| // SPDX-License-Identifier: GPL-2.0+ |
| // Copyright (c) 2016-2017 Hisilicon Limited. |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/etherdevice.h> |
| #include <linux/interrupt.h> |
| #ifdef CONFIG_RFS_ACCEL |
| #include <linux/cpu_rmap.h> |
| #endif |
| #include <linux/if_vlan.h> |
| #include <linux/irq.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/aer.h> |
| #include <linux/skbuff.h> |
| #include <linux/sctp.h> |
| #include <net/gre.h> |
| #include <net/ip6_checksum.h> |
| #include <net/pkt_cls.h> |
| #include <net/tcp.h> |
| #include <net/vxlan.h> |
| #include <net/geneve.h> |
| |
| #include "hnae3.h" |
| #include "hns3_enet.h" |
| /* All hns3 tracepoints are defined by the include below, which |
| * must be included exactly once across the whole kernel with |
| * CREATE_TRACE_POINTS defined |
| */ |
| #define CREATE_TRACE_POINTS |
| #include "hns3_trace.h" |
| |
| #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) |
| #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) |
| |
| #define hns3_rl_err(fmt, ...) \ |
| do { \ |
| if (net_ratelimit()) \ |
| netdev_err(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); |
| |
| static const char hns3_driver_name[] = "hns3"; |
| static const char hns3_driver_string[] = |
| "Hisilicon Ethernet Network Driver for Hip08 Family"; |
| static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; |
| static struct hnae3_client client; |
| |
| static int debug = -1; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, " Network interface message level setting"); |
| |
| static unsigned int tx_spare_buf_size; |
| module_param(tx_spare_buf_size, uint, 0400); |
| MODULE_PARM_DESC(tx_spare_buf_size, "Size used to allocate tx spare buffer"); |
| |
| static unsigned int tx_sgl = 1; |
| module_param(tx_sgl, uint, 0600); |
| MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); |
| |
| static bool page_pool_enabled = true; |
| module_param(page_pool_enabled, bool, 0400); |
| |
| #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ |
| sizeof(struct sg_table)) |
| #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ |
| dma_get_cache_alignment()) |
| |
| #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ |
| NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) |
| |
| #define HNS3_INNER_VLAN_TAG 1 |
| #define HNS3_OUTER_VLAN_TAG 2 |
| |
| #define HNS3_MIN_TX_LEN 33U |
| #define HNS3_MIN_TUN_PKT_LEN 65U |
| |
| /* hns3_pci_tbl - PCI Device ID Table |
| * |
| * Last entry must be all 0s |
| * |
| * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, |
| * Class, Class Mask, private data (not used) } |
| */ |
| static const struct pci_device_id hns3_pci_tbl[] = { |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| /* required last entry */ |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); |
| |
| #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \ |
| { ptype, \ |
| l, \ |
| CHECKSUM_##s, \ |
| HNS3_L3_TYPE_##t, \ |
| 1 } |
| |
| #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ |
| { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 } |
| |
| static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { |
| HNS3_RX_PTYPE_UNUSED_ENTRY(0), |
| HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP), |
| HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP), |
| HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP), |
| HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM), |
| HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(9), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(10), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(11), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(12), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(13), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(14), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(15), |
| HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(26), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(27), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(28), |
| HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(38), |
| HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(46), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(47), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(48), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(49), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(50), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(51), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(52), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(53), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(54), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(55), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(56), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(57), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(58), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(59), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(60), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(61), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(62), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(63), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(64), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(65), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(66), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(67), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(68), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(69), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(70), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(71), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(72), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(73), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(74), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(75), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(76), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(77), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(78), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(79), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(80), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(81), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(82), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(83), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(84), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(85), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(86), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(87), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(88), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(89), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(90), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(91), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(92), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(93), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(94), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(95), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(96), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(97), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(98), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(99), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(100), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(101), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(102), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(103), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(104), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(105), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(106), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(107), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(108), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(109), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(110), |
| HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(120), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(121), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(122), |
| HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(132), |
| HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(140), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(141), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(142), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(143), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(144), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(145), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(146), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(147), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(148), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(149), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(150), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(151), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(152), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(153), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(154), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(155), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(156), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(157), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(158), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(159), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(160), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(161), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(162), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(163), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(164), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(165), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(166), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(167), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(168), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(169), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(170), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(171), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(172), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(173), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(174), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(175), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(176), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(177), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(178), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(179), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(180), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(181), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(182), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(183), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(184), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(185), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(186), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(187), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(188), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(189), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(190), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(191), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(192), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(193), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(194), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(195), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(196), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(197), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(198), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(199), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(200), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(201), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(202), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(203), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(204), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(205), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(206), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(207), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(208), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(209), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(210), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(211), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(212), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(213), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(214), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(215), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(216), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(217), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(218), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(219), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(220), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(221), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(222), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(223), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(224), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(225), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(226), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(227), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(228), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(229), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(230), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(231), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(232), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(233), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(234), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(235), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(236), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(237), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(238), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(239), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(240), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(241), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(242), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(243), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(244), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(245), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(246), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(247), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(248), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(249), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(250), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(251), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(252), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(253), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(254), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(255), |
| }; |
| |
| #define HNS3_INVALID_PTYPE \ |
| ARRAY_SIZE(hns3_rx_ptype_tbl) |
| |
| static irqreturn_t hns3_irq_handle(int irq, void *vector) |
| { |
| struct hns3_enet_tqp_vector *tqp_vector = vector; |
| |
| napi_schedule_irqoff(&tqp_vector->napi); |
| tqp_vector->event_cnt++; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_tqp_vector *tqp_vectors; |
| unsigned int i; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vectors = &priv->tqp_vector[i]; |
| |
| if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) |
| continue; |
| |
| /* clear the affinity mask */ |
| irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); |
| |
| /* release the irq resource */ |
| free_irq(tqp_vectors->vector_irq, tqp_vectors); |
| tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; |
| } |
| } |
| |
| static int hns3_nic_init_irq(struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_tqp_vector *tqp_vectors; |
| int txrx_int_idx = 0; |
| int rx_int_idx = 0; |
| int tx_int_idx = 0; |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vectors = &priv->tqp_vector[i]; |
| |
| if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) |
| continue; |
| |
| if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "TxRx", txrx_int_idx++); |
| txrx_int_idx++; |
| } else if (tqp_vectors->rx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "Rx", rx_int_idx++); |
| } else if (tqp_vectors->tx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "Tx", tx_int_idx++); |
| } else { |
| /* Skip this unused q_vector */ |
| continue; |
| } |
| |
| tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; |
| |
| irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); |
| ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, |
| tqp_vectors->name, tqp_vectors); |
| if (ret) { |
| netdev_err(priv->netdev, "request irq(%d) fail\n", |
| tqp_vectors->vector_irq); |
| hns3_nic_uninit_irq(priv); |
| return ret; |
| } |
| |
| irq_set_affinity_hint(tqp_vectors->vector_irq, |
| &tqp_vectors->affinity_mask); |
| |
| tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; |
| } |
| |
| return 0; |
| } |
| |
| static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 mask_en) |
| { |
| writel(mask_en, tqp_vector->mask_addr); |
| } |
| |
| static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| napi_enable(&tqp_vector->napi); |
| enable_irq(tqp_vector->vector_irq); |
| |
| /* enable vector */ |
| hns3_mask_vector_irq(tqp_vector, 1); |
| } |
| |
| static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| /* disable vector */ |
| hns3_mask_vector_irq(tqp_vector, 0); |
| |
| disable_irq(tqp_vector->vector_irq); |
| napi_disable(&tqp_vector->napi); |
| cancel_work_sync(&tqp_vector->rx_group.dim.work); |
| cancel_work_sync(&tqp_vector->tx_group.dim.work); |
| } |
| |
| void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 rl_value) |
| { |
| u32 rl_reg = hns3_rl_usec_to_reg(rl_value); |
| |
| /* this defines the configuration for RL (Interrupt Rate Limiter). |
| * Rl defines rate of interrupts i.e. number of interrupts-per-second |
| * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing |
| */ |
| if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && |
| !tqp_vector->rx_group.coal.adapt_enable) |
| /* According to the hardware, the range of rl_reg is |
| * 0-59 and the unit is 4. |
| */ |
| rl_reg |= HNS3_INT_RL_ENABLE_MASK; |
| |
| writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 gl_value) |
| { |
| u32 new_val; |
| |
| if (tqp_vector->rx_group.coal.unit_1us) |
| new_val = gl_value | HNS3_INT_GL_1US; |
| else |
| new_val = hns3_gl_usec_to_reg(gl_value); |
| |
| writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 gl_value) |
| { |
| u32 new_val; |
| |
| if (tqp_vector->tx_group.coal.unit_1us) |
| new_val = gl_value | HNS3_INT_GL_1US; |
| else |
| new_val = hns3_gl_usec_to_reg(gl_value); |
| |
| writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 ql_value) |
| { |
| writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 ql_value) |
| { |
| writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); |
| } |
| |
| static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hns3_nic_priv *priv) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; |
| struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; |
| struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; |
| struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; |
| |
| tx_coal->adapt_enable = ptx_coal->adapt_enable; |
| rx_coal->adapt_enable = prx_coal->adapt_enable; |
| |
| tx_coal->int_gl = ptx_coal->int_gl; |
| rx_coal->int_gl = prx_coal->int_gl; |
| |
| rx_coal->flow_level = prx_coal->flow_level; |
| tx_coal->flow_level = ptx_coal->flow_level; |
| |
| /* device version above V3(include V3), GL can configure 1us |
| * unit, so uses 1us unit. |
| */ |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { |
| tx_coal->unit_1us = 1; |
| rx_coal->unit_1us = 1; |
| } |
| |
| if (ae_dev->dev_specs.int_ql_max) { |
| tx_coal->ql_enable = 1; |
| rx_coal->ql_enable = 1; |
| tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; |
| rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; |
| tx_coal->int_ql = ptx_coal->int_ql; |
| rx_coal->int_ql = prx_coal->int_ql; |
| } |
| } |
| |
| static void |
| hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; |
| struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; |
| struct hnae3_handle *h = priv->ae_handle; |
| |
| hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); |
| hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); |
| hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); |
| |
| if (tx_coal->ql_enable) |
| hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); |
| |
| if (rx_coal->ql_enable) |
| hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); |
| } |
| |
| static int hns3_nic_set_real_num_queue(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct hnae3_knic_private_info *kinfo = &h->kinfo; |
| struct hnae3_tc_info *tc_info = &kinfo->tc_info; |
| unsigned int queue_size = kinfo->num_tqps; |
| int i, ret; |
| |
| if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { |
| netdev_reset_tc(netdev); |
| } else { |
| ret = netdev_set_num_tc(netdev, tc_info->num_tc); |
| if (ret) { |
| netdev_err(netdev, |
| "netdev_set_num_tc fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| for (i = 0; i < tc_info->num_tc; i++) |
| netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], |
| tc_info->tqp_offset[i]); |
| } |
| |
| ret = netif_set_real_num_tx_queues(netdev, queue_size); |
| if (ret) { |
| netdev_err(netdev, |
| "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| ret = netif_set_real_num_rx_queues(netdev, queue_size); |
| if (ret) { |
| netdev_err(netdev, |
| "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| u16 hns3_get_max_available_channels(struct hnae3_handle *h) |
| { |
| u16 alloc_tqps, max_rss_size, rss_size; |
| |
| h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); |
| rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; |
| |
| return min_t(u16, rss_size, max_rss_size); |
| } |
| |
| static void hns3_tqp_enable(struct hnae3_queue *tqp) |
| { |
| u32 rcb_reg; |
| |
| rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); |
| rcb_reg |= BIT(HNS3_RING_EN_B); |
| hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); |
| } |
| |
| static void hns3_tqp_disable(struct hnae3_queue *tqp) |
| { |
| u32 rcb_reg; |
| |
| rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); |
| rcb_reg &= ~BIT(HNS3_RING_EN_B); |
| hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); |
| } |
| |
| static void hns3_free_rx_cpu_rmap(struct net_device *netdev) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| free_irq_cpu_rmap(netdev->rx_cpu_rmap); |
| netdev->rx_cpu_rmap = NULL; |
| #endif |
| } |
| |
| static int hns3_set_rx_cpu_rmap(struct net_device *netdev) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hns3_enet_tqp_vector *tqp_vector; |
| int i, ret; |
| |
| if (!netdev->rx_cpu_rmap) { |
| netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); |
| if (!netdev->rx_cpu_rmap) |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vector = &priv->tqp_vector[i]; |
| ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, |
| tqp_vector->vector_irq); |
| if (ret) { |
| hns3_free_rx_cpu_rmap(netdev); |
| return ret; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| static int hns3_nic_net_up(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = priv->ae_handle; |
| int i, j; |
| int ret; |
| |
| ret = hns3_nic_reset_all_ring(h); |
| if (ret) |
| return ret; |
| |
| clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); |
| |
| /* enable the vectors */ |
| for (i = 0; i < priv->vector_num; i++) |
| hns3_vector_enable(&priv->tqp_vector[i]); |
| |
| /* enable rcb */ |
| for (j = 0; j < h->kinfo.num_tqps; j++) |
| hns3_tqp_enable(h->kinfo.tqp[j]); |
| |
| /* start the ae_dev */ |
| ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; |
| if (ret) { |
| set_bit(HNS3_NIC_STATE_DOWN, &priv->state); |
| while (j--) |
| hns3_tqp_disable(h->kinfo.tqp[j]); |
| |
| for (j = i - 1; j >= 0; j--) |
| hns3_vector_disable(&priv->tqp_vector[j]); |
| } |
| |
| return ret; |
| } |
| |
| static void hns3_config_xps(struct hns3_nic_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; |
| struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; |
| |
| while (ring) { |
| int ret; |
| |
| ret = netif_set_xps_queue(priv->netdev, |
| &tqp_vector->affinity_mask, |
| ring->tqp->tqp_index); |
| if (ret) |
| netdev_warn(priv->netdev, |
| "set xps queue failed: %d", ret); |
| |
| ring = ring->next; |
| } |
| } |
| } |
| |
| static int hns3_nic_net_open(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct hnae3_knic_private_info *kinfo; |
| int i, ret; |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { |
| netdev_warn(netdev, "net open repeatedly!\n"); |
| return 0; |
| } |
| |
| netif_carrier_off(netdev); |
| |
| ret = hns3_nic_set_real_num_queue(netdev); |
| if (ret) |
| return ret; |
| |
| ret = hns3_nic_net_up(netdev); |
| if (ret) { |
| netdev_err(netdev, "net up fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| kinfo = &h->kinfo; |
| for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) |
| netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); |
| |
| if (h->ae_algo->ops->set_timer_task) |
| h->ae_algo->ops->set_timer_task(priv->ae_handle, true); |
| |
| hns3_config_xps(priv); |
| |
| netif_dbg(h, drv, netdev, "net open\n"); |
| |
| return 0; |
| } |
| |
| static void hns3_reset_tx_queue(struct hnae3_handle *h) |
| { |
| struct net_device *ndev = h->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct netdev_queue *dev_queue; |
| u32 i; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| dev_queue = netdev_get_tx_queue(ndev, |
| priv->ring[i].queue_index); |
| netdev_tx_reset_queue(dev_queue); |
| } |
| } |
| |
| static void hns3_nic_net_down(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| const struct hnae3_ae_ops *ops; |
| int i; |
| |
| /* disable vectors */ |
| for (i = 0; i < priv->vector_num; i++) |
| hns3_vector_disable(&priv->tqp_vector[i]); |
| |
| /* disable rcb */ |
| for (i = 0; i < h->kinfo.num_tqps; i++) |
| hns3_tqp_disable(h->kinfo.tqp[i]); |
| |
| /* stop ae_dev */ |
| ops = priv->ae_handle->ae_algo->ops; |
| if (ops->stop) |
| ops->stop(priv->ae_handle); |
| |
| /* delay ring buffer clearing to hns3_reset_notify_uninit_enet |
| * during reset process, because driver may not be able |
| * to disable the ring through firmware when downing the netdev. |
| */ |
| if (!hns3_nic_resetting(netdev)) |
| hns3_clear_all_ring(priv->ae_handle, false); |
| |
| hns3_reset_tx_queue(priv->ae_handle); |
| } |
| |
| static int hns3_nic_net_stop(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) |
| return 0; |
| |
| netif_dbg(h, drv, netdev, "net stop\n"); |
| |
| if (h->ae_algo->ops->set_timer_task) |
| h->ae_algo->ops->set_timer_task(priv->ae_handle, false); |
| |
| netif_carrier_off(netdev); |
| netif_tx_disable(netdev); |
| |
| hns3_nic_net_down(netdev); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_uc_sync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->add_uc_addr) |
| return h->ae_algo->ops->add_uc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_uc_unsync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| /* need ignore the request of removing device address, because |
| * we store the device address and other addresses of uc list |
| * in the function's mac filter list. |
| */ |
| if (ether_addr_equal(addr, netdev->dev_addr)) |
| return 0; |
| |
| if (h->ae_algo->ops->rm_uc_addr) |
| return h->ae_algo->ops->rm_uc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_mc_sync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->add_mc_addr) |
| return h->ae_algo->ops->add_mc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_mc_unsync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->rm_mc_addr) |
| return h->ae_algo->ops->rm_mc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static u8 hns3_get_netdev_flags(struct net_device *netdev) |
| { |
| u8 flags = 0; |
| |
| if (netdev->flags & IFF_PROMISC) |
| flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; |
| else if (netdev->flags & IFF_ALLMULTI) |
| flags = HNAE3_USER_MPE; |
| |
| return flags; |
| } |
| |
| static void hns3_nic_set_rx_mode(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| u8 new_flags; |
| |
| new_flags = hns3_get_netdev_flags(netdev); |
| |
| __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); |
| __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); |
| |
| /* User mode Promisc mode enable and vlan filtering is disabled to |
| * let all packets in. |
| */ |
| h->netdev_flags = new_flags; |
| hns3_request_update_promisc_mode(h); |
| } |
| |
| void hns3_request_update_promisc_mode(struct hnae3_handle *handle) |
| { |
| const struct hnae3_ae_ops *ops = handle->ae_algo->ops; |
| |
| if (ops->request_update_promisc_mode) |
| ops->request_update_promisc_mode(handle); |
| } |
| |
| static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntc, ntu; |
| |
| /* This smp_load_acquire() pairs with smp_store_release() in |
| * hns3_tx_spare_update() called in tx desc cleaning process. |
| */ |
| ntc = smp_load_acquire(&tx_spare->last_to_clean); |
| ntu = tx_spare->next_to_use; |
| |
| if (ntc > ntu) |
| return ntc - ntu - 1; |
| |
| /* The free tx buffer is divided into two part, so pick the |
| * larger one. |
| */ |
| return max(ntc, tx_spare->len - ntu) - 1; |
| } |
| |
| static void hns3_tx_spare_update(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| |
| if (!tx_spare || |
| tx_spare->last_to_clean == tx_spare->next_to_clean) |
| return; |
| |
| /* This smp_store_release() pairs with smp_load_acquire() in |
| * hns3_tx_spare_space() called in xmit process. |
| */ |
| smp_store_release(&tx_spare->last_to_clean, |
| tx_spare->next_to_clean); |
| } |
| |
| static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| u32 space) |
| { |
| u32 len = skb->len <= ring->tx_copybreak ? skb->len : |
| skb_headlen(skb); |
| |
| if (len > ring->tx_copybreak) |
| return false; |
| |
| if (ALIGN(len, dma_get_cache_alignment()) > space) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_spare_full++; |
| u64_stats_update_end(&ring->syncp); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| u32 space) |
| { |
| if (skb->len <= ring->tx_copybreak || !tx_sgl || |
| (!skb_has_frag_list(skb) && |
| skb_shinfo(skb)->nr_frags < tx_sgl)) |
| return false; |
| |
| if (space < HNS3_MAX_SGL_SIZE) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_spare_full++; |
| u64_stats_update_end(&ring->syncp); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare; |
| struct page *page; |
| u32 alloc_size; |
| dma_addr_t dma; |
| int order; |
| |
| alloc_size = tx_spare_buf_size ? tx_spare_buf_size : |
| ring->tqp->handle->kinfo.tx_spare_buf_size; |
| if (!alloc_size) |
| return; |
| |
| order = get_order(alloc_size); |
| tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), |
| GFP_KERNEL); |
| if (!tx_spare) { |
| /* The driver still work without the tx spare buffer */ |
| dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); |
| return; |
| } |
| |
| page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), |
| GFP_KERNEL, order); |
| if (!page) { |
| dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); |
| devm_kfree(ring_to_dev(ring), tx_spare); |
| return; |
| } |
| |
| dma = dma_map_page(ring_to_dev(ring), page, 0, |
| PAGE_SIZE << order, DMA_TO_DEVICE); |
| if (dma_mapping_error(ring_to_dev(ring), dma)) { |
| dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); |
| put_page(page); |
| devm_kfree(ring_to_dev(ring), tx_spare); |
| return; |
| } |
| |
| tx_spare->dma = dma; |
| tx_spare->buf = page_address(page); |
| tx_spare->len = PAGE_SIZE << order; |
| ring->tx_spare = tx_spare; |
| } |
| |
| /* Use hns3_tx_spare_space() to make sure there is enough buffer |
| * before calling below function to allocate tx buffer. |
| */ |
| static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, |
| unsigned int size, dma_addr_t *dma, |
| u32 *cb_len) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntu = tx_spare->next_to_use; |
| |
| size = ALIGN(size, dma_get_cache_alignment()); |
| *cb_len = size; |
| |
| /* Tx spare buffer wraps back here because the end of |
| * freed tx buffer is not enough. |
| */ |
| if (ntu + size > tx_spare->len) { |
| *cb_len += (tx_spare->len - ntu); |
| ntu = 0; |
| } |
| |
| tx_spare->next_to_use = ntu + size; |
| if (tx_spare->next_to_use == tx_spare->len) |
| tx_spare->next_to_use = 0; |
| |
| *dma = tx_spare->dma + ntu; |
| |
| return tx_spare->buf + ntu; |
| } |
| |
| static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| |
| if (len > tx_spare->next_to_use) { |
| len -= tx_spare->next_to_use; |
| tx_spare->next_to_use = tx_spare->len - len; |
| } else { |
| tx_spare->next_to_use -= len; |
| } |
| } |
| |
| static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntc = tx_spare->next_to_clean; |
| u32 len = cb->length; |
| |
| tx_spare->next_to_clean += len; |
| |
| if (tx_spare->next_to_clean >= tx_spare->len) { |
| tx_spare->next_to_clean -= tx_spare->len; |
| |
| if (tx_spare->next_to_clean) { |
| ntc = 0; |
| len = tx_spare->next_to_clean; |
| } |
| } |
| |
| /* This tx spare buffer is only really reclaimed after calling |
| * hns3_tx_spare_update(), so it is still safe to use the info in |
| * the tx buffer to do the dma sync or sg unmapping after |
| * tx_spare->next_to_clean is moved forword. |
| */ |
| if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { |
| dma_addr_t dma = tx_spare->dma + ntc; |
| |
| dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, |
| DMA_TO_DEVICE); |
| } else { |
| struct sg_table *sgt = tx_spare->buf + ntc; |
| |
| dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, |
| DMA_TO_DEVICE); |
| } |
| } |
| |
| static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, |
| u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) |
| { |
| u32 l4_offset, hdr_len; |
| union l3_hdr_info l3; |
| union l4_hdr_info l4; |
| u32 l4_paylen; |
| int ret; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| ret = skb_cow_head(skb, 0); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| l3.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* Software should clear the IPv4's checksum field when tso is |
| * needed. |
| */ |
| if (l3.v4->version == 4) |
| l3.v4->check = 0; |
| |
| /* tunnel packet */ |
| if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| SKB_GSO_GRE_CSUM | |
| SKB_GSO_UDP_TUNNEL | |
| SKB_GSO_UDP_TUNNEL_CSUM)) { |
| /* reset l3&l4 pointers from outer to inner headers */ |
| l3.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| |
| /* Software should clear the IPv4's checksum field when |
| * tso is needed. |
| */ |
| if (l3.v4->version == 4) |
| l3.v4->check = 0; |
| } |
| |
| /* normal or tunnel packet */ |
| l4_offset = l4.hdr - skb->data; |
| |
| /* remove payload length from inner pseudo checksum when tso */ |
| l4_paylen = skb->len - l4_offset; |
| |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| hdr_len = sizeof(*l4.udp) + l4_offset; |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(l4_paylen)); |
| } else { |
| hdr_len = (l4.tcp->doff << 2) + l4_offset; |
| csum_replace_by_diff(&l4.tcp->check, |
| (__force __wsum)htonl(l4_paylen)); |
| } |
| |
| *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; |
| |
| /* find the txbd field values */ |
| *paylen_fdop_ol4cs = skb->len - hdr_len; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); |
| |
| /* offload outer UDP header checksum */ |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) |
| hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); |
| |
| /* get MSS for TSO */ |
| *mss = skb_shinfo(skb)->gso_size; |
| |
| trace_hns3_tso(skb); |
| |
| return 0; |
| } |
| |
| static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, |
| u8 *il4_proto) |
| { |
| union l3_hdr_info l3; |
| unsigned char *l4_hdr; |
| unsigned char *exthdr; |
| u8 l4_proto_tmp; |
| __be16 frag_off; |
| |
| /* find outer header point */ |
| l3.hdr = skb_network_header(skb); |
| l4_hdr = skb_transport_header(skb); |
| |
| if (skb->protocol == htons(ETH_P_IPV6)) { |
| exthdr = l3.hdr + sizeof(*l3.v6); |
| l4_proto_tmp = l3.v6->nexthdr; |
| if (l4_hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto_tmp, &frag_off); |
| } else if (skb->protocol == htons(ETH_P_IP)) { |
| l4_proto_tmp = l3.v4->protocol; |
| } else { |
| return -EINVAL; |
| } |
| |
| *ol4_proto = l4_proto_tmp; |
| |
| /* tunnel packet */ |
| if (!skb->encapsulation) { |
| *il4_proto = 0; |
| return 0; |
| } |
| |
| /* find inner header point */ |
| l3.hdr = skb_inner_network_header(skb); |
| l4_hdr = skb_inner_transport_header(skb); |
| |
| if (l3.v6->version == 6) { |
| exthdr = l3.hdr + sizeof(*l3.v6); |
| l4_proto_tmp = l3.v6->nexthdr; |
| if (l4_hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto_tmp, &frag_off); |
| } else if (l3.v4->version == 4) { |
| l4_proto_tmp = l3.v4->protocol; |
| } |
| |
| *il4_proto = l4_proto_tmp; |
| |
| return 0; |
| } |
| |
| /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL |
| * and it is udp packet, which has a dest port as the IANA assigned. |
| * the hardware is expected to do the checksum offload, but the |
| * hardware will not do the checksum offload when udp dest port is |
| * 4789, 4790 or 6081. |
| */ |
| static bool hns3_tunnel_csum_bug(struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(skb->dev); |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| union l4_hdr_info l4; |
| |
| /* device version above V3(include V3), the hardware can |
| * do this checksum offload. |
| */ |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) |
| return false; |
| |
| l4.hdr = skb_transport_header(skb); |
| |
| if (!(!skb->encapsulation && |
| (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || |
| l4.udp->dest == htons(GENEVE_UDP_PORT) || |
| l4.udp->dest == htons(4790)))) |
| return false; |
| |
| return true; |
| } |
| |
| static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, |
| u32 *ol_type_vlan_len_msec) |
| { |
| u32 l2_len, l3_len, l4_len; |
| unsigned char *il2_hdr; |
| union l3_hdr_info l3; |
| union l4_hdr_info l4; |
| |
| l3.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* compute OL2 header size, defined in 2 Bytes */ |
| l2_len = l3.hdr - skb->data; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); |
| |
| /* compute OL3 header size, defined in 4 Bytes */ |
| l3_len = l4.hdr - l3.hdr; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); |
| |
| il2_hdr = skb_inner_mac_header(skb); |
| /* compute OL4 header size, defined in 4 Bytes */ |
| l4_len = il2_hdr - l4.hdr; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); |
| |
| /* define outer network header type */ |
| if (skb->protocol == htons(ETH_P_IP)) { |
| if (skb_is_gso(skb)) |
| hns3_set_field(*ol_type_vlan_len_msec, |
| HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV4_CSUM); |
| else |
| hns3_set_field(*ol_type_vlan_len_msec, |
| HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV4_NO_CSUM); |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV6); |
| } |
| |
| if (ol4_proto == IPPROTO_UDP) |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, |
| HNS3_TUN_MAC_IN_UDP); |
| else if (ol4_proto == IPPROTO_GRE) |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, |
| HNS3_TUN_NVGRE); |
| } |
| |
| static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, |
| u8 il4_proto, u32 *type_cs_vlan_tso, |
| u32 *ol_type_vlan_len_msec) |
| { |
| unsigned char *l2_hdr = skb->data; |
| u32 l4_proto = ol4_proto; |
| union l4_hdr_info l4; |
| union l3_hdr_info l3; |
| u32 l2_len, l3_len; |
| |
| l4.hdr = skb_transport_header(skb); |
| l3.hdr = skb_network_header(skb); |
| |
| /* handle encapsulation skb */ |
| if (skb->encapsulation) { |
| /* If this is a not UDP/GRE encapsulation skb */ |
| if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { |
| /* drop the skb tunnel packet if hardware don't support, |
| * because hardware can't calculate csum when TSO. |
| */ |
| if (skb_is_gso(skb)) |
| return -EDOM; |
| |
| /* the stack computes the IP header already, |
| * driver calculate l4 checksum when not TSO. |
| */ |
| return skb_checksum_help(skb); |
| } |
| |
| hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); |
| |
| /* switch to inner header */ |
| l2_hdr = skb_inner_mac_header(skb); |
| l3.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| l4_proto = il4_proto; |
| } |
| |
| if (l3.v4->version == 4) { |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, |
| HNS3_L3T_IPV4); |
| |
| /* the stack computes the IP header already, the only time we |
| * need the hardware to recompute it is in the case of TSO. |
| */ |
| if (skb_is_gso(skb)) |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); |
| } else if (l3.v6->version == 6) { |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, |
| HNS3_L3T_IPV6); |
| } |
| |
| /* compute inner(/normal) L2 header size, defined in 2 Bytes */ |
| l2_len = l3.hdr - l2_hdr; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); |
| |
| /* compute inner(/normal) L3 header size, defined in 4 Bytes */ |
| l3_len = l4.hdr - l3.hdr; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); |
| |
| /* compute inner(/normal) L4 header size, defined in 4 Bytes */ |
| switch (l4_proto) { |
| case IPPROTO_TCP: |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_TCP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| l4.tcp->doff); |
| break; |
| case IPPROTO_UDP: |
| if (hns3_tunnel_csum_bug(skb)) { |
| int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); |
| |
| return ret ? ret : skb_checksum_help(skb); |
| } |
| |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_UDP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| (sizeof(struct udphdr) >> 2)); |
| break; |
| case IPPROTO_SCTP: |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_SCTP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| (sizeof(struct sctphdr) >> 2)); |
| break; |
| default: |
| /* drop the skb tunnel packet if hardware don't support, |
| * because hardware can't calculate csum when TSO. |
| */ |
| if (skb_is_gso(skb)) |
| return -EDOM; |
| |
| /* the stack computes the IP header already, |
| * driver calculate l4 checksum when not TSO. |
| */ |
| return skb_checksum_help(skb); |
| } |
| |
| return 0; |
| } |
| |
| static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, |
| struct sk_buff *skb) |
| { |
| struct hnae3_handle *handle = tx_ring->tqp->handle; |
| struct hnae3_ae_dev *ae_dev; |
| struct vlan_ethhdr *vhdr; |
| int rc; |
| |
| if (!(skb->protocol == htons(ETH_P_8021Q) || |
| skb_vlan_tag_present(skb))) |
| return 0; |
| |
| /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert |
| * VLAN enabled, only one VLAN header is allowed in skb, otherwise it |
| * will cause RAS error. |
| */ |
| ae_dev = pci_get_drvdata(handle->pdev); |
| if (unlikely(skb_vlan_tagged_multi(skb) && |
| ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && |
| handle->port_base_vlan_state == |
| HNAE3_PORT_BASE_VLAN_ENABLE)) |
| return -EINVAL; |
| |
| if (skb->protocol == htons(ETH_P_8021Q) && |
| !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
| /* When HW VLAN acceleration is turned off, and the stack |
| * sets the protocol to 802.1q, the driver just need to |
| * set the protocol to the encapsulated ethertype. |
| */ |
| skb->protocol = vlan_get_protocol(skb); |
| return 0; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| /* Based on hw strategy, use out_vtag in two layer tag case, |
| * and use inner_vtag in one tag case. |
| */ |
| if (skb->protocol == htons(ETH_P_8021Q) && |
| handle->port_base_vlan_state == |
| HNAE3_PORT_BASE_VLAN_DISABLE) |
| rc = HNS3_OUTER_VLAN_TAG; |
| else |
| rc = HNS3_INNER_VLAN_TAG; |
| |
| skb->protocol = vlan_get_protocol(skb); |
| return rc; |
| } |
| |
| rc = skb_cow_head(skb, 0); |
| if (unlikely(rc < 0)) |
| return rc; |
| |
| vhdr = (struct vlan_ethhdr *)skb->data; |
| vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) |
| & VLAN_PRIO_MASK); |
| |
| skb->protocol = vlan_get_protocol(skb); |
| return 0; |
| } |
| |
| /* check if the hardware is capable of checksum offloading */ |
| static bool hns3_check_hw_tx_csum(struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(skb->dev); |
| |
| /* Kindly note, due to backward compatibility of the TX descriptor, |
| * HW checksum of the non-IP packets and GSO packets is handled at |
| * different place in the following code |
| */ |
| if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || |
| !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) |
| return false; |
| |
| return true; |
| } |
| |
| static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, struct hns3_desc *desc, |
| struct hns3_desc_cb *desc_cb) |
| { |
| u32 ol_type_vlan_len_msec = 0; |
| u32 paylen_ol4cs = skb->len; |
| u32 type_cs_vlan_tso = 0; |
| u16 mss_hw_csum = 0; |
| u16 inner_vtag = 0; |
| u16 out_vtag = 0; |
| int ret; |
| |
| ret = hns3_handle_vtags(ring, skb); |
| if (unlikely(ret < 0)) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_vlan_err++; |
| u64_stats_update_end(&ring->syncp); |
| return ret; |
| } else if (ret == HNS3_INNER_VLAN_TAG) { |
| inner_vtag = skb_vlan_tag_get(skb); |
| inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & |
| VLAN_PRIO_MASK; |
| hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); |
| } else if (ret == HNS3_OUTER_VLAN_TAG) { |
| out_vtag = skb_vlan_tag_get(skb); |
| out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & |
| VLAN_PRIO_MASK; |
| hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, |
| 1); |
| } |
| |
| desc_cb->send_bytes = skb->len; |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| u8 ol4_proto, il4_proto; |
| |
| if (hns3_check_hw_tx_csum(skb)) { |
| /* set checksum start and offset, defined in 2 Bytes */ |
| hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, |
| skb_checksum_start_offset(skb) >> 1); |
| hns3_set_field(ol_type_vlan_len_msec, |
| HNS3_TXD_CSUM_OFFSET_S, |
| skb->csum_offset >> 1); |
| mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); |
| goto out_hw_tx_csum; |
| } |
| |
| skb_reset_mac_len(skb); |
| |
| ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); |
| if (unlikely(ret < 0)) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_l4_proto_err++; |
| u64_stats_update_end(&ring->syncp); |
| return ret; |
| } |
| |
| ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, |
| &type_cs_vlan_tso, |
| &ol_type_vlan_len_msec); |
| if (unlikely(ret < 0)) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_l2l3l4_err++; |
| u64_stats_update_end(&ring->syncp); |
| return ret; |
| } |
| |
| ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum, |
| &type_cs_vlan_tso, &desc_cb->send_bytes); |
| if (unlikely(ret < 0)) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_tso_err++; |
| u64_stats_update_end(&ring->syncp); |
| return ret; |
| } |
| } |
| |
| out_hw_tx_csum: |
| /* Set txbd */ |
| desc->tx.ol_type_vlan_len_msec = |
| cpu_to_le32(ol_type_vlan_len_msec); |
| desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso); |
| desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs); |
| desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum); |
| desc->tx.vlan_tag = cpu_to_le16(inner_vtag); |
| desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag); |
| |
| return 0; |
| } |
| |
| static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, |
| unsigned int size) |
| { |
| #define HNS3_LIKELY_BD_NUM 1 |
| |
| struct hns3_desc *desc = &ring->desc[ring->next_to_use]; |
| unsigned int frag_buf_num; |
| int k, sizeoflast; |
| |
| if (likely(size <= HNS3_MAX_BD_SIZE)) { |
| desc->addr = cpu_to_le64(dma); |
| desc->tx.send_size = cpu_to_le16(size); |
| desc->tx.bdtp_fe_sc_vld_ra_ri = |
| cpu_to_le16(BIT(HNS3_TXD_VLD_B)); |
| |
| trace_hns3_tx_desc(ring, ring->next_to_use); |
| ring_ptr_move_fw(ring, next_to_use); |
| return HNS3_LIKELY_BD_NUM; |
| } |
| |
| frag_buf_num = hns3_tx_bd_count(size); |
| sizeoflast = size % HNS3_MAX_BD_SIZE; |
| sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; |
| |
| /* When frag size is bigger than hardware limit, split this frag */ |
| for (k = 0; k < frag_buf_num; k++) { |
| /* now, fill the descriptor */ |
| desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); |
| desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? |
| (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); |
| desc->tx.bdtp_fe_sc_vld_ra_ri = |
| cpu_to_le16(BIT(HNS3_TXD_VLD_B)); |
| |
| trace_hns3_tx_desc(ring, ring->next_to_use); |
| /* move ring pointer to next */ |
| ring_ptr_move_fw(ring, next_to_use); |
| |
| desc = &ring->desc[ring->next_to_use]; |
| } |
| |
| return frag_buf_num; |
| } |
| |
| static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, |
| unsigned int type) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| struct device *dev = ring_to_dev(ring); |
| unsigned int size; |
| dma_addr_t dma; |
| |
| if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { |
| struct sk_buff *skb = (struct sk_buff *)priv; |
| |
| size = skb_headlen(skb); |
| if (!size) |
| return 0; |
| |
| dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); |
| } else if (type & DESC_TYPE_BOUNCE_HEAD) { |
| /* Head data has been filled in hns3_handle_tx_bounce(), |
| * just return 0 here. |
| */ |
| return 0; |
| } else { |
| skb_frag_t *frag = (skb_frag_t *)priv; |
| |
| size = skb_frag_size(frag); |
| if (!size) |
| return 0; |
| |
| dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); |
| } |
| |
| if (unlikely(dma_mapping_error(dev, dma))) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.sw_err_cnt++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| desc_cb->priv = priv; |
| desc_cb->length = size; |
| desc_cb->dma = dma; |
| desc_cb->type = type; |
| |
| return hns3_fill_desc(ring, dma, size); |
| } |
| |
| static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, |
| unsigned int bd_num) |
| { |
| unsigned int size; |
| int i; |
| |
| size = skb_headlen(skb); |
| while (size > HNS3_MAX_BD_SIZE) { |
| bd_size[bd_num++] = HNS3_MAX_BD_SIZE; |
| size -= HNS3_MAX_BD_SIZE; |
| |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| if (size) { |
| bd_size[bd_num++] = size; |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| size = skb_frag_size(frag); |
| if (!size) |
| continue; |
| |
| while (size > HNS3_MAX_BD_SIZE) { |
| bd_size[bd_num++] = HNS3_MAX_BD_SIZE; |
| size -= HNS3_MAX_BD_SIZE; |
| |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| bd_size[bd_num++] = size; |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| return bd_num; |
| } |
| |
| static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, |
| u8 max_non_tso_bd_num, unsigned int bd_num, |
| unsigned int recursion_level) |
| { |
| #define HNS3_MAX_RECURSION_LEVEL 24 |
| |
| struct sk_buff *frag_skb; |
| |
| /* If the total len is within the max bd limit */ |
| if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && |
| !skb_has_frag_list(skb) && |
| skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) |
| return skb_shinfo(skb)->nr_frags + 1U; |
| |
| if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) |
| return UINT_MAX; |
| |
| bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); |
| if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| |
| skb_walk_frags(skb, frag_skb) { |
| bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, |
| bd_num, recursion_level + 1); |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| return bd_num; |
| } |
| |
| static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) |
| { |
| if (!skb->encapsulation) |
| return skb_transport_offset(skb) + tcp_hdrlen(skb); |
| |
| return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb); |
| } |
| |
| /* HW need every continuous max_non_tso_bd_num buffer data to be larger |
| * than MSS, we simplify it by ensuring skb_headlen + the first continuous |
| * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, |
| * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger |
| * than MSS except the last max_non_tso_bd_num - 1 frags. |
| */ |
| static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, |
| unsigned int bd_num, u8 max_non_tso_bd_num) |
| { |
| unsigned int tot_len = 0; |
| int i; |
| |
| for (i = 0; i < max_non_tso_bd_num - 1U; i++) |
| tot_len += bd_size[i]; |
| |
| /* ensure the first max_non_tso_bd_num frags is greater than |
| * mss + header |
| */ |
| if (tot_len + bd_size[max_non_tso_bd_num - 1U] < |
| skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) |
| return true; |
| |
| /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater |
| * than mss except the last one. |
| */ |
| for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { |
| tot_len -= bd_size[i]; |
| tot_len += bd_size[i + max_non_tso_bd_num - 1U]; |
| |
| if (tot_len < skb_shinfo(skb)->gso_size) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_SKB_FRAGS; i++) |
| size[i] = skb_frag_size(&shinfo->frags[i]); |
| } |
| |
| static int hns3_skb_linearize(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| u8 max_non_tso_bd_num, |
| unsigned int bd_num) |
| { |
| /* 'bd_num == UINT_MAX' means the skb' fraglist has a |
| * recursion level of over HNS3_MAX_RECURSION_LEVEL. |
| */ |
| if (bd_num == UINT_MAX) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.over_max_recursion++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| /* The skb->len has exceeded the hw limitation, linearization |
| * will not help. |
| */ |
| if (skb->len > HNS3_MAX_TSO_SIZE || |
| (!skb_is_gso(skb) && skb->len > |
| HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.hw_limitation++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| if (__skb_linearize(skb)) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.sw_err_cnt++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, |
| struct net_device *netdev, |
| struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; |
| unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; |
| unsigned int bd_num; |
| |
| bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); |
| if (unlikely(bd_num > max_non_tso_bd_num)) { |
| if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && |
| !hns3_skb_need_linearized(skb, bd_size, bd_num, |
| max_non_tso_bd_num)) { |
| trace_hns3_over_max_bd(skb); |
| goto out; |
| } |
| |
| if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num, |
| bd_num)) |
| return -ENOMEM; |
| |
| bd_num = hns3_tx_bd_count(skb->len); |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_copy++; |
| u64_stats_update_end(&ring->syncp); |
| } |
| |
| out: |
| if (likely(ring_space(ring) >= bd_num)) |
| return bd_num; |
| |
| netif_stop_subqueue(netdev, ring->queue_index); |
| smp_mb(); /* Memory barrier before checking ring_space */ |
| |
| /* Start queue in case hns3_clean_tx_ring has just made room |
| * available and has not seen the queue stopped state performed |
| * by netif_stop_subqueue above. |
| */ |
| if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && |
| !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { |
| netif_start_subqueue(netdev, ring->queue_index); |
| return bd_num; |
| } |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_busy++; |
| u64_stats_update_end(&ring->syncp); |
| |
| return -EBUSY; |
| } |
| |
| static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) |
| { |
| struct device *dev = ring_to_dev(ring); |
| unsigned int i; |
| |
| for (i = 0; i < ring->desc_num; i++) { |
| struct hns3_desc *desc = &ring->desc[ring->next_to_use]; |
| struct hns3_desc_cb *desc_cb; |
| |
| memset(desc, 0, sizeof(*desc)); |
| |
| /* check if this is where we started */ |
| if (ring->next_to_use == next_to_use_orig) |
| break; |
| |
| /* rollback one */ |
| ring_ptr_move_bw(ring, next_to_use); |
| |
| desc_cb = &ring->desc_cb[ring->next_to_use]; |
| |
| if (!desc_cb->dma) |
| continue; |
| |
| /* unmap the descriptor dma address */ |
| if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) |
| dma_unmap_single(dev, desc_cb->dma, desc_cb->length, |
| DMA_TO_DEVICE); |
| else if (desc_cb->type & |
| (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) |
| hns3_tx_spare_rollback(ring, desc_cb->length); |
| else if (desc_cb->length) |
| dma_unmap_page(dev, desc_cb->dma, desc_cb->length, |
| DMA_TO_DEVICE); |
| |
| desc_cb->length = 0; |
| desc_cb->dma = 0; |
| desc_cb->type = DESC_TYPE_UNKNOWN; |
| } |
| } |
| |
| static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, unsigned int type) |
| { |
| struct sk_buff *frag_skb; |
| int i, ret, bd_num = 0; |
| |
| ret = hns3_map_and_fill_desc(ring, skb, type); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| skb_walk_frags(skb, frag_skb) { |
| ret = hns3_fill_skb_to_desc(ring, frag_skb, |
| DESC_TYPE_FRAGLIST_SKB); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| return bd_num; |
| } |
| |
| static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, |
| bool doorbell) |
| { |
| ring->pending_buf += num; |
| |
| if (!doorbell) { |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_more++; |
| u64_stats_update_end(&ring->syncp); |
| return; |
| } |
| |
| if (!ring->pending_buf) |
| return; |
| |
| writel(ring->pending_buf, |
| ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); |
| ring->pending_buf = 0; |
| WRITE_ONCE(ring->last_to_use, ring->next_to_use); |
| } |
| |
| static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, |
| struct hns3_desc *desc) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (!(h->ae_algo->ops->set_tx_hwts_info && |
| h->ae_algo->ops->set_tx_hwts_info(h, skb))) |
| return; |
| |
| desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); |
| } |
| |
| static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| unsigned int type = DESC_TYPE_BOUNCE_HEAD; |
| unsigned int size = skb_headlen(skb); |
| dma_addr_t dma; |
| int bd_num = 0; |
| u32 cb_len; |
| void *buf; |
| int ret; |
| |
| if (skb->len <= ring->tx_copybreak) { |
| size = skb->len; |
| type = DESC_TYPE_BOUNCE_ALL; |
| } |
| |
| /* hns3_can_use_tx_bounce() is called to ensure the below |
| * function can always return the tx buffer. |
| */ |
| buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); |
| |
| ret = skb_copy_bits(skb, 0, buf, size); |
| if (unlikely(ret < 0)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.copy_bits_err++; |
| u64_stats_update_end(&ring->syncp); |
| return ret; |
| } |
| |
| desc_cb->priv = skb; |
| desc_cb->length = cb_len; |
| desc_cb->dma = dma; |
| desc_cb->type = type; |
| |
| bd_num += hns3_fill_desc(ring, dma, size); |
| |
| if (type == DESC_TYPE_BOUNCE_HEAD) { |
| ret = hns3_fill_skb_to_desc(ring, skb, |
| DESC_TYPE_BOUNCE_HEAD); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| dma_sync_single_for_device(ring_to_dev(ring), dma, size, |
| DMA_TO_DEVICE); |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_bounce++; |
| u64_stats_update_end(&ring->syncp); |
| return bd_num; |
| } |
| |
| static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| u32 nfrag = skb_shinfo(skb)->nr_frags + 1; |
| struct sg_table *sgt; |
| int i, bd_num = 0; |
| dma_addr_t dma; |
| u32 cb_len; |
| int nents; |
| |
| if (skb_has_frag_list(skb)) |
| nfrag = HNS3_MAX_TSO_BD_NUM; |
| |
| /* hns3_can_use_tx_sgl() is called to ensure the below |
| * function can always return the tx buffer. |
| */ |
| sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), |
| &dma, &cb_len); |
| |
| /* scatterlist follows by the sg table */ |
| sgt->sgl = (struct scatterlist *)(sgt + 1); |
| sg_init_table(sgt->sgl, nfrag); |
| nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); |
| if (unlikely(nents < 0)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.skb2sgl_err++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| sgt->orig_nents = nents; |
| sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, |
| DMA_TO_DEVICE); |
| if (unlikely(!sgt->nents)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.map_sg_err++; |
| u64_stats_update_end(&ring->syncp); |
| return -ENOMEM; |
| } |
| |
| desc_cb->priv = skb; |
| desc_cb->length = cb_len; |
| desc_cb->dma = dma; |
| desc_cb->type = DESC_TYPE_SGL_SKB; |
| |
| for (i = 0; i < sgt->nents; i++) |
| bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), |
| sg_dma_len(sgt->sgl + i)); |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_sgl++; |
| u64_stats_update_end(&ring->syncp); |
| |
| return bd_num; |
| } |
| |
| static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| u32 space; |
| |
| if (!ring->tx_spare) |
| goto out; |
| |
| space = hns3_tx_spare_space(ring); |
| |
| if (hns3_can_use_tx_sgl(ring, skb, space)) |
| return hns3_handle_tx_sgl(ring, skb); |
| |
| if (hns3_can_use_tx_bounce(ring, skb, space)) |
| return hns3_handle_tx_bounce(ring, skb); |
| |
| out: |
| return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); |
| } |
| |
| netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| struct netdev_queue *dev_queue; |
| int pre_ntu, next_to_use_head; |
| bool doorbell; |
| int ret; |
| |
| /* Hardware can only handle short frames above 32 bytes */ |
| if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { |
| hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.sw_err_cnt++; |
| u64_stats_update_end(&ring->syncp); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Prefetch the data used later */ |
| prefetch(skb->data); |
| |
| ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); |
| if (unlikely(ret <= 0)) { |
| if (ret == -EBUSY) { |
| hns3_tx_doorbell(ring, 0, true); |
| return NETDEV_TX_BUSY; |
| } |
| |
| hns3_rl_err(netdev, "xmit error: %d!\n", ret); |
| goto out_err_tx_ok; |
| } |
| |
| next_to_use_head = ring->next_to_use; |
| |
| ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], |
| desc_cb); |
| if (unlikely(ret < 0)) |
| goto fill_err; |
| |
| /* 'ret < 0' means filling error, 'ret == 0' means skb->len is |
| * zero, which is unlikely, and 'ret > 0' means how many tx desc |
| * need to be notified to the hw. |
| */ |
| ret = hns3_handle_desc_filling(ring, skb); |
| if (unlikely(ret <= 0)) |
| goto fill_err; |
| |
| pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : |
| (ring->desc_num - 1); |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) |
| hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); |
| |
| ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= |
| cpu_to_le16(BIT(HNS3_TXD_FE_B)); |
| trace_hns3_tx_desc(ring, pre_ntu); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Complete translate all packets */ |
| dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); |
| doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, |
| netdev_xmit_more()); |
| hns3_tx_doorbell(ring, ret, doorbell); |
| |
| return NETDEV_TX_OK; |
| |
| fill_err: |
| hns3_clear_desc(ring, next_to_use_head); |
| |
| out_err_tx_ok: |
| dev_kfree_skb_any(skb); |
| hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); |
| return NETDEV_TX_OK; |
| } |
| |
| static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct sockaddr *mac_addr = p; |
| int ret; |
| |
| if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { |
| netdev_info(netdev, "already using mac address %pM\n", |
| mac_addr->sa_data); |
| return 0; |
| } |
| |
| /* For VF device, if there is a perm_addr, then the user will not |
| * be allowed to change the address. |
| */ |
| if (!hns3_is_phys_func(h->pdev) && |
| !is_zero_ether_addr(netdev->perm_addr)) { |
| netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n", |
| netdev->perm_addr, mac_addr->sa_data); |
| return -EPERM; |
| } |
| |
| ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); |
| if (ret) { |
| netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| ether_addr_copy(netdev->dev_addr, mac_addr->sa_data); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_do_ioctl(struct net_device *netdev, |
| struct ifreq *ifr, int cmd) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (!netif_running(netdev)) |
| return -EINVAL; |
| |
| if (!h->ae_algo->ops->do_ioctl) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->do_ioctl(h, ifr, cmd); |
| } |
| |
| static int hns3_nic_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = priv->ae_handle; |
| bool enable; |
| int ret; |
| |
| if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { |
| enable = !!(features & NETIF_F_GRO_HW); |
| ret = h->ae_algo->ops->set_gro_en(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && |
| h->ae_algo->ops->enable_hw_strip_rxvtag) { |
| enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); |
| ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { |
| enable = !!(features & NETIF_F_NTUPLE); |
| h->ae_algo->ops->enable_fd(h, enable); |
| } |
| |
| if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && |
| h->ae_algo->ops->cls_flower_active(h)) { |
| netdev_err(netdev, |
| "there are offloaded TC filters active, cannot disable HW TC offload"); |
| return -EINVAL; |
| } |
| |
| if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && |
| h->ae_algo->ops->enable_vlan_filter) { |
| enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); |
| ret = h->ae_algo->ops->enable_vlan_filter(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| netdev->features = features; |
| return 0; |
| } |
| |
| static netdev_features_t hns3_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| #define HNS3_MAX_HDR_LEN 480U |
| #define HNS3_MAX_L4_HDR_LEN 60U |
| |
| size_t len; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return features; |
| |
| if (skb->encapsulation) |
| len = skb_inner_transport_header(skb) - skb->data; |
| else |
| len = skb_transport_header(skb) - skb->data; |
| |
| /* Assume L4 is 60 byte as TCP is the only protocol with a |
| * a flexible value, and it's max len is 60 bytes. |
| */ |
| len += HNS3_MAX_L4_HDR_LEN; |
| |
| /* Hardware only supports checksum on the skb with a max header |
| * len of 480 bytes. |
| */ |
| if (len > HNS3_MAX_HDR_LEN) |
| features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| |
| return features; |
| } |
| |
| static void hns3_nic_get_stats64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| int queue_num = priv->ae_handle->kinfo.num_tqps; |
| struct hnae3_handle *handle = priv->ae_handle; |
| struct hns3_enet_ring *ring; |
| u64 rx_length_errors = 0; |
| u64 rx_crc_errors = 0; |
| u64 rx_multicast = 0; |
| unsigned int start; |
| u64 tx_errors = 0; |
| u64 rx_errors = 0; |
| unsigned int idx; |
| u64 tx_bytes = 0; |
| u64 rx_bytes = 0; |
| u64 tx_pkts = 0; |
| u64 rx_pkts = 0; |
| u64 tx_drop = 0; |
| u64 rx_drop = 0; |
| |
| if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) |
| return; |
| |
| handle->ae_algo->ops->update_stats(handle, &netdev->stats); |
| |
| for (idx = 0; idx < queue_num; idx++) { |
| /* fetch the tx stats */ |
| ring = &priv->ring[idx]; |
| do { |
| start = u64_stats_fetch_begin_irq(&ring->syncp); |
| tx_bytes += ring->stats.tx_bytes; |
| tx_pkts += ring->stats.tx_pkts; |
| tx_drop += ring->stats.sw_err_cnt; |
| tx_drop += ring->stats.tx_vlan_err; |
| tx_drop += ring->stats.tx_l4_proto_err; |
| tx_drop += ring->stats.tx_l2l3l4_err; |
| tx_drop += ring->stats.tx_tso_err; |
| tx_drop += ring->stats.over_max_recursion; |
| tx_drop += ring->stats.hw_limitation; |
| tx_drop += ring->stats.copy_bits_err; |
| tx_drop += ring->stats.skb2sgl_err; |
| tx_drop += ring->stats.map_sg_err; |
| tx_errors += ring->stats.sw_err_cnt; |
| tx_errors += ring->stats.tx_vlan_err; |
| tx_errors += ring->stats.tx_l4_proto_err; |
| tx_errors += ring->stats.tx_l2l3l4_err; |
| tx_errors += ring->stats.tx_tso_err; |
| tx_errors += ring->stats.over_max_recursion; |
| tx_errors += ring->stats.hw_limitation; |
| tx_errors += ring->stats.copy_bits_err; |
| tx_errors += ring->stats.skb2sgl_err; |
| tx_errors += ring->stats.map_sg_err; |
| } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); |
| |
| /* fetch the rx stats */ |
| ring = &priv->ring[idx + queue_num]; |
| do { |
| start = u64_stats_fetch_begin_irq(&ring->syncp); |
| rx_bytes += ring->stats.rx_bytes; |
| rx_pkts += ring->stats.rx_pkts; |
| rx_drop += ring->stats.l2_err; |
| rx_errors += ring->stats.l2_err; |
| rx_errors += ring->stats.l3l4_csum_err; |
| rx_crc_errors += ring->stats.l2_err; |
| rx_multicast += ring->stats.rx_multicast; |
| rx_length_errors += ring->stats.err_pkt_len; |
| } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); |
| } |
| |
| stats->tx_bytes = tx_bytes; |
| stats->tx_packets = tx_pkts; |
| stats->rx_bytes = rx_bytes; |
| stats->rx_packets = rx_pkts; |
| |
| stats->rx_errors = rx_errors; |
| stats->multicast = rx_multicast; |
| stats->rx_length_errors = rx_length_errors; |
| stats->rx_crc_errors = rx_crc_errors; |
| stats->rx_missed_errors = netdev->stats.rx_missed_errors; |
| |
| stats->tx_errors = tx_errors; |
| stats->rx_dropped = rx_drop; |
| stats->tx_dropped = tx_drop; |
| stats->collisions = netdev->stats.collisions; |
| stats->rx_over_errors = netdev->stats.rx_over_errors; |
| stats->rx_frame_errors = netdev->stats.rx_frame_errors; |
| stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; |
| stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; |
| stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; |
| stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; |
| stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; |
| stats->tx_window_errors = netdev->stats.tx_window_errors; |
| stats->rx_compressed = netdev->stats.rx_compressed; |
| stats->tx_compressed = netdev->stats.tx_compressed; |
| } |
| |
| static int hns3_setup_tc(struct net_device *netdev, void *type_data) |
| { |
| struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; |
| struct hnae3_knic_private_info *kinfo; |
| u8 tc = mqprio_qopt->qopt.num_tc; |
| u16 mode = mqprio_qopt->mode; |
| u8 hw = mqprio_qopt->qopt.hw; |
| struct hnae3_handle *h; |
| |
| if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && |
| mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) |
| return -EOPNOTSUPP; |
| |
| if (tc > HNAE3_MAX_TC) |
| return -EINVAL; |
| |
| if (!netdev) |
| return -EINVAL; |
| |
| h = hns3_get_handle(netdev); |
| kinfo = &h->kinfo; |
| |
| netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); |
| |
| return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? |
| kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; |
| } |
| |
| static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, |
| struct flow_cls_offload *flow) |
| { |
| int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); |
| struct hnae3_handle *h = hns3_get_handle(priv->netdev); |
| |
| switch (flow->command) { |
| case FLOW_CLS_REPLACE: |
| if (h->ae_algo->ops->add_cls_flower) |
| return h->ae_algo->ops->add_cls_flower(h, flow, tc); |
| break; |
| case FLOW_CLS_DESTROY: |
| if (h->ae_algo->ops->del_cls_flower) |
| return h->ae_algo->ops->del_cls_flower(h, flow); |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, |
| void *cb_priv) |
| { |
| struct hns3_nic_priv *priv = cb_priv; |
| |
| if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) |
| return -EOPNOTSUPP; |
| |
| switch (type) { |
| case TC_SETUP_CLSFLOWER: |
| return hns3_setup_tc_cls_flower(priv, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static LIST_HEAD(hns3_block_cb_list); |
| |
| static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, |
| void *type_data) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(dev); |
| int ret; |
| |
| switch (type) { |
| case TC_SETUP_QDISC_MQPRIO: |
| ret = hns3_setup_tc(dev, type_data); |
| break; |
| case TC_SETUP_BLOCK: |
| ret = flow_block_cb_setup_simple(type_data, |
| &hns3_block_cb_list, |
| hns3_setup_tc_block_cb, |
| priv, priv, true); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return ret; |
| } |
| |
| static int hns3_vlan_rx_add_vid(struct net_device *netdev, |
| __be16 proto, u16 vid) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| if (h->ae_algo->ops->set_vlan_filter) |
| ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); |
| |
| return ret; |
| } |
| |
| static int hns3_vlan_rx_kill_vid(struct net_device *netdev, |
| __be16 proto, u16 vid) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| if (h->ae_algo->ops->set_vlan_filter) |
| ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); |
| |
| return ret; |
| } |
| |
| static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, |
| u8 qos, __be16 vlan_proto) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| netif_dbg(h, drv, netdev, |
| "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", |
| vf, vlan, qos, ntohs(vlan_proto)); |
| |
| if (h->ae_algo->ops->set_vf_vlan_filter) |
| ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, |
| qos, vlan_proto); |
| |
| return ret; |
| } |
| |
| static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) |
| { |
| struct hnae3_handle *handle = hns3_get_handle(netdev); |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!handle->ae_algo->ops->set_vf_spoofchk) |
| return -EOPNOTSUPP; |
| |
| return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); |
| } |
| |
| static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) |
| { |
| struct hnae3_handle *handle = hns3_get_handle(netdev); |
| |
| if (!handle->ae_algo->ops->set_vf_trust) |
| return -EOPNOTSUPP; |
| |
| return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); |
| } |
| |
| static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret; |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!h->ae_algo->ops->set_mtu) |
| return -EOPNOTSUPP; |
| |
| netif_dbg(h, drv, netdev, |
| "change mtu from %u to %d\n", netdev->mtu, new_mtu); |
| |
| ret = h->ae_algo->ops->set_mtu(h, new_mtu); |
| if (ret) |
| netdev_err(netdev, "failed to change MTU in hardware %d\n", |
| ret); |
| else |
| netdev->mtu = new_mtu; |
| |
| return ret; |
| } |
| |
| static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| struct hns3_enet_ring *tx_ring; |
| struct napi_struct *napi; |
| int timeout_queue = 0; |
| int hw_head, hw_tail; |
| int fbd_num, fbd_oft; |
| int ebd_num, ebd_oft; |
| int bd_num, bd_err; |
| int ring_en, tc; |
| int i; |
| |
| /* Find the stopped queue the same way the stack does */ |
| for (i = 0; i < ndev->num_tx_queues; i++) { |
| struct netdev_queue *q; |
| unsigned long trans_start; |
| |
| q = netdev_get_tx_queue(ndev, i); |
| trans_start = q->trans_start; |
| if (netif_xmit_stopped(q) && |
| time_after(jiffies, |
| (trans_start + ndev->watchdog_timeo))) { |
| timeout_queue = i; |
| netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", |
| q->state, |
| jiffies_to_msecs(jiffies - trans_start)); |
| break; |
| } |
| } |
| |
| if (i == ndev->num_tx_queues) { |
| netdev_info(ndev, |
| "no netdev TX timeout queue found, timeout count: %llu\n", |
| priv->tx_timeout_count); |
| return false; |
| } |
| |
| priv->tx_timeout_count++; |
| |
| tx_ring = &priv->ring[timeout_queue]; |
| napi = &tx_ring->tqp_vector->napi; |
| |
| netdev_info(ndev, |
| "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", |
| priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, |
| tx_ring->next_to_clean, napi->state); |
| |
| netdev_info(ndev, |
| "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", |
| tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, |
| tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); |
| |
| netdev_info(ndev, |
| "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", |
| tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, |
| tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); |
| |
| /* When mac received many pause frames continuous, it's unable to send |
| * packets, which may cause tx timeout |
| */ |
| if (h->ae_algo->ops->get_mac_stats) { |
| struct hns3_mac_stats mac_stats; |
| |
| h->ae_algo->ops->get_mac_stats(h, &mac_stats); |
| netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", |
| mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); |
| } |
| |
| hw_head = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_HEAD_REG); |
| hw_tail = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_TAIL_REG); |
| fbd_num = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_FBDNUM_REG); |
| fbd_oft = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_OFFSET_REG); |
| ebd_num = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_EBDNUM_REG); |
| ebd_oft = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_EBD_OFFSET_REG); |
| bd_num = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_BD_NUM_REG); |
| bd_err = readl_relaxed(tx_ring->tqp->io_base + |
| HNS3_RING_TX_RING_BD_ERR_REG); |
| ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG); |
| tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG); |
| |
| netdev_info(ndev, |
| "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", |
| bd_num, hw_head, hw_tail, bd_err, |
| readl(tx_ring->tqp_vector->mask_addr)); |
| netdev_info(ndev, |
| "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", |
| ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft); |
| |
| return true; |
| } |
| |
| static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct hnae3_handle *h = priv->ae_handle; |
| |
| if (!hns3_get_tx_timeo_queue_info(ndev)) |
| return; |
| |
| /* request the reset, and let the hclge to determine |
| * which reset level should be done |
| */ |
| if (h->ae_algo->ops->reset_event) |
| h->ae_algo->ops->reset_event(h->pdev, h); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct hnae3_handle *h = hns3_get_handle(dev); |
| struct flow_keys fkeys; |
| |
| if (!h->ae_algo->ops->add_arfs_entry) |
| return -EOPNOTSUPP; |
| |
| if (skb->encapsulation) |
| return -EPROTONOSUPPORT; |
| |
| if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) |
| return -EPROTONOSUPPORT; |
| |
| if ((fkeys.basic.n_proto != htons(ETH_P_IP) && |
| fkeys.basic.n_proto != htons(ETH_P_IPV6)) || |
| (fkeys.basic.ip_proto != IPPROTO_TCP && |
| fkeys.basic.ip_proto != IPPROTO_UDP)) |
| return -EPROTONOSUPPORT; |
| |
| return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); |
| } |
| #endif |
| |
| static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, |
| struct ifla_vf_info *ivf) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->get_vf_config) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->get_vf_config(h, vf, ivf); |
| } |
| |
| static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, |
| int link_state) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->set_vf_link_state) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); |
| } |
| |
| static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, |
| int min_tx_rate, int max_tx_rate) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->set_vf_rate) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, |
| false); |
| } |
| |
| static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (!h->ae_algo->ops->set_vf_mac) |
| return -EOPNOTSUPP; |
| |
| if (is_multicast_ether_addr(mac)) { |
| netdev_err(netdev, |
| "Invalid MAC:%pM specified. Could not set MAC\n", |
| mac); |
| return -EINVAL; |
| } |
| |
| return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); |
| } |
| |
| static const struct net_device_ops hns3_nic_netdev_ops = { |
| .ndo_open = hns3_nic_net_open, |
| .ndo_stop = hns3_nic_net_stop, |
| .ndo_start_xmit = hns3_nic_net_xmit, |
| .ndo_tx_timeout = hns3_nic_net_timeout, |
| .ndo_set_mac_address = hns3_nic_net_set_mac_address, |
| .ndo_eth_ioctl = hns3_nic_do_ioctl, |
| .ndo_change_mtu = hns3_nic_change_mtu, |
| .ndo_set_features = hns3_nic_set_features, |
| .ndo_features_check = hns3_features_check, |
| .ndo_get_stats64 = hns3_nic_get_stats64, |
| .ndo_setup_tc = hns3_nic_setup_tc, |
| .ndo_set_rx_mode = hns3_nic_set_rx_mode, |
| .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, |
| .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, |
| .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, |
| .ndo_set_vf_trust = hns3_set_vf_trust, |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = hns3_rx_flow_steer, |
| #endif |
| .ndo_get_vf_config = hns3_nic_get_vf_config, |
| .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, |
| .ndo_set_vf_rate = hns3_nic_set_vf_rate, |
| .ndo_set_vf_mac = hns3_nic_set_vf_mac, |
| }; |
| |
| bool hns3_is_phys_func(struct pci_dev *pdev) |
| { |
| u32 dev_id = pdev->device; |
| |
| switch (dev_id) { |
| case HNAE3_DEV_ID_GE: |
| case HNAE3_DEV_ID_25GE: |
| case HNAE3_DEV_ID_25GE_RDMA: |
| case HNAE3_DEV_ID_25GE_RDMA_MACSEC: |
| case HNAE3_DEV_ID_50GE_RDMA: |
| case HNAE3_DEV_ID_50GE_RDMA_MACSEC: |
| case HNAE3_DEV_ID_100G_RDMA_MACSEC: |
| case HNAE3_DEV_ID_200G_RDMA: |
| return true; |
| case HNAE3_DEV_ID_VF: |
| case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: |
| return false; |
| default: |
| dev_warn(&pdev->dev, "un-recognized pci device-id %u", |
| dev_id); |
| } |
| |
| return false; |
| } |
| |
| static void hns3_disable_sriov(struct pci_dev *pdev) |
| { |
| /* If our VFs are assigned we cannot shut down SR-IOV |
| * without causing issues, so just leave the hardware |
| * available but disabled |
| */ |
| if (pci_vfs_assigned(pdev)) { |
| dev_warn(&pdev->dev, |
| "disabling driver while VFs are assigned\n"); |
| return; |
| } |
| |
| pci_disable_sriov(pdev); |
| } |
| |
| /* hns3_probe - Device initialization routine |
| * @pdev: PCI device information struct |
| * @ent: entry in hns3_pci_tbl |
| * |
| * hns3_probe initializes a PF identified by a pci_dev structure. |
| * The OS initialization, configuring of the PF private structure, |
| * and a hardware reset occur. |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct hnae3_ae_dev *ae_dev; |
| int ret; |
| |
| ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); |
| if (!ae_dev) |
| return -ENOMEM; |
| |
| ae_dev->pdev = pdev; |
| ae_dev->flag = ent->driver_data; |
| pci_set_drvdata(pdev, ae_dev); |
| |
| ret = hnae3_register_ae_dev(ae_dev); |
| if (ret) |
| pci_set_drvdata(pdev, NULL); |
| |
| return ret; |
| } |
| |
| /* hns3_remove - Device removal routine |
| * @pdev: PCI device information struct |
| */ |
| static void hns3_remove(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) |
| hns3_disable_sriov(pdev); |
| |
| hnae3_unregister_ae_dev(ae_dev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| /** |
| * hns3_pci_sriov_configure |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * Enable or change the number of VFs. Called when the user updates the number |
| * of VFs in sysfs. |
| **/ |
| static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| int ret; |
| |
| if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { |
| dev_warn(&pdev->dev, "Can not config SRIOV\n"); |
| return -EINVAL; |
| } |
| |
| if (num_vfs) { |
| ret = pci_enable_sriov(pdev, num_vfs); |
| if (ret) |
| dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); |
| else |
| return num_vfs; |
| } else if (!pci_vfs_assigned(pdev)) { |
| pci_disable_sriov(pdev); |
| } else { |
| dev_warn(&pdev->dev, |
| "Unable to free VFs because some are assigned to VMs.\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void hns3_shutdown(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| hnae3_unregister_ae_dev(ae_dev); |
| pci_set_drvdata(pdev, NULL); |
| |
| if (system_state == SYSTEM_POWER_OFF) |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| static int __maybe_unused hns3_suspend(struct device *dev) |
|