blob: a5e1d2139e802bfa7c2f6e5694d965634f95ff11 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2009 VMware, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Michel Dänzer
*/
#include <drm/radeon_drm.h>
#include "radeon_reg.h"
#include "radeon.h"
#define RADEON_TEST_COPY_BLIT 1
#define RADEON_TEST_COPY_DMA 0
/* Test BO GTT->VRAM and VRAM->GTT GPU copies across the whole GTT aperture */
static void radeon_do_test_moves(struct radeon_device *rdev, int flag)
{
struct radeon_bo *vram_obj = NULL;
struct radeon_bo **gtt_obj = NULL;
uint64_t gtt_addr, vram_addr;
unsigned n, size;
int i, r, ring;
switch (flag) {
case RADEON_TEST_COPY_DMA:
ring = radeon_copy_dma_ring_index(rdev);
break;
case RADEON_TEST_COPY_BLIT:
ring = radeon_copy_blit_ring_index(rdev);
break;
default:
DRM_ERROR("Unknown copy method\n");
return;
}
size = 1024 * 1024;
/* Number of tests =
* (Total GTT - IB pool - writeback page - ring buffers) / test size
*/
n = rdev->mc.gtt_size - rdev->gart_pin_size;
n /= size;
gtt_obj = kcalloc(n, sizeof(*gtt_obj), GFP_KERNEL);
if (!gtt_obj) {
DRM_ERROR("Failed to allocate %d pointers\n", n);
r = 1;
goto out_cleanup;
}
r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
0, NULL, NULL, &vram_obj);
if (r) {
DRM_ERROR("Failed to create VRAM object\n");
goto out_cleanup;
}
r = radeon_bo_reserve(vram_obj, false);
if (unlikely(r != 0))
goto out_unref;
r = radeon_bo_pin(vram_obj, RADEON_GEM_DOMAIN_VRAM, &vram_addr);
if (r) {
DRM_ERROR("Failed to pin VRAM object\n");
goto out_unres;
}
for (i = 0; i < n; i++) {
void *gtt_map, *vram_map;
void **gtt_start, **gtt_end;
void **vram_start, **vram_end;
struct radeon_fence *fence = NULL;
r = radeon_bo_create(rdev, size, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL,
gtt_obj + i);
if (r) {
DRM_ERROR("Failed to create GTT object %d\n", i);
goto out_lclean;
}
r = radeon_bo_reserve(gtt_obj[i], false);
if (unlikely(r != 0))
goto out_lclean_unref;
r = radeon_bo_pin(gtt_obj[i], RADEON_GEM_DOMAIN_GTT, &gtt_addr);
if (r) {
DRM_ERROR("Failed to pin GTT object %d\n", i);
goto out_lclean_unres;
}
r = radeon_bo_kmap(gtt_obj[i], &gtt_map);
if (r) {
DRM_ERROR("Failed to map GTT object %d\n", i);
goto out_lclean_unpin;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size;
gtt_start < gtt_end;
gtt_start++)
*gtt_start = gtt_start;
radeon_bo_kunmap(gtt_obj[i]);
if (ring == R600_RING_TYPE_DMA_INDEX)
fence = radeon_copy_dma(rdev, gtt_addr, vram_addr,
size / RADEON_GPU_PAGE_SIZE,
vram_obj->tbo.base.resv);
else
fence = radeon_copy_blit(rdev, gtt_addr, vram_addr,
size / RADEON_GPU_PAGE_SIZE,
vram_obj->tbo.base.resv);
if (IS_ERR(fence)) {
DRM_ERROR("Failed GTT->VRAM copy %d\n", i);
r = PTR_ERR(fence);
goto out_lclean_unpin;
}
r = radeon_fence_wait(fence, false);
if (r) {
DRM_ERROR("Failed to wait for GTT->VRAM fence %d\n", i);
goto out_lclean_unpin;
}
radeon_fence_unref(&fence);
r = radeon_bo_kmap(vram_obj, &vram_map);
if (r) {
DRM_ERROR("Failed to map VRAM object after copy %d\n", i);
goto out_lclean_unpin;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size,
vram_start = vram_map, vram_end = vram_map + size;
vram_start < vram_end;
gtt_start++, vram_start++) {
if (*vram_start != gtt_start) {
DRM_ERROR("Incorrect GTT->VRAM copy %d: Got 0x%p, "
"expected 0x%p (GTT/VRAM offset "
"0x%16llx/0x%16llx)\n",
i, *vram_start, gtt_start,
(unsigned long long)
(gtt_addr - rdev->mc.gtt_start +
(void*)gtt_start - gtt_map),
(unsigned long long)
(vram_addr - rdev->mc.vram_start +
(void*)gtt_start - gtt_map));
radeon_bo_kunmap(vram_obj);
goto out_lclean_unpin;
}
*vram_start = vram_start;
}
radeon_bo_kunmap(vram_obj);
if (ring == R600_RING_TYPE_DMA_INDEX)
fence = radeon_copy_dma(rdev, vram_addr, gtt_addr,
size / RADEON_GPU_PAGE_SIZE,
vram_obj->tbo.base.resv);
else
fence = radeon_copy_blit(rdev, vram_addr, gtt_addr,
size / RADEON_GPU_PAGE_SIZE,
vram_obj->tbo.base.resv);
if (IS_ERR(fence)) {
DRM_ERROR("Failed VRAM->GTT copy %d\n", i);
r = PTR_ERR(fence);
goto out_lclean_unpin;
}
r = radeon_fence_wait(fence, false);
if (r) {
DRM_ERROR("Failed to wait for VRAM->GTT fence %d\n", i);
goto out_lclean_unpin;
}
radeon_fence_unref(&fence);
r = radeon_bo_kmap(gtt_obj[i], &gtt_map);
if (r) {
DRM_ERROR("Failed to map GTT object after copy %d\n", i);
goto out_lclean_unpin;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size,
vram_start = vram_map, vram_end = vram_map + size;
gtt_start < gtt_end;
gtt_start++, vram_start++) {
if (*gtt_start != vram_start) {
DRM_ERROR("Incorrect VRAM->GTT copy %d: Got 0x%p, "
"expected 0x%p (VRAM/GTT offset "
"0x%16llx/0x%16llx)\n",
i, *gtt_start, vram_start,
(unsigned long long)
(vram_addr - rdev->mc.vram_start +
(void*)vram_start - vram_map),
(unsigned long long)
(gtt_addr - rdev->mc.gtt_start +
(void*)vram_start - vram_map));
radeon_bo_kunmap(gtt_obj[i]);
goto out_lclean_unpin;
}
}
radeon_bo_kunmap(gtt_obj[i]);
DRM_INFO("Tested GTT->VRAM and VRAM->GTT copy for GTT offset 0x%llx\n",
gtt_addr - rdev->mc.gtt_start);
continue;
out_lclean_unpin:
radeon_bo_unpin(gtt_obj[i]);
out_lclean_unres:
radeon_bo_unreserve(gtt_obj[i]);
out_lclean_unref:
radeon_bo_unref(&gtt_obj[i]);
out_lclean:
for (--i; i >= 0; --i) {
radeon_bo_unpin(gtt_obj[i]);
radeon_bo_unreserve(gtt_obj[i]);
radeon_bo_unref(&gtt_obj[i]);
}
if (fence && !IS_ERR(fence))
radeon_fence_unref(&fence);
break;
}
radeon_bo_unpin(vram_obj);
out_unres:
radeon_bo_unreserve(vram_obj);
out_unref:
radeon_bo_unref(&vram_obj);
out_cleanup:
kfree(gtt_obj);
if (r) {
pr_warn("Error while testing BO move\n");
}
}
void radeon_test_moves(struct radeon_device *rdev)
{
if (rdev->asic->copy.dma)
radeon_do_test_moves(rdev, RADEON_TEST_COPY_DMA);
if (rdev->asic->copy.blit)
radeon_do_test_moves(rdev, RADEON_TEST_COPY_BLIT);
}
static int radeon_test_create_and_emit_fence(struct radeon_device *rdev,
struct radeon_ring *ring,
struct radeon_fence **fence)
{
uint32_t handle = ring->idx ^ 0xdeafbeef;
int r;
if (ring->idx == R600_RING_TYPE_UVD_INDEX) {
r = radeon_uvd_get_create_msg(rdev, ring->idx, handle, NULL);
if (r) {
DRM_ERROR("Failed to get dummy create msg\n");
return r;
}
r = radeon_uvd_get_destroy_msg(rdev, ring->idx, handle, fence);
if (r) {
DRM_ERROR("Failed to get dummy destroy msg\n");
return r;
}
} else if (ring->idx == TN_RING_TYPE_VCE1_INDEX ||
ring->idx == TN_RING_TYPE_VCE2_INDEX) {
r = radeon_vce_get_create_msg(rdev, ring->idx, handle, NULL);
if (r) {
DRM_ERROR("Failed to get dummy create msg\n");
return r;
}
r = radeon_vce_get_destroy_msg(rdev, ring->idx, handle, fence);
if (r) {
DRM_ERROR("Failed to get dummy destroy msg\n");
return r;
}
} else {
r = radeon_ring_lock(rdev, ring, 64);
if (r) {
DRM_ERROR("Failed to lock ring A %d\n", ring->idx);
return r;
}
r = radeon_fence_emit(rdev, fence, ring->idx);
if (r) {
DRM_ERROR("Failed to emit fence\n");
radeon_ring_unlock_undo(rdev, ring);
return r;
}
radeon_ring_unlock_commit(rdev, ring, false);
}
return 0;
}
void radeon_test_ring_sync(struct radeon_device *rdev,
struct radeon_ring *ringA,
struct radeon_ring *ringB)
{
struct radeon_fence *fence1 = NULL, *fence2 = NULL;
struct radeon_semaphore *semaphore = NULL;
int r;
r = radeon_semaphore_create(rdev, &semaphore);
if (r) {
DRM_ERROR("Failed to create semaphore\n");
goto out_cleanup;
}
r = radeon_ring_lock(rdev, ringA, 64);
if (r) {
DRM_ERROR("Failed to lock ring A %d\n", ringA->idx);
goto out_cleanup;
}
radeon_semaphore_emit_wait(rdev, ringA->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringA, false);
r = radeon_test_create_and_emit_fence(rdev, ringA, &fence1);
if (r)
goto out_cleanup;
r = radeon_ring_lock(rdev, ringA, 64);
if (r) {
DRM_ERROR("Failed to lock ring A %d\n", ringA->idx);
goto out_cleanup;
}
radeon_semaphore_emit_wait(rdev, ringA->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringA, false);
r = radeon_test_create_and_emit_fence(rdev, ringA, &fence2);
if (r)
goto out_cleanup;
msleep(1000);
if (radeon_fence_signaled(fence1)) {
DRM_ERROR("Fence 1 signaled without waiting for semaphore.\n");
goto out_cleanup;
}
r = radeon_ring_lock(rdev, ringB, 64);
if (r) {
DRM_ERROR("Failed to lock ring B %p\n", ringB);
goto out_cleanup;
}
radeon_semaphore_emit_signal(rdev, ringB->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringB, false);
r = radeon_fence_wait(fence1, false);
if (r) {
DRM_ERROR("Failed to wait for sync fence 1\n");
goto out_cleanup;
}
msleep(1000);
if (radeon_fence_signaled(fence2)) {
DRM_ERROR("Fence 2 signaled without waiting for semaphore.\n");
goto out_cleanup;
}
r = radeon_ring_lock(rdev, ringB, 64);
if (r) {
DRM_ERROR("Failed to lock ring B %p\n", ringB);
goto out_cleanup;
}
radeon_semaphore_emit_signal(rdev, ringB->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringB, false);
r = radeon_fence_wait(fence2, false);
if (r) {
DRM_ERROR("Failed to wait for sync fence 1\n");
goto out_cleanup;
}
out_cleanup:
radeon_semaphore_free(rdev, &semaphore, NULL);
if (fence1)
radeon_fence_unref(&fence1);
if (fence2)
radeon_fence_unref(&fence2);
if (r)
pr_warn("Error while testing ring sync (%d)\n", r);
}
static void radeon_test_ring_sync2(struct radeon_device *rdev,
struct radeon_ring *ringA,
struct radeon_ring *ringB,
struct radeon_ring *ringC)
{
struct radeon_fence *fenceA = NULL, *fenceB = NULL;
struct radeon_semaphore *semaphore = NULL;
bool sigA, sigB;
int i, r;
r = radeon_semaphore_create(rdev, &semaphore);
if (r) {
DRM_ERROR("Failed to create semaphore\n");
goto out_cleanup;
}
r = radeon_ring_lock(rdev, ringA, 64);
if (r) {
DRM_ERROR("Failed to lock ring A %d\n", ringA->idx);
goto out_cleanup;
}
radeon_semaphore_emit_wait(rdev, ringA->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringA, false);
r = radeon_test_create_and_emit_fence(rdev, ringA, &fenceA);
if (r)
goto out_cleanup;
r = radeon_ring_lock(rdev, ringB, 64);
if (r) {
DRM_ERROR("Failed to lock ring B %d\n", ringB->idx);
goto out_cleanup;
}
radeon_semaphore_emit_wait(rdev, ringB->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringB, false);
r = radeon_test_create_and_emit_fence(rdev, ringB, &fenceB);
if (r)
goto out_cleanup;
msleep(1000);
if (radeon_fence_signaled(fenceA)) {
DRM_ERROR("Fence A signaled without waiting for semaphore.\n");
goto out_cleanup;
}
if (radeon_fence_signaled(fenceB)) {
DRM_ERROR("Fence B signaled without waiting for semaphore.\n");
goto out_cleanup;
}
r = radeon_ring_lock(rdev, ringC, 64);
if (r) {
DRM_ERROR("Failed to lock ring B %p\n", ringC);
goto out_cleanup;
}
radeon_semaphore_emit_signal(rdev, ringC->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringC, false);
for (i = 0; i < 30; ++i) {
msleep(100);
sigA = radeon_fence_signaled(fenceA);
sigB = radeon_fence_signaled(fenceB);
if (sigA || sigB)
break;
}
if (!sigA && !sigB) {
DRM_ERROR("Neither fence A nor B has been signaled\n");
goto out_cleanup;
} else if (sigA && sigB) {
DRM_ERROR("Both fence A and B has been signaled\n");
goto out_cleanup;
}
DRM_INFO("Fence %c was first signaled\n", sigA ? 'A' : 'B');
r = radeon_ring_lock(rdev, ringC, 64);
if (r) {
DRM_ERROR("Failed to lock ring B %p\n", ringC);
goto out_cleanup;
}
radeon_semaphore_emit_signal(rdev, ringC->idx, semaphore);
radeon_ring_unlock_commit(rdev, ringC, false);
msleep(1000);
r = radeon_fence_wait(fenceA, false);
if (r) {
DRM_ERROR("Failed to wait for sync fence A\n");
goto out_cleanup;
}
r = radeon_fence_wait(fenceB, false);
if (r) {
DRM_ERROR("Failed to wait for sync fence B\n");
goto out_cleanup;
}
out_cleanup:
radeon_semaphore_free(rdev, &semaphore, NULL);
if (fenceA)
radeon_fence_unref(&fenceA);
if (fenceB)
radeon_fence_unref(&fenceB);
if (r)
pr_warn("Error while testing ring sync (%d)\n", r);
}
static bool radeon_test_sync_possible(struct radeon_ring *ringA,
struct radeon_ring *ringB)
{
if (ringA->idx == TN_RING_TYPE_VCE2_INDEX &&
ringB->idx == TN_RING_TYPE_VCE1_INDEX)
return false;
return true;
}
void radeon_test_syncing(struct radeon_device *rdev)
{
int i, j, k;
for (i = 1; i < RADEON_NUM_RINGS; ++i) {
struct radeon_ring *ringA = &rdev->ring[i];
if (!ringA->ready)
continue;
for (j = 0; j < i; ++j) {
struct radeon_ring *ringB = &rdev->ring[j];
if (!ringB->ready)
continue;
if (!radeon_test_sync_possible(ringA, ringB))
continue;
DRM_INFO("Testing syncing between rings %d and %d...\n", i, j);
radeon_test_ring_sync(rdev, ringA, ringB);
DRM_INFO("Testing syncing between rings %d and %d...\n", j, i);
radeon_test_ring_sync(rdev, ringB, ringA);
for (k = 0; k < j; ++k) {
struct radeon_ring *ringC = &rdev->ring[k];
if (!ringC->ready)
continue;
if (!radeon_test_sync_possible(ringA, ringC))
continue;
if (!radeon_test_sync_possible(ringB, ringC))
continue;
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", i, j, k);
radeon_test_ring_sync2(rdev, ringA, ringB, ringC);
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", i, k, j);
radeon_test_ring_sync2(rdev, ringA, ringC, ringB);
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", j, i, k);
radeon_test_ring_sync2(rdev, ringB, ringA, ringC);
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", j, k, i);
radeon_test_ring_sync2(rdev, ringB, ringC, ringA);
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", k, i, j);
radeon_test_ring_sync2(rdev, ringC, ringA, ringB);
DRM_INFO("Testing syncing between rings %d, %d and %d...\n", k, j, i);
radeon_test_ring_sync2(rdev, ringC, ringB, ringA);
}
}
}
}