force struct ice_buf_table *)
(nvms->vers + le32_to_cpu(nvms->table_count));
}
/**
* ice_pkg_enum_buf
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This function will enumerate all the buffers in the ice segment. The first
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
* ice_seg is set to NULL which continues the enumeration. When the function
* returns a NULL pointer, then the end of the buffers has been reached, or an
* unexpected value has been detected (for example an invalid section count or
* an invalid buffer end value).
*/
static struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (ice_seg) {
state->buf_table = ice_find_buf_table(ice_seg);
if (!state->buf_table)
return NULL;
state->buf_idx = 0;
return ice_pkg_val_buf(state->buf_table->buf_array);
}
if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
return ice_pkg_val_buf(state->buf_table->buf_array +
state->buf_idx);
else
return NULL;
}
/**
* ice_pkg_advance_sect
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This helper function will advance the section within the ice segment,
* also advancing the buffer if needed.
*/
static bool
ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (!ice_seg && !state->buf)
return false;
if (!ice_seg && state->buf)
if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
return true;
state->buf = ice_pkg_enum_buf(ice_seg, state);
if (!state->buf)
return false;
/* start of new buffer, reset section index */
state->sect_idx = 0;
return true;
}
/**
* ice_pkg_enum_section
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
*
* This function will enumerate all the sections of a particular type in the
* ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the matching
* sections has been reached.
*/
static void *
ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type)
{
u16 offset, size;
if (ice_seg)
state->type = sect_type;
if (!ice_pkg_advance_sect(ice_seg, state))
return NULL;
/* scan for next matching section */
while (state->buf->section_entry[state->sect_idx].type !=
cpu_to_le32(state->type))
if (!ice_pkg_advance_sect(NULL, state))
return NULL;
/* validate section */
offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
return NULL;
size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
return NULL;
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE)
return NULL;
state->sect_type =
le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
/* calc pointer to this section */
state->sect = ((u8 *)state->buf) +
le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
return state->sect;
}
/**
* ice_pkg_enum_entry
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
* @offset: pointer to variable that receives the offset in the table (optional)
* @handler: function that handles access to the entries into the section type
*
* This function will enumerate all the entries in particular section type in
* the ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the entries has
* been reached.
*
* Since each section may have a different header and entry size, the handler
* function is needed to determine the number and location entries in each
* section.
*
* The offset parameter is optional, but should be used for sections that
* contain an offset for each section table. For such cases, the section handler
* function must return the appropriate offset + index to give the absolution
* offset for each entry. For example, if the base for a section's header
* indicates a base offset of 10, and the index for the entry is 2, then
* section handler function should set the offset to 10 + 2 = 12.
*/
static void *
ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type, u32 *offset,
void *(*handler)(u32 sect_type, void *section,
u32 index, u32 *offset))
{
void *entry;
if (ice_seg) {
if (!handler)
return NULL;
if (!ice_pkg_enum_section(ice_seg, state, sect_type))
return NULL;
state->entry_idx = 0;
state->handler = handler;
} else {
state->entry_idx++;
}
if (!state->handler)
return NULL;
/* get entry */
entry = state->handler(state->sect_type, state->sect, state->entry_idx,
offset);
if (!entry) {
/* end of a section, look for another section of this type */
if (!ice_pkg_enum_section(NULL, state, 0))
return NULL;
state->entry_idx = 0;
entry = state->handler(state->sect_type, state->sect,
state->entry_idx, offset);
}
return entry;
}
/**
* ice_boost_tcam_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the boost TCAM entry to be returned
* @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual boost TCAM entries.
*/
static void *
ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
{
struct ice_boost_tcam_section *boost;
if (!section)
return NULL;
if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
return NULL;
/* cppcheck-suppress nullPointer */
if (index > ICE_MAX_BST_TCAMS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
boost = section;
if (index >= le16_to_cpu(boost->count))
return NULL;
return boost->tcam + index;
}
/**
* ice_find_boost_entry
* @ice_seg: pointer to the ice segment (non-NULL)
* @addr: Boost TCAM address of entry to search for
* @entry: returns pointer to the entry
*
* Finds a particular Boost TCAM entry and returns a pointer to that entry
* if it is found. The ice_seg parameter must not be NULL since the first call
* to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
*/
static enum ice_status
ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
struct ice_boost_tcam_entry **entry)
{
struct ice_boost_tcam_entry *tcam;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
if (!ice_seg)
return ICE_ERR_PARAM;
do {
tcam = ice_pkg_enum_entry(ice_seg, &state,
ICE_SID_RXPARSER_BOOST_TCAM, NULL,
ice_boost_tcam_handler);
if (tcam && le16_to_cpu(tcam->addr) == addr) {
*entry = tcam;
return 0;
}
ice_seg = NULL;
} while (tcam);
*entry = NULL;
return ICE_ERR_CFG;
}
/**
* ice_label_enum_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the label entry to be returned
* @offset: pointer to receive absolute offset, always zero for label sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual label entries.
*/
static void *
ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
u32 *offset)
{
struct ice_label_section *labels;
if (!section)
return NULL;
/* cppcheck-suppress nullPointer */
if (index > ICE_MAX_LABELS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
labels = section;
if (index >= le16_to_cpu(labels->count))
return NULL;
return labels->label + index;
}
/**
* ice_enum_labels
* @ice_seg: pointer to the ice segment (NULL on subsequent calls)
* @type: the section type that will contain the label (0 on subsequent calls)
* @state: ice_pkg_enum structure that will hold the state of the enumeration
* @value: pointer to a value that will return the label's value if found
*
* Enumerates a list of labels in the package. The caller will call
* ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
* ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
* the end of the list has been reached.
*/
static char *
ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
u16 *value)
{
struct ice_label *label;
/* Check for valid label section on first call */
if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
return NULL;
label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
ice_label_enum_handler);
if (!label)
return NULL;
*value = le16_to_cpu(label->value);
return label->name;
}
/**
* ice_init_pkg_hints
* @hw: pointer to the HW structure
* @ice_seg: pointer to the segment of the package scan (non-NULL)
*
* This function will scan the package and save off relevant information
* (hints or metadata) for driver use. The ice_seg parameter must not be NULL
* since the first call to ice_enum_labels requires a pointer to an actual
* ice_seg structure.
*/
static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_pkg_enum state;
char *label_name;
u16 val;
int i;
memset(&hw->tnl, 0, sizeof(hw->tnl));
memset(&state, 0, sizeof(state));
if (!ice_seg)
return;
label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
&val);
while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
for (i = 0; tnls[i].type != TNL_LAST; i++) {
size_t len = strlen(tnls[i].label_prefix);
/* Look for matching label start, before continuing */
if (strncmp(label_name, tnls[i].label_prefix, len))
continue;
/* Make sure this label matches our PF. Note that the PF
* character ('0' - '7') will be located where our
* prefix string's null terminator is located.
*/
if ((label_name[len] - '0') == hw->pf_id) {
hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
hw->tnl.tbl[hw->tnl.count].valid = false;
hw->tnl.tbl[hw->tnl.count].boost_addr = val;
hw->tnl.tbl[hw->tnl.count].port = 0;
hw->tnl.count++;
break;
}
}
label_name = ice_enum_labels(NULL, 0, &state, &val);
}
/* Cache the appropriate boost TCAM entry pointers */
for (i = 0; i < hw->tnl.count; i++) {
ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
&hw->tnl.tbl[i].boost_entry);
if (hw->tnl.tbl[i].boost_entry) {
hw->tnl.tbl[i].valid = true;
if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
}
}
}
/* Key creation */
#define ICE_DC_KEY 0x1 /* don't care */
#define ICE_DC_KEYINV 0x1
#define ICE_NM_KEY 0x0 /* never match */
#define ICE_NM_KEYINV 0x0
#define ICE_0_KEY 0x1 /* match 0 */
#define ICE_0_KEYINV 0x0
#define ICE_1_KEY 0x0 /* match 1 */
#define ICE_1_KEYINV 0x1
/**
* ice_gen_key_word - generate 16-bits of a key/mask word
* @val: the value
* @valid: valid bits mask (change only the valid bits)
* @dont_care: don't care mask
* @nvr_mtch: never match mask
* @key: pointer to an array of where the resulting key portion
* @key_inv: pointer to an array of where the resulting key invert portion
*
* This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
* and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
* of key and 8 bits of key invert.
*
* '0' = b01, always match a 0 bit
* '1' = b10, always match a 1 bit
* '?' = b11, don't care bit (always matches)
* '~' = b00, never match bit
*
* Input:
* val: b0 1 0 1 0 1
* dont_care: b0 0 1 1 0 0
* never_mtch: b0 0 0 0 1 1
* ------------------------------
* Result: key: b01 10 11 11 00 00
*/
static enum ice_status
ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
u8 *key_inv)
{
u8 in_key = *key, in_key_inv = *key_inv;
u8 i;
/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
return ICE_ERR_CFG;
*key = 0;
*key_inv = 0;
/* encode the 8 bits into 8-bit key and 8-bit key invert */
for (i = 0; i < 8; i++) {
*key >>= 1;
*key_inv >>= 1;
if (!(valid & 0x1)) { /* change only valid bits */
*key |= (in_key & 0x1) << 7;
*key_inv |= (in_key_inv & 0x1) << 7;
} else if (dont_care & 0x1) { /* don't care bit */
*key |= ICE_DC_KEY << 7;
*key_inv |= ICE_DC_KEYINV << 7;
} else if (nvr_mtch & 0x1) { /* never match bit */
*key |= ICE_NM_KEY << 7;
*key_inv |= ICE_NM_KEYINV << 7;
} else if (val & 0x01) { /* exact 1 match */
*key |= ICE_1_KEY << 7;
*key_inv |= ICE_1_KEYINV << 7;
} else { /* exact 0 match */
*key |= ICE_0_KEY << 7;
*key_inv |= ICE_0_KEYINV << 7;
}
dont_care >>= 1;
nvr_mtch >>= 1;
valid >>= 1;
val >>= 1;
in_key >>= 1;
in_key_inv >>= 1;
}
return 0;
}
/**
* ice_bits_max_set - determine if the number of bits set is within a maximum
* @mask: pointer to the byte array which is the mask
* @size: the number of bytes in the mask
* @max: the max number of set bits
*
* This function determines if there are at most 'max' number of bits set in an
* array. Returns true if the number for bits set is <= max or will return false
* otherwise.
*/
static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
{
u16 count = 0;
u16 i;
/* check each byte */
for (i = 0; i < size; i++) {
/* if 0, go to next byte */
if (!mask[i])
continue;
/* We know there is at least one set bit in this byte because of
* the above check; if we already have found 'max' number of
* bits set, then we can return failure now.
*/
if (count == max)
return false;
/* count the bits in this byte, checking threshold */
count += hweight8(mask[i]);
if (count > max)
return false;
}
return true;
}
/**
* ice_set_key - generate a variable sized key with multiples of 16-bits
* @key: pointer to where the key will be stored
* @size: the size of the complete key in bytes (must be even)
* @val: array of 8-bit values that makes up the value portion of the key
* @upd: array of 8-bit masks that determine what key portion to update
* @dc: array of 8-bit masks that make up the don't care mask
* @nm: array of 8-bit masks that make up the never match mask
* @off: the offset of the first byte in the key to update
* @len: the number of bytes in the key update
*
* This function generates a key from a value, a don't care mask and a never
* match mask.
* upd, dc, and nm are optional parameters, and can be NULL:
* upd == NULL --> upd mask is all 1's (update all bits)
* dc == NULL --> dc mask is all 0's (no don't care bits)
* nm == NULL --> nm mask is all 0's (no never match bits)
*/
static enum ice_status
ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
u16 len)
{
u16 half_size;
u16 i;
/* size must be a multiple of 2 bytes. */
if (size % 2)
return ICE_ERR_CFG;
half_size = size / 2;
if (off + len > half_size)
return ICE_ERR_CFG;
/* Make sure at most one bit is set in the never match mask. Having more
* than one never match mask bit set will cause HW to consume excessive
* power otherwise; this is a power management efficiency check.
*/
#define ICE_NVR_MTCH_BITS_MAX 1
if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
return ICE_ERR_CFG;
for (i = 0; i < len; i++)
if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
dc ? dc[i] : 0, nm ? nm[i] : 0,
key + off + i, key + half_size + off + i))
return ICE_ERR_CFG;
return 0;
}
/**
* ice_acquire_global_cfg_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the global config lock for reading
* or writing of the package. When attempting to obtain write access, the
* caller must check for the following two return values:
*
* ICE_SUCCESS - Means the caller has acquired the global config lock
* and can perform writing of the package.
* ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
* package or has found that no update was necessary; in
* this case, the caller can just skip performing any
* update of the package.
*/
static enum ice_status
ice_acquire_global_cfg_lock(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
enum ice_status status;
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (!status)
mutex_lock(&ice_global_cfg_lock_sw);
else if (status == ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
return status;
}
/**
* ice_release_global_cfg_lock
* @hw: pointer to the HW structure
*
* This function will release the global config lock.
*/
static void ice_release_global_cfg_lock(struct ice_hw *hw)
{
mutex_unlock(&ice_global_cfg_lock_sw);
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
}
/**
* ice_acquire_change_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the change lock.
*/
static enum ice_status
ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
ICE_CHANGE_LOCK_TIMEOUT);
}
/**
* ice_release_change_lock
* @hw: pointer to the HW structure
*
* This function will release the change lock using the proper Admin Command.
*/
static void ice_release_change_lock(struct ice_hw *hw)
{
ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
}
/**
* ice_aq_download_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer to transfer
* @buf_size: the size of the package buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Download Package (0x0C40)
*/
static enum ice_status
ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_aq_update_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package cmd buffer
* @buf_size: the size of the package cmd buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Update Package (0x0C42)
*/
static enum ice_status
ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
bool last_buf, u32 *error_offset, u32 *error_info,
struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_find_seg_in_pkg
* @hw: pointer to the hardware structure
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
* @pkg_hdr: pointer to the package header to be searched
*
* This function searches a package file for a particular segment type. On
* success it returns a pointer to the segment header, otherwise it will
* return NULL.
*/
static struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
struct ice_pkg_hdr *pkg_hdr)
{
u32 i;
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
pkg_hdr->pkg_format_ver.update,
pkg_hdr->pkg_format_ver.draft);
/* Search all package segments for the requested segment type */
for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
struct ice_generic_seg_hdr *seg;
seg = (struct ice_generic_seg_hdr *)
((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
if (le32_to_cpu(seg->seg_type) == seg_type)
return seg;
}
return NULL;
}
/**
* ice_update_pkg
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains change lock and updates package.
*/
static enum ice_status
ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
u32 offset, info, i;
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
return status;
for (i = 0; i < count; i++) {
struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
bool last = ((i + 1) == count);
status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
last, &offset, &info, NULL);
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
}
ice_release_change_lock(hw);
return status;
}
/**
* ice_dwnld_cfg_bufs
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains global config lock and downloads the package configuration buffers
* to the firmware. Metadata buffers are skipped, and the first metadata buffer
* found indicates that the rest of the buffers are all metadata buffers.
*/
static enum ice_status
ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
struct ice_buf_hdr *bh;
u32 offset, info, i;
if (!bufs || !count)
return ICE_ERR_PARAM;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)bufs;
if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
return 0;
/* reset pkg_dwnld_status in case this function is called in the
* reset/rebuild flow
*/
hw->pkg_dwnld_status = ICE_AQ_RC_OK;
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == ICE_ERR_AQ_NO_WORK)
hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
else
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
return status;
}
for (i = 0; i < count; i++) {
bool last = ((i + 1) == count);
if (!last) {
/* check next buffer for metadata flag */
bh = (struct ice_buf_hdr *)(bufs + i + 1);
/* A set metadata flag in the next buffer will signal
* that the current buffer will be the last buffer
* downloaded
*/
if (le16_to_cpu(bh->section_count))
if (le32_to_cpu(bh->section_entry[0].type) &
ICE_METADATA_BUF)
last = true;
}
bh = (struct ice_buf_hdr *)(bufs + i);
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
&offset, &info, NULL);
/* Save AQ status from download package */
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
if (last)
break;
}
ice_release_global_cfg_lock(hw);
return status;
}
/**
* ice_aq_get_pkg_info_list
* @hw: pointer to the hardware structure
* @pkg_info: the buffer which will receive the information list
* @buf_size: the size of the pkg_info information buffer
* @cd: pointer to command details structure or NULL
*
* Get Package Info List (0x0C43)
*/
static enum ice_status
ice_aq_get_pkg_info_list(struct ice_hw *hw,
struct ice_aqc_get_pkg_info_resp *pkg_info,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
}
/**
* ice_download_pkg
* @hw: pointer to the hardware structure
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package.
*/
static enum ice_status
ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_buf_table *ice_buf_tbl;
ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
ice_seg->hdr.seg_format_ver.major,
ice_seg->hdr.seg_format_ver.minor,
ice_seg->hdr.seg_format_ver.update,
ice_seg->hdr.seg_format_ver.draft);
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
le32_to_cpu(ice_seg->hdr.seg_type),
le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
ice_buf_tbl = ice_find_buf_table(ice_seg);
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
le32_to_cpu(ice_buf_tbl->buf_count));
return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
le32_to_cpu(ice_buf_tbl->buf_count));
}
/**
* ice_init_pkg_info
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*
* Saves off the package details into the HW structure.
*/
static enum ice_status
ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
struct ice_generic_seg_hdr *seg_hdr;
if (!pkg_hdr)
return ICE_ERR_PARAM;
seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
if (seg_hdr) {
struct ice_meta_sect *meta;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
/* Get package information from the Metadata Section */
meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
ICE_SID_METADATA);
if (!meta) {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
return ICE_ERR_CFG;
}
hw->pkg_ver = meta->ver;
memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
meta->ver.major, meta->ver.minor, meta->ver.update,
meta->ver.draft, meta->name);
hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
memcpy(hw->ice_seg_id, seg_hdr->seg_id,
sizeof(hw->ice_seg_id));
ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
seg_hdr->seg_format_ver.major,
seg_hdr->seg_format_ver.minor,
seg_hdr->seg_format_ver.update,
seg_hdr->seg_format_ver.draft,
seg_hdr->seg_id);
} else {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
return ICE_ERR_CFG;
}
return 0;
}
/**
* ice_get_pkg_info
* @hw: pointer to the hardware structure
*
* Store details of the package currently loaded in HW into the HW structure.
*/
static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
{
struct ice_aqc_get_pkg_info_resp *pkg_info;
enum ice_status status;
u16 size;
u32 i;
size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
pkg_info = kzalloc(size, GFP_KERNEL);
if (!pkg_info)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
if (status)
goto init_pkg_free_alloc;
for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
#define ICE_PKG_FLAG_COUNT 4
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
u8 place = 0;
if (pkg_info->pkg_info[i].is_active) {
flags[place++] = 'A';
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
hw->active_track_id =
le32_to_cpu(pkg_info->pkg_info[i].track_id);
memcpy(hw->active_pkg_name,
pkg_info->pkg_info[i].name,
sizeof(pkg_info->pkg_info[i].name));
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
}
if (pkg_info->pkg_info[i].is_active_at_boot)
flags[place++] = 'B';
if (pkg_info->pkg_info[i].is_modified)
flags[place++] = 'M';
if (pkg_info->pkg_info[i].is_in_nvm)
flags[place++] = 'N';
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
i, pkg_info->pkg_info[i].ver.major,
pkg_info->pkg_info[i].ver.minor,
pkg_info->pkg_info[i].ver.update,
pkg_info->pkg_info[i].ver.draft,
pkg_info->pkg_info[i].name, flags);
}
init_pkg_free_alloc:
kfree(pkg_info);
return status;
}
/**
* ice_verify_pkg - verify package
* @pkg: pointer to the package buffer
* @len: size of the package buffer
*
* Verifies various attributes of the package file, including length, format
* version, and the requirement of at least one segment.
*/
static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
{
u32 seg_count;
u32 i;
if (len < struct_size(pkg, seg_offset, 1))
return ICE_ERR_BUF_TOO_SHORT;
if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
return ICE_ERR_CFG;
/* pkg must have at least one segment */
seg_count = le32_to_cpu(pkg->seg_count);
if (seg_count < 1)
return ICE_ERR_CFG;
/* make sure segment array fits in package length */
if (len < struct_size(pkg, seg_offset, seg_count))
return ICE_ERR_BUF_TOO_SHORT;
/* all segments must fit within length */
for (i = 0; i < seg_count; i++) {
u32 off = le32_to_cpu(pkg->seg_offset[i]);
struct ice_generic_seg_hdr *seg;
/* segment header must fit */
if (len < off + sizeof(*seg))
return ICE_ERR_BUF_TOO_SHORT;
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
/* segment body must fit */
if (len < off + le32_to_cpu(seg->seg_size))
return ICE_ERR_BUF_TOO_SHORT;
}
return 0;
}
/**
* ice_free_seg - free package segment pointer
* @hw: pointer to the hardware structure
*
* Frees the package segment pointer in the proper manner, depending on if the
* segment was allocated or just the passed in pointer was stored.
*/
void ice_free_seg(struct ice_hw *hw)
{
if (hw->pkg_copy) {
devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
hw->pkg_copy = NULL;
hw->pkg_size = 0;
}
hw->seg = NULL;
}
/**
* ice_init_pkg_regs - initialize additional package registers
* @hw: pointer to the hardware structure
*/
static void ice_init_pkg_regs(struct ice_hw *hw)
{
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
#define ICE_SW_BLK_IDX 0
/* setup Switch block input mask, which is 48-bits in two parts */
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
}
/**
* ice_chk_pkg_version - check package version for compatibility with driver
* @pkg_ver: pointer to a version structure to check
*
* Check to make sure that the package about to be downloaded is compatible with
* the driver. To be compatible, the major and minor components of the package
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
* definitions.
*/
static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
return ICE_ERR_NOT_SUPPORTED;
return 0;
}
/**
* ice_chk_pkg_compat
* @hw: pointer to the hardware structure
* @ospkg: pointer to the package hdr
* @seg: pointer to the package segment hdr
*
* This function checks the package version compatibility with driver and NVM
*/
static enum ice_status
ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
struct ice_seg **seg)
{
struct ice_aqc_get_pkg_info_resp *pkg;
enum ice_status status;
u16 size;
u32 i;
/* Check package version compatibility */
status = ice_chk_pkg_version(&hw->pkg_ver);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
return status;
}
/* find ICE segment in given package */
*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
ospkg);
if (!*seg) {
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
return ICE_ERR_CFG;
}
/* Check if FW is compatible with the OS package */
size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
pkg = kzalloc(size, GFP_KERNEL);
if (!pkg)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
if (status)
goto fw_ddp_compat_free_alloc;
for (i = 0; i < le32_to_cpu(pkg->count); i++) {
/* loop till we find the NVM package */
if (!pkg->pkg_info[i].is_in_nvm)
continue;
if ((*seg)->hdr.seg_format_ver.major !=
pkg->pkg_info[i].ver.major ||
(*seg)->hdr.seg_format_ver.minor >
pkg->pkg_info[i].ver.minor) {
status = ICE_ERR_FW_DDP_MISMATCH;
ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
}
/* done processing NVM package so break */
break;
}
fw_ddp_compat_free_alloc:
kfree(pkg);
return status;
}
/**
* ice_init_pkg - initialize/download package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function initializes a package. The package contains HW tables
* required to do packet processing. First, the function extracts package
* information such as version. Then it finds the ice configuration segment
* within the package; this function then saves a copy of the segment pointer
* within the supplied package buffer. Next, the function will cache any hints
* from the package, followed by downloading the package itself. Note, that if
* a previous PF driver has already downloaded the package successfully, then
* the current driver will not have to download the package again.
*
* The local package contents will be used to query default behavior and to
* update specific sections of the HW's version of the package (e.g. to update
* the parse graph to understand new protocols).
*
* This function stores a pointer to the package buffer memory, and it is
* expected that the supplied buffer will not be freed immediately. If the
* package buffer needs to be freed, such as when read from a file, use
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
* case.
*/
enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
{
struct ice_pkg_hdr *pkg;
enum ice_status status;
struct ice_seg *seg;
if (!buf || !len)
return ICE_ERR_PARAM;
pkg = (struct ice_pkg_hdr *)buf;
status = ice_verify_pkg(pkg, len);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
status);
return status;
}
/* initialize package info */
status = ice_init_pkg_info(hw, pkg);
if (status)
return status;
/* before downloading the package, check package version for
* compatibility with driver
*/
status = ice_chk_pkg_compat(hw, pkg, &seg);
if (status)
return status;
/* initialize package hints and then download package */
ice_init_pkg_hints(hw, seg);
status = ice_download_pkg(hw, seg);
if (status == ICE_ERR_AQ_NO_WORK) {
ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
status = 0;
}
/* Get information on the package currently loaded in HW, then make sure
* the driver is compatible with this version.
*/
if (!status) {
status = ice_get_pkg_info(hw);
if (!status)
status = ice_chk_pkg_version(&hw->active_pkg_ver);
}
if (!status) {
hw->seg = seg;
/* on successful package download update other required
* registers to support the package and fill HW tables
* with package content.
*/
ice_init_pkg_regs(hw);
ice_fill_blk_tbls(hw);
} else {
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
status);
}
return status;
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
{
enum ice_status status;
u8 *buf_copy;
if (!buf || !len)
return ICE_ERR_PARAM;
buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
status = ice_init_pkg(hw, buf_copy, len);
if (status) {
/* Free the copy, since we failed to initialize the package */
devm_kfree(ice_hw_to_dev(hw), buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return status;
}
/**
* ice_pkg_buf_alloc
* @hw: pointer to the HW structure
*
* Allocates a package buffer and returns a pointer to the buffer header.
* Note: all package contents must be in Little Endian form.
*/
static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
{
struct ice_buf_build *bld;
struct ice_buf_hdr *buf;
bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
if (!bld)
return NULL;
buf = (struct ice_buf_hdr *)bld;
buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
section_entry));
return bld;
}
/**
* ice_pkg_buf_free
* @hw: pointer to the HW structure
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Frees a package buffer
*/
static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
{
devm_kfree(ice_hw_to_dev(hw), bld);
}
/**
* ice_pkg_buf_reserve_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @count: the number of sections to reserve
*
* Reserves one or more section table entries in a package buffer. This routine
* can be called multiple times as long as they are made before calling
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
* is called once, the number of sections that can be allocated will not be able
* to be increased; not using all reserved sections is fine, but this will
* result in some wasted space in the buffer.
* Note: all package contents must be in Little Endian form.
*/
static enum ice_status
ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
{
struct ice_buf_hdr *buf;
u16 section_count;
u16 data_end;
if (!bld)
return ICE_ERR_PARAM;
buf = (struct ice_buf_hdr *)&bld->buf;
/* already an active section, can't increase table size */
section_count = le16_to_cpu(buf->section_count);
if (section_count > 0)
return ICE_ERR_CFG;
if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
return ICE_ERR_CFG;
bld->reserved_section_table_entries += count;
data_end = le16_to_cpu(buf->data_end) +
flex_array_size(buf, section_entry, count);
buf->data_end = cpu_to_le16(data_end);
return 0;
}
/**
* ice_pkg_buf_alloc_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
*
* Reserves memory in the buffer for a section's content and updates the
* buffers' status accordingly. This routine returns a pointer to the first
* byte of the section start within the buffer, which is used to fill in the
* section contents.
* Note: all package contents must be in Little Endian form.
*/
static void *
ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
{
struct ice_buf_hdr *buf;
u16 sect_count;
u16 data_end;
if (!bld || !type || !size)
return NULL;
buf = (struct ice_buf_hdr *)&bld->buf;
/* check for enough space left in buffer */
data_end = le16_to_cpu(buf->data_end);
/* section start must align on 4 byte boundary */
data_end = ALIGN(data_end, 4);
if ((data_end + size) > ICE_MAX_S_DATA_END)
return NULL;
/* check for more available section table entries */
sect_count = le16_to_cpu(buf->section_count);
if (sect_count < bld->reserved_section_table_entries) {
void *section_ptr = ((u8 *)buf) + data_end;
buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
buf->section_entry[sect_count].size = cpu_to_le16(size);
buf->section_entry[sect_count].type = cpu_to_le32(type);
data_end += size;
buf->data_end = cpu_to_le16(data_end);
buf->section_count = cpu_to_le16(sect_count + 1);
return section_ptr;
}
/* no free section table entries */
return NULL;
}
/**
* ice_pkg_buf_get_active_sections
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Returns the number of active sections. Before using the package buffer
* in an update package command, the caller should make sure that there is at
* least one active section - otherwise, the buffer is not legal and should
* not be used.
* Note: all package contents must be in Little Endian form.
*/
static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
{
struct ice_buf_hdr *buf;
if (!bld)
return 0;
buf = (struct ice_buf_hdr *)&bld->buf;
return le16_to_cpu(buf->section_count);
}
/**
* ice_pkg_buf
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Return a pointer to the buffer's header
*/
static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
{
if (!bld)
return NULL;
return &bld->buf;
}
/**
* ice_get_open_tunnel_port - retrieve an open tunnel port
* @hw: pointer to the HW structure
* @port: returns open port
*/
bool
ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port)
{
bool res = false;
u16 i;
mutex_lock(&hw->tnl_lock);
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) {
*port = hw->tnl.tbl[i].port;
res = true;
break;
}
mutex_unlock(&hw->tnl_lock);
return res;
}
/**
* ice_tunnel_idx_to_entry - convert linear index to the sparse one
* @hw: pointer to the HW structure
* @type: type of tunnel
* @idx: linear index
*
* Stack assumes we have 2 linear tables with indexes [0, count_valid),
* but really the port table may be sprase, and types are mixed, so convert
* the stack index into the device index.
*/
static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
u16 idx)
{
u16 i;
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
if (hw->tnl.tbl[i].valid &&
hw->tnl.tbl[i].type == type &&
idx--)
return i;
WARN_ON_ONCE(1);
return 0;
}
/**
* ice_create_tunnel
* @hw: pointer to the HW structure
* @index: device table entry
* @type: type of tunnel
* @port: port of tunnel to create
*
* Create a tunnel by updating the parse graph in the parser. We do that by
* creating a package buffer with the tunnel info and issuing an update package
* command.
*/
static enum ice_status
ice_create_tunnel(struct ice_hw *hw, u16 index,
enum ice_tunnel_type type, u16 port)
{
struct ice_boost_tcam_section *sect_rx, *sect_tx;
enum ice_status status = ICE_ERR_MAX_LIMIT;
struct ice_buf_build *bld;
mutex_lock(&hw->tnl_lock);
bld = ice_pkg_buf_alloc(hw);
if (!bld) {
status = ICE_ERR_NO_MEMORY;
goto ice_create_tunnel_end;
}
/* allocate 2 sections, one for Rx parser, one for Tx parser */
if (ice_pkg_buf_reserve_section(bld, 2))
goto ice_create_tunnel_err;
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
struct_size(sect_rx, tcam, 1));
if (!sect_rx)
goto ice_create_tunnel_err;
sect_rx->count = cpu_to_le16(1);
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
struct_size(sect_tx, tcam, 1));
if (!sect_tx)
goto ice_create_tunnel_err;
sect_tx->count = cpu_to_le16(1);
/* copy original boost entry to update package buffer */
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_rx->tcam));
/* over-write the never-match dest port key bits with the encoded port
* bits
*/
ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
(u8 *)&port, NULL, NULL, NULL,
(u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
/* exact copy of entry to Tx section entry */
memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
if (!status)
hw->tnl.tbl[index].port = port;
ice_create_tunnel_err:
ice_pkg_buf_free(hw, bld);
ice_create_tunnel_end:
mutex_unlock(&hw->tnl_lock);
return status;
}
/**
* ice_destroy_tunnel
* @hw: pointer to the HW structure
* @index: device table entry
* @type: type of tunnel
* @port: port of tunnel to destroy (ignored if the all parameter is true)
*
* Destroys a tunnel or all tunnels by creating an update package buffer
* targeting the specific updates requested and then performing an update
* package.
*/
static enum ice_status
ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
u16 port)
{
struct ice_boost_tcam_section *sect_rx, *sect_tx;
enum ice_status status = ICE_ERR_MAX_LIMIT;
struct ice_buf_build *bld;
mutex_lock(&hw->tnl_lock);
if (WARN_ON(!hw->tnl.tbl[index].valid ||
hw->tnl.tbl[index].type != type ||
hw->tnl.tbl[index].port != port)) {
status = ICE_ERR_OUT_OF_RANGE;
goto ice_destroy_tunnel_end;
}
bld = ice_pkg_buf_alloc(hw);
if (!bld) {
status = ICE_ERR_NO_MEMORY;
goto ice_destroy_tunnel_end;
}
/* allocate 2 sections, one for Rx parser, one for Tx parser */
if (ice_pkg_buf_reserve_section(bld, 2))
goto ice_destroy_tunnel_err;
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
struct_size(sect_rx, tcam, 1));
if (!sect_rx)
goto ice_destroy_tunnel_err;
sect_rx->count = cpu_to_le16(1);
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
struct_size(sect_tx, tcam, 1));
if (!sect_tx)
goto ice_destroy_tunnel_err;
sect_tx->count = cpu_to_le16(1);
/* copy original boost entry to update package buffer, one copy to Rx
* section, another copy to the Tx section
*/
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_rx->tcam));
memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_tx->tcam));
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
if (!status)
hw->tnl.tbl[index].port = 0;
ice_destroy_tunnel_err:
ice_pkg_buf_free(hw, bld);
ice_destroy_tunnel_end:
mutex_unlock(&hw->tnl_lock);
return status;
}
int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
unsigned int idx, struct udp_tunnel_info *ti)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
enum ice_tunnel_type tnl_type;
enum ice_status status;
u16 index;
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type);
status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
if (status) {
netdev_err(netdev, "Error adding UDP tunnel - %s\n",
ice_stat_str(status));
return -EIO;
}
udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
return 0;
}
int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
unsigned int idx, struct udp_tunnel_info *ti)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
enum ice_tunnel_type tnl_type;
enum ice_status status;
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
ntohs(ti->port));
if (status) {
netdev_err(netdev, "Error removing UDP tunnel - %s\n",
ice_stat_str(status));
return -EIO;
}
return 0;
}
/* PTG Management */
/**
* ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to search for
* @ptg: pointer to variable that receives the PTG
*
* This function will search the PTGs for a particular ptype, returning the
* PTG ID that contains it through the PTG parameter, with the value of
* ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
*/
static enum ice_status
ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
{
if (ptype >= ICE_XLT1_CNT || !ptg)
return ICE_ERR_PARAM;
*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
return 0;
}
/**
* ice_ptg_alloc_val - Allocates a new packet type group ID by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptg: the PTG to allocate
*
* This function allocates a given packet type group ID specified by the PTG
* parameter.
*/
static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
{
hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
}
/**
* ice_ptg_remove_ptype - Removes ptype from a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to remove
* @ptg: the PTG to remove the ptype from
*
* This function will remove the ptype from the specific PTG, and move it to
* the default PTG (ICE_DEFAULT_PTG).
*/
static enum ice_status
ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
struct ice_ptg_ptype **ch;
struct ice_ptg_ptype *p;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* Should not happen if .in_use is set, bad config */
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
return ICE_ERR_CFG;
/* find the ptype within this PTG, and bypass the link over it */
p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
while (p) {
if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
*ch = p->next_ptype;
break;
}
ch = &p->next_ptype;
p = p->next_ptype;
}
hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
return 0;
}
/**
* ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to add or move
* @ptg: the PTG to add or move the ptype to
*
* This function will either add or move a ptype to a particular PTG depending
* on if the ptype is already part of another group. Note that using a
* a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
* default PTG.
*/
static enum ice_status
ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
enum ice_status status;
u8 original_ptg;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
if (status)
return status;
/* Is ptype already in the correct PTG? */
if (original_ptg == ptg)
return 0;
/* Remove from original PTG and move back to the default PTG */
if (original_ptg != ICE_DEFAULT_PTG)
ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
/* Moving to default PTG? Then we're done with this request */
if (ptg == ICE_DEFAULT_PTG)
return 0;
/* Add ptype to PTG at beginning of list */
hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
&hw->blk[blk].xlt1.ptypes[ptype];
hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
hw->blk[blk].xlt1.t[ptype] = ptg;
return 0;
}
/* Block / table size info */
struct ice_blk_size_details {
u16 xlt1; /* # XLT1 entries */
u16 xlt2; /* # XLT2 entries */
u16 prof_tcam; /* # profile ID TCAM entries */
u16 prof_id; /* # profile IDs */
u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
u16 prof_redir; /* # profile redirection entries */
u16 es; /* # extraction sequence entries */
u16 fvw; /* # field vector words */
u8 overwrite; /* overwrite existing entries allowed */
u8 reverse; /* reverse FV order */
};
static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
/**
* Table Definitions
* XLT1 - Number of entries in XLT1 table
* XLT2 - Number of entries in XLT2 table
* TCAM - Number of entries Profile ID TCAM table
* CDID - Control Domain ID of the hardware block
* PRED - Number of entries in the Profile Redirection Table
* FV - Number of entries in the Field Vector
* FVW - Width (in WORDs) of the Field Vector
* OVR - Overwrite existing table entries
* REV - Reverse FV
*/
/* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
/* Overwrite , Reverse FV */
/* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
false, false },
/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
false, false },
/* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
false, true },
/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
true, true },
/* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
false, false },
};
enum ice_sid_all {
ICE_SID_XLT1_OFF = 0,
ICE_SID_XLT2_OFF,
ICE_SID_PR_OFF,
ICE_SID_PR_REDIR_OFF,
ICE_SID_ES_OFF,
ICE_SID_OFF_COUNT,
};
/* Characteristic handling */
/**
* ice_match_prop_lst - determine if properties of two lists match
* @list1: first properties list
* @list2: second properties list
*
* Count, cookies and the order must match in order to be considered equivalent.
*/
static bool
ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
{
struct ice_vsig_prof *tmp1;
struct ice_vsig_prof *tmp2;
u16 chk_count = 0;
u16 count = 0;
/* compare counts */
list_for_each_entry(tmp1, list1, list)
count++;
list_for_each_entry(tmp2, list2, list)
chk_count++;
/* cppcheck-suppress knownConditionTrueFalse */
if (!count || count != chk_count)
return false;
tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
/* profile cookies must compare, and in the exact same order to take
* into account priority
*/
while (count--) {
if (tmp2->profile_cookie != tmp1->profile_cookie)
return false;
tmp1 = list_next_entry(tmp1, list);
tmp2 = list_next_entry(tmp2, list);
}
return true;
}
/* VSIG Management */
/**
* ice_vsig_find_vsi - find a VSIG that contains a specified VSI
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI of interest
* @vsig: pointer to receive the VSI group
*
* This function will lookup the VSI entry in the XLT2 list and return
* the VSI group its associated with.
*/
static enum ice_status
ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
{
if (!vsig || vsi >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
/* As long as there's a default or valid VSIG associated with the input
* VSI, the functions returns a success. Any handling of VSIG will be
* done by the following add, update or remove functions.
*/
*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
return 0;
}
/**
* ice_vsig_alloc_val - allocate a new VSIG by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: the VSIG to allocate
*
* This function will allocate a given VSIG specified by the VSIG parameter.
*/
static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
}
return ICE_VSIG_VALUE(idx, hw->pf_id);
}
/**
* ice_vsig_alloc - Finds a free entry and allocates a new VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
*
* This function will iterate through the VSIG list and mark the first
* unused entry for the new VSIG entry as used and return that value.
*/
static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
{
u16 i;
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
return ice_vsig_alloc_val(hw, blk, i);
return ICE_DEFAULT_VSIG;
}
/**
* ice_find_dup_props_vsig - find VSI group with a specified set of properties
* @hw: pointer to the hardware structure
* @blk: HW block
* @chs: characteristic list
* @vsig: returns the VSIG with the matching profiles, if found
*
* Each VSIG is associated with a characteristic set; i.e. all VSIs under
* a group have the same characteristic set. To check if there exists a VSIG
* which has the same characteristics as the input characteristics; this
* function will iterate through the XLT2 list and return the VSIG that has a
* matching configuration. In order to make sure that priorities are accounted
* for, the list must match exactly, including the order in which the
* characteristics are listed.
*/
static enum ice_status
ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
struct list_head *chs, u16 *vsig)
{
struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
u16 i;
for (i = 0; i < xlt2->count; i++)
if (xlt2->vsig_tbl[i].in_use &&
ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
return 0;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_vsig_free - free VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to remove
*
* The function will remove all VSIs associated with the input VSIG and move
* them to the DEFAULT_VSIG and mark the VSIG available.
*/
static enum ice_status
ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
struct ice_vsig_prof *dtmp, *del;
struct ice_vsig_vsi *vsi_cur;
u16 idx;
idx = vsig & ICE_VSIG_IDX_M;
if (idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
/* If the VSIG has at least 1 VSI then iterate through the
* list and remove the VSIs before deleting the group.
*/
if (vsi_cur) {
/* remove all vsis associated with this VSIG XLT2 entry */
do {
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
vsi_cur = tmp;
} while (vsi_cur);
/* NULL terminate head of VSI list */
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
}
/* free characteristic list */
list_for_each_entry_safe(del, dtmp,
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list) {
list_del(&del->list);
devm_kfree(ice_hw_to_dev(hw), del);
}
/* if VSIG characteristic list was cleared for reset
* re-initialize the list head
*/
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
return 0;
}
/**
* ice_vsig_remove_vsi - remove VSI from VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to remove
* @vsig: VSI group to remove from
*
* The function will remove the input VSI from its VSI group and move it
* to the DEFAULT_VSIG.
*/
static enum ice_status
ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
u16 idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* entry already in default VSIG, don't have to remove */
if (idx == ICE_DEFAULT_VSIG)
return 0;
vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
if (!(*vsi_head))
return ICE_ERR_CFG;
vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
vsi_cur = (*vsi_head);
/* iterate the VSI list, skip over the entry to be removed */
while (vsi_cur) {
if (vsi_tgt == vsi_cur) {
(*vsi_head) = vsi_cur->next_vsi;
break;
}
vsi_head = &vsi_cur->next_vsi;
vsi_cur = vsi_cur->next_vsi;
}
/* verify if VSI was removed from group list */
if (!vsi_cur)
return ICE_ERR_DOES_NOT_EXIST;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
return 0;
}
/**
* ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to move
* @vsig: destination VSI group
*
* This function will move or add the input VSI to the target VSIG.
* The function will find the original VSIG the VSI belongs to and
* move the entry to the DEFAULT_VSIG, update the original VSIG and
* then move entry to the new VSIG.
*/
static enum ice_status
ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi *tmp;
enum ice_status status;
u16 orig_vsig, idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
/* if VSIG not in use and VSIG is not default type this VSIG
* doesn't exist.
*/
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
vsig != ICE_DEFAULT_VSIG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (status)
return status;
/* no update required if vsigs match */
if (orig_vsig == vsig)
return 0;
if (orig_vsig != ICE_DEFAULT_VSIG) {
/* remove entry from orig_vsig and add to default VSIG */
status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
if (status)
return status;
}
if (idx == ICE_DEFAULT_VSIG)
return 0;
/* Create VSI entry and add VSIG and prop_mask values */
hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
hw->blk[blk].xlt2.vsis[vsi].changed = 1;
/* Add new entry to the head of the VSIG list */
tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
&hw->blk[blk].xlt2.vsis[vsi];
hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
hw->blk[blk].xlt2.t[vsi] = vsig;
return 0;
}
/**
* ice_prof_has_mask_idx - determine if profile index masking is identical
* @hw: pointer to the hardware structure
* @blk: HW block
* @prof: profile to check
* @idx: profile index to check
* @mask: mask to match
*/
static bool
ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
u16 mask)
{
bool expect_no_mask = false;
bool found = false;
bool match = false;
u16 i;
/* If mask is 0x0000 or 0xffff, then there is no masking */
if (mask == 0 || mask == 0xffff)
expect_no_mask = true;
/* Scan the enabled masks on this profile, for the specified idx */
for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
hw->blk[blk].masks.count; i++)
if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
if (hw->blk[blk].masks.masks[i].in_use &&
hw->blk[blk].masks.masks[i].idx == idx) {
found = true;
if (hw->blk[blk].masks.masks[i].mask == mask)
match = true;
break;
}
if (expect_no_mask) {
if (found)
return false;
} else {
if (!match)
return false;
}
return true;
}
/**
* ice_prof_has_mask - determine if profile masking is identical
* @hw: pointer to the hardware structure
* @blk: HW block
* @prof: profile to check
* @masks: masks to match
*/
static bool
ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
{
u16 i;
/* es->mask_ena[prof] will have the mask */
for (i = 0; i < hw->blk[blk].es.fvw; i++)
if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
return false;
return true;
}
/**
* ice_find_prof_id_with_mask - find profile ID for a given field vector
* @hw: pointer to the hardware structure
* @blk: HW block
* @fv: field vector to search for
* @masks: masks for FV
* @prof_id: receives the profile ID
*/
static enum ice_status
ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
{
struct ice_es *es = &hw->blk[blk].es;
u8 i;
/* For FD, we don't want to re-use a existed profile with the same
* field vector and mask. This will cause rule interference.
*/
if (blk == ICE_BLK_FD)
return ICE_ERR_DOES_NOT_EXIST;
for (i = 0; i < (u8)es->count; i++) {
u16 off = i * es->fvw;
if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
continue;
/* check if masks settings are the same for this profile */
if (masks && !ice_prof_has_mask(hw, blk, i, masks))
continue;
*prof_id = i;
return 0;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_prof_id_rsrc_type - get profile ID resource type for a block type
* @blk: the block type
* @rsrc_type: pointer to variable to receive the resource type
*/
static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
{
switch (blk) {
case ICE_BLK_FD:
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
break;
case ICE_BLK_RSS:
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
break;
default:
return false;
}
return true;
}
/**
* ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
* @blk: the block type
* @rsrc_type: pointer to variable to receive the resource type
*/
static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
{
switch (blk) {
case ICE_BLK_FD:
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
break;
case ICE_BLK_RSS:
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
break;
default:
return false;
}
return true;
}
/**
* ice_alloc_tcam_ent - allocate hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block to allocate the TCAM for
* @btm: true to allocate from bottom of table, false to allocate from top
* @tcam_idx: pointer to variable to receive the TCAM entry
*
* This function allocates a new entry in a Profile ID TCAM for a specific
* block.
*/
static enum ice_status
ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
u16 *tcam_idx)
{
u16 res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
}
/**
* ice_free_tcam_ent - free hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block from which to free the TCAM entry
* @tcam_idx: the TCAM entry to free
*
* This function frees an entry in a Profile ID TCAM for a specific block.
*/
static enum ice_status
ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
{
u16 res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
}
/**
* ice_alloc_prof_id - allocate profile ID
* @hw: pointer to the HW struct
* @blk: the block to allocate the profile ID for
* @prof_id: pointer to variable to receive the profile ID
*
* This function allocates a new profile ID, which also corresponds to a Field
* Vector (Extraction Sequence) entry.
*/
static enum ice_status
ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
{
enum ice_status status;
u16 res_type;
u16 get_prof;
if (!ice_prof_id_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
if (!status)
*prof_id = (u8)get_prof;
return status;
}
/**
* ice_free_prof_id - free profile ID
* @hw: pointer to the HW struct
* @blk: the block from which to free the profile ID
* @prof_id: the profile ID to free
*
* This function frees a profile ID, which also corresponds to a Field Vector.
*/
static enum ice_status
ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
{
u16 tmp_prof_id = (u16)prof_id;
u16 res_type;
if (!ice_prof_id_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
}
/**
* ice_prof_inc_ref - increment reference count for profile
* @hw: pointer to the HW struct
* @blk: the block from which to free the profile ID
* @prof_id: the profile ID for which to increment the reference count
*/
static enum ice_status
ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
{
if (prof_id > hw->blk[blk].es.count)
return ICE_ERR_PARAM;
hw->blk[blk].es.ref_count[prof_id]++;
return 0;
}
/**
* ice_write_prof_mask_reg - write profile mask register
* @hw: pointer to the HW struct
* @blk: hardware block
* @mask_idx: mask index
* @idx: index of the FV which will use the mask
* @mask: the 16-bit mask
*/
static void
ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
u16 idx, u16 mask)
{
u32 offset;
u32 val;
switch (blk) {
case ICE_BLK_RSS:
offset = GLQF_HMASK(mask_idx);
val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
break;
case ICE_BLK_FD:
offset = GLQF_FDMASK(mask_idx);
val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
break;
default:
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
blk);
return;
}
wr32(hw, offset, val);
ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
blk, idx, offset, val);
}
/**
* ice_write_prof_mask_enable_res - write profile mask enable register
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
* @enable_mask: enable mask
*/
static void
ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
u16 prof_id, u32 enable_mask)
{
u32 offset;
switch (blk) {
case ICE_BLK_RSS:
offset = GLQF_HMASK_SEL(prof_id);
break;
case ICE_BLK_FD:
offset = GLQF_FDMASK_SEL(prof_id);
break;
default:
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
blk);
return;
}
wr32(hw, offset, enable_mask);
ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
blk, prof_id, offset, enable_mask);
}
/**
* ice_init_prof_masks - initial prof masks
* @hw: pointer to the HW struct
* @blk: hardware block
*/
static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
{
u16 per_pf;
u16 i;
mutex_init(&hw->blk[blk].masks.lock);
per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
hw->blk[blk].masks.count = per_pf;
hw->blk[blk].masks.first = hw->pf_id * per_pf;
memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
}
/**
* ice_init_all_prof_masks - initialize all prof masks
* @hw: pointer to the HW struct
*/
static void ice_init_all_prof_masks(struct ice_hw *hw)
{
ice_init_prof_masks(hw, ICE_BLK_RSS);
ice_init_prof_masks(hw, ICE_BLK_FD);
}
/**
* ice_alloc_prof_mask - allocate profile mask
* @hw: pointer to the HW struct
* @blk: hardware block
* @idx: index of FV which will use the mask
* @mask: the 16-bit mask
* @mask_idx: variable to receive the mask index
*/
static enum ice_status
ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
u16 *mask_idx)
{
bool found_unused = false, found_copy = false;
enum ice_status status = ICE_ERR_MAX_LIMIT;
u16 unused_idx = 0, copy_idx = 0;
u16 i;
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
mutex_lock(&hw->blk[blk].masks.lock);
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
if (hw->blk[blk].masks.masks[i].in_use) {
/* if mask is in use and it exactly duplicates the
* desired mask and index, then in can be reused
*/
if (hw->blk[blk].masks.masks[i].mask == mask &&
hw->blk[blk].masks.masks[i].idx == idx) {
found_copy = true;
copy_idx = i;
break;
}
} else {
/* save off unused index, but keep searching in case
* there is an exact match later on
*/
if (!found_unused) {
found_unused = true;
unused_idx = i;
}
}
if (found_copy)
i = copy_idx;
else if (found_unused)
i = unused_idx;
else
goto err_ice_alloc_prof_mask;
/* update mask for a new entry */
if (found_unused) {
hw->blk[blk].masks.masks[i].in_use = true;
hw->blk[blk].masks.masks[i].mask = mask;
hw->blk[blk].masks.masks[i].idx = idx;
hw->blk[blk].masks.masks[i].ref = 0;
ice_write_prof_mask_reg(hw, blk, i, idx, mask);
}
hw->blk[blk].masks.masks[i].ref++;
*mask_idx = i;
status = 0;
err_ice_alloc_prof_mask:
mutex_unlock(&hw->blk[blk].masks.lock);
return status;
}
/**
* ice_free_prof_mask - free profile mask
* @hw: pointer to the HW struct
* @blk: hardware block
* @mask_idx: index of mask
*/
static enum ice_status
ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
{
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
if (!(mask_idx >= hw->blk[blk].masks.first &&
mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
return ICE_ERR_DOES_NOT_EXIST;
mutex_lock(&hw->blk[blk].masks.lock);
if (!hw->blk[blk].masks.masks[mask_idx].in_use)
goto exit_ice_free_prof_mask;
if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
hw->blk[blk].masks.masks[mask_idx].ref--;
goto exit_ice_free_prof_mask;
}
/* remove mask */
hw->blk[blk].masks.masks[mask_idx].in_use = false;
hw->blk[blk].masks.masks[mask_idx].mask = 0;
hw->blk[blk].masks.masks[mask_idx].idx = 0;
/* update mask as unused entry */
ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
mask_idx);
ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
exit_ice_free_prof_mask:
mutex_unlock(&hw->blk[blk].masks.lock);
return 0;
}
/**
* ice_free_prof_masks - free all profile masks for a profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
*/
static enum ice_status
ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
{
u32 mask_bm;
u16 i;
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
mask_bm = hw->blk[blk].es.mask_ena[prof_id];
for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
if (mask_bm & BIT(i))
ice_free_prof_mask(hw, blk, i);
return 0;
}
/**
* ice_shutdown_prof_masks - releases lock for masking
* @hw: pointer to the HW struct
* @blk: hardware block
*
* This should be called before unloading the driver
*/
static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
{
u16 i;
mutex_lock(&hw->blk[blk].masks.lock);
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
hw->blk[blk].masks.masks[i].in_use = false;
hw->blk[blk].masks.masks[i].idx = 0;
hw->blk[blk].masks.masks[i].mask = 0;
}
mutex_unlock(&hw->blk[blk].masks.lock);
mutex_destroy(&hw->blk[blk].masks.lock);
}
/**
* ice_shutdown_all_prof_masks - releases all locks for masking
* @hw: pointer to the HW struct
*
* This should be called before unloading the driver
*/
static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
{
ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
ice_shutdown_prof_masks(hw, ICE_BLK_FD);
}
/**
* ice_update_prof_masking - set registers according to masking
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
* @masks: masks
*/
static enum ice_status
ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
u16 *masks)
{
bool err = false;
u32 ena_mask = 0;
u16 idx;
u16 i;
/* Only support FD and RSS masking, otherwise nothing to be done */
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return 0;
for (i = 0; i < hw->blk[blk].es.fvw; i++)
if (masks[i] && masks[i] != 0xFFFF) {
if (!ice_alloc_prof_mask(hw