blob: adfa2768f024dcee43d6a55a29142ef3a4c9a168 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2019 Intel Corporation. */
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/aer.h>
#include "fm10k.h"
static const struct fm10k_info *fm10k_info_tbl[] = {
[fm10k_device_pf] = &fm10k_pf_info,
[fm10k_device_vf] = &fm10k_vf_info,
};
/*
* fm10k_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id fm10k_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
/* required last entry */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
{
struct fm10k_intfc *interface = hw->back;
u16 value = 0;
if (FM10K_REMOVED(hw->hw_addr))
return ~value;
pci_read_config_word(interface->pdev, reg, &value);
if (value == 0xFFFF)
fm10k_write_flush(hw);
return value;
}
u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
{
u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
u32 value = 0;
if (FM10K_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct fm10k_intfc *interface = hw->back;
struct net_device *netdev = interface->netdev;
hw->hw_addr = NULL;
netif_device_detach(netdev);
netdev_err(netdev, "PCIe link lost, device now detached\n");
}
return value;
}
static int fm10k_hw_ready(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
fm10k_write_flush(hw);
return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
}
/**
* fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
* @interface: fm10k private interface structure
*
* Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
* started immediately, request that it be restarted when possible.
*/
void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
{
/* Avoid processing the MAC/VLAN queue when the service task is
* disabled, or when we're resetting the device.
*/
if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
!test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
/* We delay the actual start of execution in order to allow
* multiple MAC/VLAN updates to accumulate before handling
* them, and to allow some time to let the mailbox drain
* between runs.
*/
queue_delayed_work(fm10k_workqueue,
&interface->macvlan_task, 10);
} else {
set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
}
}
/**
* fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
* @interface: fm10k private interface structure
*
* Wait until the MAC/VLAN queue task has stopped, and cancel any future
* requests.
*/
static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
{
/* Disable the MAC/VLAN work item */
set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
/* Make sure we waited until any current invocations have stopped */
cancel_delayed_work_sync(&interface->macvlan_task);
/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
* However, it may not be unset of the MAC/VLAN task never actually
* got a chance to run. Since we've canceled the task here, and it
* cannot be rescheuled right now, we need to ensure the scheduled bit
* gets unset.
*/
clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
}
/**
* fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
* @interface: fm10k private interface structure
*
* Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
* the MAC/VLAN work monitor.
*/
static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
{
/* Re-enable the MAC/VLAN work item */
clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
/* We might have received a MAC/VLAN request while disabled. If so,
* kick off the queue now.
*/
if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
fm10k_macvlan_schedule(interface);
}
void fm10k_service_event_schedule(struct fm10k_intfc *interface)
{
if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
!test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
queue_work(fm10k_workqueue, &interface->service_task);
} else {
set_bit(__FM10K_SERVICE_REQUEST, interface->state);
}
}
static void fm10k_service_event_complete(struct fm10k_intfc *interface)
{
WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
/* flush memory to make sure state is correct before next watchog */
smp_mb__before_atomic();
clear_bit(__FM10K_SERVICE_SCHED, interface->state);
/* If a service event was requested since we started, immediately
* re-schedule now. This ensures we don't drop a request until the
* next timer event.
*/
if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
fm10k_service_event_schedule(interface);
}
static void fm10k_stop_service_event(struct fm10k_intfc *interface)
{
set_bit(__FM10K_SERVICE_DISABLE, interface->state);
cancel_work_sync(&interface->service_task);
/* It's possible that cancel_work_sync stopped the service task from
* running before it could actually start. In this case the
* __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
* the service task cannot be running at this point, we need to clear
* the scheduled bit, as otherwise the service task may never be
* restarted.
*/
clear_bit(__FM10K_SERVICE_SCHED, interface->state);
}
static void fm10k_start_service_event(struct fm10k_intfc *interface)
{
clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
fm10k_service_event_schedule(interface);
}
/**
* fm10k_service_timer - Timer Call-back
* @t: pointer to timer data
**/
static void fm10k_service_timer(struct timer_list *t)
{
struct fm10k_intfc *interface = from_timer(interface, t,
service_timer);
/* Reset the timer */
mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
fm10k_service_event_schedule(interface);
}
/**
* fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
* @interface: fm10k private data structure
*
* This function prepares for a device reset by shutting as much down as we
* can. It does nothing and returns false if __FM10K_RESETTING was already set
* prior to calling this function. It returns true if it actually did work.
*/
static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* put off any impending NetWatchDogTimeout */
netif_trans_update(netdev);
/* Nothing to do if a reset is already in progress */
if (test_and_set_bit(__FM10K_RESETTING, interface->state))
return false;
/* As the MAC/VLAN task will be accessing registers it must not be
* running while we reset. Although the task will not be scheduled
* once we start resetting it may already be running
*/
fm10k_stop_macvlan_task(interface);
rtnl_lock();
fm10k_iov_suspend(interface->pdev);
if (netif_running(netdev))
fm10k_close(netdev);
fm10k_mbx_free_irq(interface);
/* free interrupts */
fm10k_clear_queueing_scheme(interface);
/* delay any future reset requests */
interface->last_reset = jiffies + (10 * HZ);
rtnl_unlock();
return true;
}
static int fm10k_handle_reset(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
rtnl_lock();
pci_set_master(interface->pdev);
/* reset and initialize the hardware so it is in a known state */
err = hw->mac.ops.reset_hw(hw);
if (err) {
dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
goto reinit_err;
}
err = hw->mac.ops.init_hw(hw);
if (err) {
dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
goto reinit_err;
}
err = fm10k_init_queueing_scheme(interface);
if (err) {
dev_err(&interface->pdev->dev,
"init_queueing_scheme failed: %d\n", err);
goto reinit_err;
}
/* re-associate interrupts */
err = fm10k_mbx_request_irq(interface);
if (err)
goto err_mbx_irq;
err = fm10k_hw_ready(interface);
if (err)
goto err_open;
/* update hardware address for VFs if perm_addr has changed */
if (hw->mac.type == fm10k_mac_vf) {
if (is_valid_ether_addr(hw->mac.perm_addr)) {
ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
}
if (hw->mac.vlan_override)
netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
else
netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
}
err = netif_running(netdev) ? fm10k_open(netdev) : 0;
if (err)
goto err_open;
fm10k_iov_resume(interface->pdev);
rtnl_unlock();
fm10k_resume_macvlan_task(interface);
clear_bit(__FM10K_RESETTING, interface->state);
return err;
err_open:
fm10k_mbx_free_irq(interface);
err_mbx_irq:
fm10k_clear_queueing_scheme(interface);
reinit_err:
netif_device_detach(netdev);
rtnl_unlock();
clear_bit(__FM10K_RESETTING, interface->state);
return err;
}
static void fm10k_detach_subtask(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
u32 __iomem *hw_addr;
u32 value;
/* do nothing if netdev is still present or hw_addr is set */
if (netif_device_present(netdev) || interface->hw.hw_addr)
return;
/* We've lost the PCIe register space, and can no longer access the
* device. Shut everything except the detach subtask down and prepare
* to reset the device in case we recover. If we actually prepare for
* reset, indicate that we're detached.
*/
if (fm10k_prepare_for_reset(interface))
set_bit(__FM10K_RESET_DETACHED, interface->state);
/* check the real address space to see if we've recovered */
hw_addr = READ_ONCE(interface->uc_addr);
value = readl(hw_addr);
if (~value) {
int err;
/* Make sure the reset was initiated because we detached,
* otherwise we might race with a different reset flow.
*/
if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
interface->state))
return;
/* Restore the hardware address */
interface->hw.hw_addr = interface->uc_addr;
/* PCIe link has been restored, and the device is active
* again. Restore everything and reset the device.
*/
err = fm10k_handle_reset(interface);
if (err) {
netdev_err(netdev, "Unable to reset device: %d\n", err);
interface->hw.hw_addr = NULL;
return;
}
/* Re-attach the netdev */
netif_device_attach(netdev);
netdev_warn(netdev, "PCIe link restored, device now attached\n");
return;
}
}
static void fm10k_reset_subtask(struct fm10k_intfc *interface)
{
int err;
if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
interface->flags))
return;
/* If another thread has already prepared to reset the device, we
* should not attempt to handle a reset here, since we'd race with
* that thread. This may happen if we suspend the device or if the
* PCIe link is lost. In this case, we'll just ignore the RESET
* request, as it will (eventually) be taken care of when the thread
* which actually started the reset is finished.
*/
if (!fm10k_prepare_for_reset(interface))
return;
netdev_err(interface->netdev, "Reset interface\n");
err = fm10k_handle_reset(interface);
if (err)
dev_err(&interface->pdev->dev,
"fm10k_handle_reset failed: %d\n", err);
}
/**
* fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
* @interface: board private structure
*
* Configure the SWPRI to PC mapping for the port.
**/
static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int i;
/* clear flag indicating update is needed */
clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
/* these registers are only available on the PF */
if (hw->mac.type != fm10k_mac_pf)
return;
/* configure SWPRI to PC map */
for (i = 0; i < FM10K_SWPRI_MAX; i++)
fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
netdev_get_prio_tc_map(netdev, i));
}
/**
* fm10k_watchdog_update_host_state - Update the link status based on host.
* @interface: board private structure
**/
static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
s32 err;
if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
interface->host_ready = false;
if (time_is_after_jiffies(interface->link_down_event))
return;
clear_bit(__FM10K_LINK_DOWN, interface->state);
}
if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
if (rtnl_trylock()) {
fm10k_configure_swpri_map(interface);
rtnl_unlock();
}
}
/* lock the mailbox for transmit and receive */
fm10k_mbx_lock(interface);
err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
if (err && time_is_before_jiffies(interface->last_reset))
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
/* free the lock */
fm10k_mbx_unlock(interface);
}
/**
* fm10k_mbx_subtask - Process upstream and downstream mailboxes
* @interface: board private structure
*
* This function will process both the upstream and downstream mailboxes.
**/
static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
{
/* If we're resetting, bail out */
if (test_bit(__FM10K_RESETTING, interface->state))
return;
/* process upstream mailbox and update device state */
fm10k_watchdog_update_host_state(interface);
/* process downstream mailboxes */
fm10k_iov_mbx(interface);
}
/**
* fm10k_watchdog_host_is_ready - Update netdev status based on host ready
* @interface: board private structure
**/
static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* only continue if link state is currently down */
if (netif_carrier_ok(netdev))
return;
netif_info(interface, drv, netdev, "NIC Link is up\n");
netif_carrier_on(netdev);
netif_tx_wake_all_queues(netdev);
}
/**
* fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
* @interface: board private structure
**/
static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* only continue if link state is currently up */
if (!netif_carrier_ok(netdev))
return;
netif_info(interface, drv, netdev, "NIC Link is down\n");
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
}
/**
* fm10k_update_stats - Update the board statistics counters.
* @interface: board private structure
**/
void fm10k_update_stats(struct fm10k_intfc *interface)
{
struct net_device_stats *net_stats = &interface->netdev->stats;
struct fm10k_hw *hw = &interface->hw;
u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
u64 rx_link_errors = 0;
u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
u64 bytes, pkts;
int i;
/* ensure only one thread updates stats at a time */
if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
return;
/* do not allow stats update via service task for next second */
interface->next_stats_update = jiffies + HZ;
/* gather some stats to the interface struct that are per queue */
for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
if (!tx_ring)
continue;
restart_queue += tx_ring->tx_stats.restart_queue;
tx_busy += tx_ring->tx_stats.tx_busy;
tx_csum_errors += tx_ring->tx_stats.csum_err;
bytes += tx_ring->stats.bytes;
pkts += tx_ring->stats.packets;
hw_csum_tx_good += tx_ring->tx_stats.csum_good;
}
interface->restart_queue = restart_queue;
interface->tx_busy = tx_busy;
net_stats->tx_bytes = bytes;
net_stats->tx_packets = pkts;
interface->tx_csum_errors = tx_csum_errors;
interface->hw_csum_tx_good = hw_csum_tx_good;
/* gather some stats to the interface struct that are per queue */
for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
if (!rx_ring)
continue;
bytes += rx_ring->stats.bytes;
pkts += rx_ring->stats.packets;
alloc_failed += rx_ring->rx_stats.alloc_failed;
rx_csum_errors += rx_ring->rx_stats.csum_err;
rx_errors += rx_ring->rx_stats.errors;
hw_csum_rx_good += rx_ring->rx_stats.csum_good;
rx_switch_errors += rx_ring->rx_stats.switch_errors;
rx_drops += rx_ring->rx_stats.drops;
rx_pp_errors += rx_ring->rx_stats.pp_errors;
rx_link_errors += rx_ring->rx_stats.link_errors;
rx_length_errors += rx_ring->rx_stats.length_errors;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = pkts;
interface->alloc_failed = alloc_failed;
interface->rx_csum_errors = rx_csum_errors;
interface->hw_csum_rx_good = hw_csum_rx_good;
interface->rx_switch_errors = rx_switch_errors;
interface->rx_drops = rx_drops;
interface->rx_pp_errors = rx_pp_errors;
interface->rx_link_errors = rx_link_errors;
interface->rx_length_errors = rx_length_errors;
hw->mac.ops.update_hw_stats(hw, &interface->stats);
for (i = 0; i < hw->mac.max_queues; i++) {
struct fm10k_hw_stats_q *q = &interface->stats.q[i];
tx_bytes_nic += q->tx_bytes.count;
tx_pkts_nic += q->tx_packets.count;
rx_bytes_nic += q->rx_bytes.count;
rx_pkts_nic += q->rx_packets.count;
rx_drops_nic += q->rx_drops.count;
}
interface->tx_bytes_nic = tx_bytes_nic;
interface->tx_packets_nic = tx_pkts_nic;
interface->rx_bytes_nic = rx_bytes_nic;
interface->rx_packets_nic = rx_pkts_nic;
interface->rx_drops_nic = rx_drops_nic;
/* Fill out the OS statistics structure */
net_stats->rx_errors = rx_errors;
net_stats->rx_dropped = interface->stats.nodesc_drop.count;
/* Update VF statistics */
fm10k_iov_update_stats(interface);
clear_bit(__FM10K_UPDATING_STATS, interface->state);
}
/**
* fm10k_watchdog_flush_tx - flush queues on host not ready
* @interface: pointer to the device interface structure
**/
static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
{
int some_tx_pending = 0;
int i;
/* nothing to do if carrier is up */
if (netif_carrier_ok(interface->netdev))
return;
for (i = 0; i < interface->num_tx_queues; i++) {
struct fm10k_ring *tx_ring = interface->tx_ring[i];
if (tx_ring->next_to_use != tx_ring->next_to_clean) {
some_tx_pending = 1;
break;
}
}
/* We've lost link, so the controller stops DMA, but we've got
* queued Tx work that's never going to get done, so reset
* controller to flush Tx.
*/
if (some_tx_pending)
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
}
/**
* fm10k_watchdog_subtask - check and bring link up
* @interface: pointer to the device interface structure
**/
static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
{
/* if interface is down do nothing */
if (test_bit(__FM10K_DOWN, interface->state) ||
test_bit(__FM10K_RESETTING, interface->state))
return;
if (interface->host_ready)
fm10k_watchdog_host_is_ready(interface);
else
fm10k_watchdog_host_not_ready(interface);
/* update stats only once every second */
if (time_is_before_jiffies(interface->next_stats_update))
fm10k_update_stats(interface);
/* flush any uncompleted work */
fm10k_watchdog_flush_tx(interface);
}
/**
* fm10k_check_hang_subtask - check for hung queues and dropped interrupts
* @interface: pointer to the device interface structure
*
* This function serves two purposes. First it strobes the interrupt lines
* in order to make certain interrupts are occurring. Secondly it sets the
* bits needed to check for TX hangs. As a result we should immediately
* determine if a hang has occurred.
*/
static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
{
/* If we're down or resetting, just bail */
if (test_bit(__FM10K_DOWN, interface->state) ||
test_bit(__FM10K_RESETTING, interface->state))
return;
/* rate limit tx hang checks to only once every 2 seconds */
if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
return;
interface->next_tx_hang_check = jiffies + (2 * HZ);
if (netif_carrier_ok(interface->netdev)) {
int i;
/* Force detection of hung controller */
for (i = 0; i < interface->num_tx_queues; i++)
set_check_for_tx_hang(interface->tx_ring[i]);
/* Rearm all in-use q_vectors for immediate firing */
for (i = 0; i < interface->num_q_vectors; i++) {
struct fm10k_q_vector *qv = interface->q_vector[i];
if (!qv->tx.count && !qv->rx.count)
continue;
writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
}
}
}
/**
* fm10k_service_task - manages and runs subtasks
* @work: pointer to work_struct containing our data
**/
static void fm10k_service_task(struct work_struct *work)
{
struct fm10k_intfc *interface;
interface = container_of(work, struct fm10k_intfc, service_task);
/* Check whether we're detached first */
fm10k_detach_subtask(interface);
/* tasks run even when interface is down */
fm10k_mbx_subtask(interface);
fm10k_reset_subtask(interface);
/* tasks only run when interface is up */
fm10k_watchdog_subtask(interface);
fm10k_check_hang_subtask(interface);
/* release lock on service events to allow scheduling next event */
fm10k_service_event_complete(interface);
}
/**
* fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
* @work: pointer to work_struct containing our data
*
* This work item handles sending MAC/VLAN updates to the switch manager. When
* the interface is up, it will attempt to queue mailbox messages to the
* switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
* mailbox is full, it will reschedule itself to try again in a short while.
* This ensures that the driver does not overload the switch mailbox with too
* many simultaneous requests, causing an unnecessary reset.
**/
static void fm10k_macvlan_task(struct work_struct *work)
{
struct fm10k_macvlan_request *item;
struct fm10k_intfc *interface;
struct delayed_work *dwork;
struct list_head *requests;
struct fm10k_hw *hw;
unsigned long flags;
dwork = to_delayed_work(work);
interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
hw = &interface->hw;
requests = &interface->macvlan_requests;
do {
/* Pop the first item off the list */
spin_lock_irqsave(&interface->macvlan_lock, flags);
item = list_first_entry_or_null(requests,
struct fm10k_macvlan_request,
list);
if (item)
list_del_init(&item->list);
spin_unlock_irqrestore(&interface->macvlan_lock, flags);
/* We have no more items to process */
if (!item)
goto done;
fm10k_mbx_lock(interface);
/* Check that we have plenty of space to send the message. We
* want to ensure that the mailbox stays low enough to avoid a
* change in the host state, otherwise we may see spurious
* link up / link down notifications.
*/
if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
hw->mbx.ops.process(hw, &hw->mbx);
set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
fm10k_mbx_unlock(interface);
/* Put the request back on the list */
spin_lock_irqsave(&interface->macvlan_lock, flags);
list_add(&item->list, requests);
spin_unlock_irqrestore(&interface->macvlan_lock, flags);
break;
}
switch (item->type) {
case FM10K_MC_MAC_REQUEST:
hw->mac.ops.update_mc_addr(hw,
item->mac.glort,
item->mac.addr,
item->mac.vid,
item->set);
break;
case FM10K_UC_MAC_REQUEST:
hw->mac.ops.update_uc_addr(hw,
item->mac.glort,
item->mac.addr,
item->mac.vid,
item->set,
0);
break;
case FM10K_VLAN_REQUEST:
hw->mac.ops.update_vlan(hw,
item->vlan.vid,
item->vlan.vsi,
item->set);
break;
default:
break;
}
fm10k_mbx_unlock(interface);
/* Free the item now that we've sent the update */
kfree(item);
} while (true);
done:
WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
/* flush memory to make sure state is correct */
smp_mb__before_atomic();
clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
/* If a MAC/VLAN request was scheduled since we started, we should
* re-schedule. However, there is no reason to re-schedule if there is
* no work to do.
*/
if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
fm10k_macvlan_schedule(interface);
}
/**
* fm10k_configure_tx_ring - Configure Tx ring after Reset
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Configure the Tx descriptor ring after a reset.
**/
static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
struct fm10k_hw *hw = &interface->hw;
u64 tdba = ring->dma;
u32 size = ring->count * sizeof(struct fm10k_tx_desc);
u32 txint = FM10K_INT_MAP_DISABLE;
u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
fm10k_write_flush(hw);
/* possible poll here to verify ring resources have been cleaned */
/* set location and size for descriptor ring */
fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
/* reset head and tail pointers */
fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
/* store tail pointer */
ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
/* reset ntu and ntc to place SW in sync with hardware */
ring->next_to_clean = 0;
ring->next_to_use = 0;
/* Map interrupt */
if (ring->q_vector) {
txint = ring->q_vector->v_idx + NON_Q_VECTORS;
txint |= FM10K_INT_MAP_TIMER0;
}
fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
FM10K_PFVTCTL_FTAG_DESC_ENABLE);
/* Initialize XPS */
if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
ring->q_vector)
netif_set_xps_queue(ring->netdev,
&ring->q_vector->affinity_mask,
ring->queue_index);
/* enable queue */
fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
}
/**
* fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Verify the Tx descriptor ring is ready for transmit.
**/
static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
struct fm10k_hw *hw = &interface->hw;
int wait_loop = 10;
u32 txdctl;
u8 reg_idx = ring->reg_idx;
/* if we are already enabled just exit */
if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
return;
/* poll to verify queue is enabled */
do {
usleep_range(1000, 2000);
txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
if (!wait_loop)
netif_err(interface, drv, interface->netdev,
"Could not enable Tx Queue %d\n", reg_idx);
}
/**
* fm10k_configure_tx - Configure Transmit Unit after Reset
* @interface: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void fm10k_configure_tx(struct fm10k_intfc *interface)
{
int i;
/* Setup the HW Tx Head and Tail descriptor pointers */
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
/* poll here to verify that Tx rings are now enabled */
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
}
/**
* fm10k_configure_rx_ring - Configure Rx ring after Reset
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Configure the Rx descriptor ring after a reset.
**/
static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
u64 rdba = ring->dma;
struct fm10k_hw *hw = &interface->hw;
u32 size = ring->count * sizeof(union fm10k_rx_desc);
u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
u32 rxint = FM10K_INT_MAP_DISABLE;
u8 rx_pause = interface->rx_pause;
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
rxqctl &= ~FM10K_RXQCTL_ENABLE;
fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
fm10k_write_flush(hw);
/* possible poll here to verify ring resources have been cleaned */
/* set location and size for descriptor ring */
fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
/* reset head and tail pointers */
fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
/* store tail pointer */
ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
/* reset ntu and ntc to place SW in sync with hardware */
ring->next_to_clean = 0;
ring->next_to_use = 0;
ring->next_to_alloc = 0;
/* Configure the Rx buffer size for one buff without split */
srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
/* Configure the Rx ring to suppress loopback packets */
srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
/* Enable drop on empty */
#ifdef CONFIG_DCB
if (interface->pfc_en)
rx_pause = interface->pfc_en;
#endif
if (!(rx_pause & BIT(ring->qos_pc)))
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
/* assign default VLAN to queue */
ring->vid = hw->mac.default_vid;
/* if we have an active VLAN, disable default VLAN ID */
if (test_bit(hw->mac.default_vid, interface->active_vlans))
ring->vid |= FM10K_VLAN_CLEAR;
/* Map interrupt */
if (ring->q_vector) {
rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
rxint |= FM10K_INT_MAP_TIMER1;
}
fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
/* enable queue */
rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
rxqctl |= FM10K_RXQCTL_ENABLE;
fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
/* place buffers on ring for receive data */
fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
}
/**
* fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
* @interface: board private structure
*
* Configure the drop enable bits for the Rx rings.
**/
void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
u8 rx_pause = interface->rx_pause;
int i;
#ifdef CONFIG_DCB
if (interface->pfc_en)
rx_pause = interface->pfc_en;
#endif
for (i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *ring = interface->rx_ring[i];
u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u8 reg_idx = ring->reg_idx;
if (!(rx_pause & BIT(ring->qos_pc)))
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
}
}
/**
* fm10k_configure_dglort - Configure Receive DGLORT after reset
* @interface: board private structure
*
* Configure the DGLORT description and RSS tables.
**/
static void fm10k_configure_dglort(struct fm10k_intfc *interface)
{
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
int i;
u32 mrqc;
/* Fill out hash function seeds */
for (i = 0; i < FM10K_RSSRK_SIZE; i++)
fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
/* Write RETA table to hardware */
for (i = 0; i < FM10K_RETA_SIZE; i++)
fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = FM10K_MRQC_IPV4 |
FM10K_MRQC_TCP_IPV4 |
FM10K_MRQC_IPV6 |
FM10K_MRQC_TCP_IPV6;
if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
mrqc |= FM10K_MRQC_UDP_IPV4;
if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
mrqc |= FM10K_MRQC_UDP_IPV6;
fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
/* configure default DGLORT mapping for RSS/DCB */
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* assign GLORT per queue for queue mapped testing */
if (interface->glort_count > 64) {
memset(&dglort, 0, sizeof(dglort));
dglort.inner_rss = 1;
dglort.glort = interface->glort + 64;
dglort.idx = fm10k_dglort_pf_queue;
dglort.queue_l = fls(interface->num_rx_queues - 1);
hw->mac.ops.configure_dglort_map(hw, &dglort);
}
/* assign glort value for RSS/DCB specific to this interface */
memset(&dglort, 0, sizeof(dglort));
dglort.inner_rss = 1;
dglort.glort = interface->glort;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
/* configure DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
if (interface->l2_accel)
dglort.shared_l = fls(interface->l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
}
/**
* fm10k_configure_rx - Configure Receive Unit after Reset
* @interface: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void fm10k_configure_rx(struct fm10k_intfc *interface)
{
int i;
/* Configure SWPRI to PC map */
fm10k_configure_swpri_map(interface);
/* Configure RSS and DGLORT map */
fm10k_configure_dglort(interface);
/* Setup the HW Rx Head and Tail descriptor pointers */
for (i = 0; i < interface->num_rx_queues; i++)
fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
/* possible poll here to verify that Rx rings are now enabled */
}
static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_enable(&q_vector->napi);
}
}
static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
{
struct fm10k_q_vector *q_vector = data;
if (q_vector->rx.count || q_vector->tx.count)
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
{
struct fm10k_intfc *interface = data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_mbx_info *mbx = &hw->mbx;
/* re-enable mailbox interrupt and indicate 20us delay */
fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
FM10K_ITR_ENABLE);
/* service upstream mailbox */
if (fm10k_mbx_trylock(interface)) {
mbx->ops.process(hw, mbx);
fm10k_mbx_unlock(interface);
}
hw->mac.get_host_state = true;
fm10k_service_event_schedule(interface);
return IRQ_HANDLED;
}
#define FM10K_ERR_MSG(type) case (type): error = #type; break
static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
struct fm10k_fault *fault)
{
struct pci_dev *pdev = interface->pdev;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_iov_data *iov_data = interface->iov_data;
char *error;
switch (type) {
case FM10K_PCA_FAULT:
switch (fault->type) {
default:
error = "Unknown PCA error";
break;
FM10K_ERR_MSG(PCA_NO_FAULT);
FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
FM10K_ERR_MSG(PCA_POISONED_TLP);
FM10K_ERR_MSG(PCA_TLP_ABORT);
}
break;
case FM10K_THI_FAULT:
switch (fault->type) {
default:
error = "Unknown THI error";
break;
FM10K_ERR_MSG(THI_NO_FAULT);
FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
}
break;
case FM10K_FUM_FAULT:
switch (fault->type) {
default:
error = "Unknown FUM error";
break;
FM10K_ERR_MSG(FUM_NO_FAULT);
FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
FM10K_ERR_MSG(FUM_RO_ERROR);
FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
FM10K_ERR_MSG(FUM_INVALID_TYPE);
FM10K_ERR_MSG(FUM_INVALID_LENGTH);
FM10K_ERR_MSG(FUM_INVALID_BE);
FM10K_ERR_MSG(FUM_INVALID_ALIGN);
}
break;
default:
error = "Undocumented fault";
break;
}
dev_warn(&pdev->dev,
"%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
error, fault->address, fault->specinfo,
PCI_SLOT(fault->func), PCI_FUNC(fault->func));
/* For VF faults, clear out the respective LPORT, reset the queue
* resources, and then reconnect to the mailbox. This allows the
* VF in question to resume behavior. For transient faults that are
* the result of non-malicious behavior this will log the fault and
* allow the VF to resume functionality. Obviously for malicious VFs
* they will be able to attempt malicious behavior again. In this
* case, the system administrator will need to step in and manually
* remove or disable the VF in question.
*/
if (fault->func && iov_data) {
int vf = fault->func - 1;
struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
hw->iov.ops.reset_lport(hw, vf_info);
hw->iov.ops.reset_resources(hw, vf_info);
/* reset_lport disables the VF, so re-enable it */
hw->iov.ops.set_lport(hw, vf_info, vf,
FM10K_VF_FLAG_MULTI_CAPABLE);
/* reset_resources will disconnect from the mbx */
vf_info->mbx.ops.connect(hw, &vf_info->mbx);
}
}
static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_fault fault = { 0 };
int type, err;
for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
eicr;
eicr >>= 1, type += FM10K_FAULT_SIZE) {
/* only check if there is an error reported */
if (!(eicr & 0x1))
continue;
/* retrieve fault info */
err = hw->mac.ops.get_fault(hw, type, &fault);
if (err) {
dev_err(&interface->pdev->dev,
"error reading fault\n");
continue;
}
fm10k_handle_fault(interface, type, &fault);
}
}
static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u32 maxholdq;
int q;
if (!(eicr & FM10K_EICR_MAXHOLDTIME))
return;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
for (q = 255;;) {
if (maxholdq & BIT(31)) {
if (q < FM10K_MAX_QUEUES_PF) {
interface->rx_overrun_pf++;
fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
} else {
interface->rx_overrun_vf++;
}
}
maxholdq *= 2;
if (!maxholdq)
q &= ~(32 - 1);
if (!q)
break;
if (q-- % 32)
continue;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
}
}
static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
{
struct fm10k_intfc *interface = data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 eicr;
/* unmask any set bits related to this interrupt */
eicr = fm10k_read_reg(hw, FM10K_EICR);
fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
FM10K_EICR_SWITCHREADY |
FM10K_EICR_SWITCHNOTREADY));
/* report any faults found to the message log */
fm10k_report_fault(interface, eicr);
/* reset any queues disabled due to receiver overrun */
fm10k_reset_drop_on_empty(interface, eicr);
/* service mailboxes */
if (fm10k_mbx_trylock(interface)) {
s32 err = mbx->ops.process(hw, mbx);
if (err == FM10K_ERR_RESET_REQUESTED)
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
/* handle VFLRE events */
fm10k_iov_event(interface);
fm10k_mbx_unlock(interface);
}
/* if switch toggled state we should reset GLORTs */
if (eicr & FM10K_EICR_SWITCHNOTREADY) {
/* force link down for at least 4 seconds */
interface->link_down_event = jiffies + (4 * HZ);
set_bit(__FM10K_LINK_DOWN, interface->state);
/* reset dglort_map back to no config */
hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
}
/* we should validate host state after interrupt event */
hw->mac.get_host_state = true;
/* validate host state, and handle VF mailboxes in the service task */
fm10k_service_event_schedule(interface);
/* re-enable mailbox interrupt and indicate 20us delay */
fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
FM10K_ITR_ENABLE);
return IRQ_HANDLED;
}
void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
int itr_reg;
/* no mailbox IRQ to free if MSI-X is not enabled */
if (!interface->msix_entries)
return;
entry = &interface->msix_entries[FM10K_MBX_VECTOR];
/* disconnect the mailbox */
hw->mbx.ops.disconnect(hw, &hw->mbx);
/* disable Mailbox cause */
if (hw->mac.type == fm10k_mac_pf) {
fm10k_write_reg(hw, FM10K_EIMR,
FM10K_EIMR_DISABLE(PCA_FAULT) |
FM10K_EIMR_DISABLE(FUM_FAULT) |
FM10K_EIMR_DISABLE(MAILBOX) |
FM10K_EIMR_DISABLE(SWITCHREADY) |
FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
FM10K_EIMR_DISABLE(SRAMERROR) |
FM10K_EIMR_DISABLE(VFLR) |
FM10K_EIMR_DISABLE(MAXHOLDTIME));
itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
} else {
itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
}
fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
free_irq(entry->vector, interface);
}
static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
bool vlan_override = hw->mac.vlan_override;
u16 default_vid = hw->mac.default_vid;
struct fm10k_intfc *interface;
s32 err;
err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
/* MAC was changed so we need reset */
if (is_valid_ether_addr(hw->mac.perm_addr) &&
!ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
/* VLAN override was changed, or default VLAN changed */
if ((vlan_override != hw->mac.vlan_override) ||
(default_vid != hw->mac.default_vid))
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
return 0;
}
/* generic error handler for mailbox issues */
static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_intfc *interface;
struct pci_dev *pdev;
interface = container_of(hw, struct fm10k_intfc, hw);
pdev = interface->pdev;
dev_err(&pdev->dev, "Unknown message ID %u\n",
**results & FM10K_TLV_ID_MASK);
return 0;
}
static const struct fm10k_msg_data vf_mbx_data[] = {
FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
};
static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* Use timer0 for interrupt moderation on the mailbox */
u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
/* register mailbox handlers */
err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
if (err)
return err;
/* request the IRQ */
err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
dev->name, interface);
if (err) {
netif_err(interface, probe, dev,
"request_irq for msix_mbx failed: %d\n", err);
return err;
}
/* map all of the interrupt sources */
fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
/* enable interrupt */
fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
return 0;
}
static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_intfc *interface;
u32 dglort_map = hw->mac.dglort_map;
s32 err;
interface = container_of(hw, struct fm10k_intfc, hw);
err = fm10k_msg_err_pf(hw, results, mbx);
if (!err && hw->swapi.status) {
/* force link down for a reasonable delay */
interface->link_down_event = jiffies + (2 * HZ);
set_bit(__FM10K_LINK_DOWN, interface->state);
/* reset dglort_map back to no config */
hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
fm10k_service_event_schedule(interface);
/* prevent overloading kernel message buffer */
if (interface->lport_map_failed)
return 0;
interface->lport_map_failed = true;
if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
dev_warn(&interface->pdev->dev,
"cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
dev_warn(&interface->pdev->dev,
"request logical port map failed: %d\n",
hw->swapi.status);
return 0;
}
err = fm10k_msg_lport_map_pf(hw, results, mbx);
if (err)
return err;
interface->lport_map_failed = false;
/* we need to reset if port count was just updated */
if (dglort_map != hw->mac.dglort_map)
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
return 0;
}
static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_intfc *interface;
u16 glort, pvid;
u32 pvid_update;
s32 err;
err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
&pvid_update);
if (err)
return err;
/* extract values from the pvid update */
glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* verify VLAN ID is valid */
if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
interface = container_of(hw, struct fm10k_intfc, hw);
/* check to see if this belongs to one of the VFs */
err = fm10k_iov_update_pvid(interface, glort, pvid);
if (!err)
return 0;
/* we need to reset if default VLAN was just updated */
if (pvid != hw->mac.default_vid)
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
hw->mac.default_vid = pvid;
return 0;
}
static const struct fm10k_msg_data pf_mbx_data[] = {
FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
};
static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* Use timer0 for interrupt moderation on the mailbox */
u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
/* register mailbox handlers */
err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
if (err)
return err;
/* request the IRQ */
err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
dev->name, interface);
if (err) {
netif_err(interface, probe, dev,
"request_irq for msix_mbx failed: %d\n", err);
return err;
}
/* Enable interrupts w/ no moderation for "other" interrupts */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
/* Enable interrupts w/ moderation for mailbox */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
/* Enable individual interrupt causes */
fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
FM10K_EIMR_ENABLE(FUM_FAULT) |
FM10K_EIMR_ENABLE(MAILBOX) |
FM10K_EIMR_ENABLE(SWITCHREADY) |
FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
FM10K_EIMR_ENABLE(SRAMERROR) |
FM10K_EIMR_ENABLE(VFLR) |
FM10K_EIMR_ENABLE(MAXHOLDTIME));
/* enable interrupt */
fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
return 0;
}
int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int err;
/* enable Mailbox cause */
if (hw->mac.type == fm10k_mac_pf)
err = fm10k_mbx_request_irq_pf(interface);
else
err = fm10k_mbx_request_irq_vf(interface);
if (err)
return err;
/* connect mailbox */
err = hw->mbx.ops.connect(hw, &hw->mbx);
/* if the mailbox failed to connect, then free IRQ */
if (err)
fm10k_mbx_free_irq(interface);
return err;
}
/**
* fm10k_qv_free_irq - release interrupts associated with queue vectors
* @interface: board private structure
*
* Release all interrupts associated with this interface
**/
void fm10k_qv_free_irq(struct fm10k_intfc *interface)
{
int vector = interface->num_q_vectors;
struct msix_entry *entry;
entry = &interface->msix_entries[NON_Q_VECTORS + vector];
while (vector) {
struct fm10k_q_vector *q_vector;
vector--;
entry--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(entry->vector, NULL);
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
}
/**
* fm10k_qv_request_irq - initialize interrupts for queue vectors
* @interface: board private structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
int fm10k_qv_request_irq(struct fm10k_intfc *interface)
{
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
unsigned int ri = 0, ti = 0;
int vector, err;
entry = &interface->msix_entries[NON_Q_VECTORS];
for (vector = 0; vector < interface->num_q_vectors; vector++) {
struct fm10k_q_vector *q_vector = interface->q_vector[vector];
/* name the vector */
if (q_vector->tx.count && q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-TxRx-%u", dev->name, ri++);
ti++;
} else if (q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-rx-%u", dev->name, ri++);
} else if (q_vector->tx.count) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-tx-%u", dev->name, ti++);
} else {
/* skip this unused q_vector */
continue;
}
/* Assign ITR register to q_vector */
q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
&interface->uc_addr[FM10K_ITR(entry->entry)] :
&interface->uc_addr[FM10K_VFITR(entry->entry)];
/* request the IRQ */
err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
q_vector->name, q_vector);
if (err) {
netif_err(interface, probe, dev,
"request_irq failed for MSIX interrupt Error: %d\n",
err);
goto err_out;
}
/* assign the mask for this irq */
irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
/* Enable q_vector */
writel(FM10K_ITR_ENABLE, q_vector->itr);
entry++;
}
return 0;
err_out:
/* wind through the ring freeing all entries and vectors */
while (vector) {
struct fm10k_q_vector *q_vector;
entry--;
vector--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(entry->vector, NULL);
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
return err;
}
void fm10k_up(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
/* Enable Tx/Rx DMA */
hw->mac.ops.start_hw(hw);
/* configure Tx descriptor rings */
fm10k_configure_tx(interface);
/* configure Rx descriptor rings */
fm10k_configure_rx(interface);
/* configure interrupts */
hw->mac.ops.update_int_moderator(hw);
/* enable statistics capture again */
clear_bit(__FM10K_UPDATING_STATS, interface->state);
/* clear down bit to indicate we are ready to go */
clear_bit(__FM10K_DOWN, interface->state);
/* enable polling cleanups */
fm10k_napi_enable_all(interface);
/* re-establish Rx filters */
fm10k_restore_rx_state(interface);
/* enable transmits */
netif_tx_start_all_queues(interface->netdev);
/* kick off the service timer now */
hw->mac.get_host_state = true;
mod_timer(&interface->service_timer, jiffies);
}
static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_disable(&q_vector->napi);
}
}
void fm10k_down(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err, i = 0, count = 0;
/* signal that we are down to the interrupt handler and service task */
if (test_and_set_bit(__FM10K_DOWN, interface->state))
return;
/* call carrier off first to avoid false dev_watchdog timeouts */
netif_carrier_off(netdev);
/* disable transmits */
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
/* reset Rx filters */
fm10k_reset_rx_state(interface);
/* disable polling routines */
fm10k_napi_disable_all(interface);
/* capture stats one last time before stopping interface */
fm10k_update_stats(interface);
/* prevent updating statistics while we're down */
while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
usleep_range(1000, 2000);
/* skip waiting for TX DMA if we lost PCIe link */
if (FM10K_REMOVED(hw->hw_addr))
goto skip_tx_dma_drain;
/* In some rare circumstances it can take a while for Tx queues to
* quiesce and be fully disabled. Attempt to .stop_hw() first, and
* then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
* until the Tx queues have emptied, or until a number of retries. If
* we fail to clear within the retry loop, we will issue a warning
* indicating that Tx DMA is probably hung. Note this means we call
* .stop_hw() twice but this shouldn't cause any problems.
*/
err = hw->mac.ops.stop_hw(hw);
if (err != FM10K_ERR_REQUESTS_PENDING)
goto skip_tx_dma_drain;
#define TX_DMA_DRAIN_RETRIES 25
for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
usleep_range(10000, 20000);
/* start checking at the last ring to have pending Tx */
for (; i < interface->num_tx_queues; i++)
if (fm10k_get_tx_pending(interface->tx_ring[i], false))
break;
/* if all the queues are drained, we can break now */
if (i == interface->num_tx_queues)
break;
}
if (count >= TX_DMA_DRAIN_RETRIES)
dev_err(&interface->pdev->dev,
"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
count);
skip_tx_dma_drain:
/* Disable DMA engine for Tx/Rx */
err = hw->mac.ops.stop_hw(hw);
if (err == FM10K_ERR_REQUESTS_PENDING)
dev_err(&interface->pdev->dev,
"due to pending requests hw was not shut down gracefully\n");
else if (err)
dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
/* free any buffers still on the rings */
fm10k_clean_all_tx_rings(interface);
fm10k_clean_all_rx_rings(interface);
}
/**
* fm10k_sw_init - Initialize general software structures
* @interface: host interface private structure to initialize
* @ent: PCI device ID entry
*
* fm10k_sw_init initializes the interface private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int fm10k_sw_init(struct fm10k_intfc *interface,
const struct pci_device_id *ent)
{
const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
struct fm10k_hw *hw = &interface->hw;
struct pci_dev *pdev = interface->pdev;
struct net_device *netdev = interface->netdev;
u32 rss_key[FM10K_RSSRK_SIZE];
unsigned int rss;
int err;
/* initialize back pointer */
hw->back = interface;
hw->hw_addr = interface->uc_addr;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
/* Setup hw api */
memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
hw->mac.type = fi->mac;
/* Setup IOV handlers */
if (fi->iov_ops)
memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
/* Set common capability flags and settings */
rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
interface->ring_feature[RING_F_RSS].limit = rss;
fi->get_invariants(hw);
/* pick up the PCIe bus settings for reporting later */
if (hw->mac.ops.get_bus_info)
hw->mac.ops.get_bus_info(hw);
/* limit the usable DMA range */
if (hw->mac.ops.set_dma_mask)
hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
/* update netdev with DMA restrictions */
if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
/* reset and initialize the hardware so it is in a known state */
err = hw->mac.ops.reset_hw(hw);
if (err) {
dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
return err;
}
err = hw->mac.ops.init_hw(hw);
if (err) {
dev_err(&pdev->dev, "init_hw failed: %d\n", err);
return err;
}
/* initialize hardware statistics */
hw->mac.ops.update_hw_stats(hw, &interface->stats);
/* Set upper limit on IOV VFs that can be allocated */
pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
/* Start with random Ethernet address */
eth_random_addr(hw->mac.addr);
/* Initialize MAC address from hardware */
err = hw->mac.ops.read_mac_addr(hw);
if (err) {
dev_warn(&pdev->dev,
"Failed to obtain MAC address defaulting to random\n");
/* tag address assignment as random */
netdev->addr_assign_type |= NET_ADDR_RANDOM;
}
ether_addr_copy(netdev->dev_addr, hw->mac.addr);
ether_addr_copy(netdev->perm_addr, hw->mac.addr);
if (!is_valid_ether_addr(netdev->perm_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address\n");
return -EIO;
}
/* initialize DCBNL interface */
fm10k_dcbnl_set_ops(netdev);
/* set default ring sizes */
interface->tx_ring_count = FM10K_DEFAULT_TXD;
interface->rx_ring_count = FM10K_DEFAULT_RXD;
/* set default interrupt moderation */
interface->tx_itr = FM10K_TX_ITR_DEFAULT;
interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
/* Initialize the MAC/VLAN queue */
INIT_LIST_HEAD(&interface->macvlan_requests);
netdev_rss_key_fill(rss_key, sizeof(rss_key));
memcpy(interface->rssrk, rss_key, sizeof(rss_key));
/* Initialize the mailbox lock */
spin_lock_init(&interface->mbx_lock);
spin_lock_init(&interface->macvlan_lock);
/* Start off interface as being down */
set_bit(__FM10K_DOWN, interface->state);
set_bit(__FM10K_UPDATING_STATS, interface->state);
return 0;
}
/**
* fm10k_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in fm10k_pci_tbl
*
* Returns 0 on success, negative on failure
*
* fm10k_probe initializes an interface identified by a pci_dev structure.
* The OS initialization, configuring of the interface private structure,
* and a hardware reset occur.
**/
static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct fm10k_intfc *interface;
int err;
if (pdev->error_state != pci_channel_io_normal) {
dev_err(&pdev->dev,
"PCI device still in an error state. Unable to load...\n");
return -EIO;
}
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"PCI enable device failed: %d\n", err);
return err;
}
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
if (err)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: %d\n", err);
goto err_dma;
}
err = pci_request_mem_regions(pdev, fm10k_driver_name);
if (err) {
dev_err(&pdev->dev,
"pci_request_selected_regions failed: %d\n", err);
goto err_pci_reg;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pci_save_state(pdev);
netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
if (!netdev) {
err = -ENOMEM;
goto err_alloc_netdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
interface = netdev_priv(netdev);
pci_set_drvdata(pdev, interface);
interface->netdev = netdev;
interface->pdev = pdev;
interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
FM10K_UC_ADDR_SIZE);
if (!interface->uc_addr) {
err = -EIO;
goto err_ioremap;
}
err = fm10k_sw_init(interface, ent);
if (err)
goto err_sw_init;
/* enable debugfs support */
fm10k_dbg_intfc_init(interface);
err = fm10k_init_queueing_scheme(interface);
if (err)
goto err_sw_init;
/* the mbx interrupt might attempt to schedule the service task, so we
* must ensure it is disabled since we haven't yet requested the timer
* or work item.
*/
set_bit(__FM10K_SERVICE_DISABLE, interface->state);
err = fm10k_mbx_request_irq(interface);
if (err)
goto err_mbx_interrupt;
/* final check of hardware state before registering the interface */
err = fm10k_hw_ready(interface);
if (err)
goto err_register;
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
/* stop all the transmit queues from transmitting until link is up */
netif_tx_stop_all_queues(netdev);
/* Initialize service timer and service task late in order to avoid
* cleanup issues.
*/
timer_setup(&interface->service_timer, fm10k_service_timer, 0);
INIT_WORK(&interface->service_task, fm10k_service_task);
/* Setup the MAC/VLAN queue */
INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
/* kick off service timer now, even when interface is down */
mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
/* print warning for non-optimal configurations */
pcie_print_link_status(interface->pdev);
/* report MAC address for logging */
dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
fm10k_iov_configure(pdev, 0);
/* clear the service task disable bit and kick off service task */
clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
fm10k_service_event_schedule(interface);
return 0;
err_register:
fm10k_mbx_free_irq(interface);
err_mbx_interrupt:
fm10k_clear_queueing_scheme(interface);
err_sw_init:
if (interface->sw_addr)
iounmap(interface->sw_addr);
iounmap(interface->uc_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_netdev:
pci_disable_pcie_error_reporting(pdev);
pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* fm10k_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* fm10k_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void fm10k_remove(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
del_timer_sync(&interface->service_timer);
fm10k_stop_service_event(interface);
fm10k_stop_macvlan_task(interface);
/* Remove all pending MAC/VLAN requests */
fm10k_clear_macvlan_queue(interface, interface->glort, true);
/* free netdev, this may bounce the interrupts due to setup_tc */
if (netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(netdev);
/* release VFs */
fm10k_iov_disable(pdev);
/* disable mailbox interrupt */
fm10k_mbx_free_irq(interface);
/* free interrupts */
fm10k_clear_queueing_scheme(interface);
/* remove any debugfs interfaces */
fm10k_dbg_intfc_exit(interface);
if (interface->sw_addr)
iounmap(interface->sw_addr);
iounmap(interface->uc_addr);
free_netdev(netdev);
pci_release_mem_regions(pdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
{
/* the watchdog task reads from registers, which might appear like
* a surprise remove if the PCIe device is disabled while we're
* stopped. We stop the watchdog task until after we resume software
* activity.
*
* Note that the MAC/VLAN task will be stopped as part of preparing
* for reset so we don't need to handle it here.
*/
fm10k_stop_service_event(interface);
if (fm10k_prepare_for_reset(interface))
set_bit(__FM10K_RESET_SUSPENDED, interface->state);
}
static int fm10k_handle_resume(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int err;
/* Even if we didn't properly prepare for reset in
* fm10k_prepare_suspend, we'll attempt to resume anyways.
*/
if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
dev_warn(&interface->pdev->dev,
"Device was shut down as part of suspend... Attempting to recover\n");
/* reset statistics starting values */
hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
err = fm10k_handle_reset(interface);
if (err)
return err;
/* assume host is not ready, to prevent race with watchdog in case we
* actually don't have connection to the switch
*/
interface->host_ready = false;
fm10k_watchdog_host_not_ready(interface);
/* force link to stay down for a second to prevent link flutter */
interface->link_down_event = jiffies + (HZ);
set_bit(__FM10K_LINK_DOWN, interface->state);
/* restart the service task */
fm10k_start_service_event(interface);
/* Restart the MAC/VLAN request queue in-case of outstanding events */
fm10k_macvlan_schedule(interface);
return 0;
}
/**
* fm10k_resume - Generic PM resume hook
* @dev: generic device structure
*
* Generic PM hook used when waking the device from a low power state after
* suspend or hibernation. This function does not need to handle lower PCIe
* device state as the stack takes care of that for us.
**/
static int __maybe_unused fm10k_resume(struct device *dev)
{
struct fm10k_intfc *interface = dev_get_drvdata(dev);
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* refresh hw_addr in case it was dropped */
hw->hw_addr = interface->uc_addr;
err = fm10k_handle_resume(interface);
if (err)
return err;
netif_device_attach(netdev);
return 0;
}
/**
* fm10k_suspend - Generic PM suspend hook
* @dev: generic device structure
*
* Generic PM hook used when setting the device into a low power state for
* system suspend or hibernation. This function does not need to handle lower
* PCIe device state as the stack takes care of that for us.
**/
static int __maybe_unused fm10k_suspend(struct device *dev)
{
struct fm10k_intfc *interface = dev_get_drvdata(dev);
struct net_device *netdev = interface->netdev;
netif_device_detach(netdev);
fm10k_prepare_suspend(interface);
return 0;
}
/**
* fm10k_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
fm10k_prepare_suspend(interface);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* fm10k_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
{
pci_ers_result_t result;
if (pci_reenable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
/* After second error pci->state_saved is false, this
* resets it so EEH doesn't break.
*/
pci_save_state(pdev);
pci_wake_from_d3(pdev, false);
result = PCI_ERS_RESULT_RECOVERED;
}
return result;
}
/**
* fm10k_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void fm10k_io_resume(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
int err;
err = fm10k_handle_resume(interface);
if (err)
dev_warn(&pdev->dev,
"%s failed: %d\n", __func__, err);
else
netif_device_attach(netdev);
}
/**
* fm10k_io_reset_prepare - called when PCI function is about to be reset
* @pdev: Pointer to PCI device
*
* This callback is called when the PCI function is about to be reset,
* allowing the device driver to prepare for it.
*/
static void fm10k_io_reset_prepare(struct pci_dev *pdev)
{
/* warn incase we have any active VF devices */
if (pci_num_vf(pdev))
dev_warn(&pdev->dev,
"PCIe FLR may cause issues for any active VF devices\n");
fm10k_prepare_suspend(pci_get_drvdata(pdev));
}
/**
* fm10k_io_reset_done - called when PCI function has finished resetting
* @pdev: Pointer to PCI device
*
* This callback is called just after the PCI function is reset, such as via
* /sys/class/net/<enpX>/device/reset or similar.
*/
static void fm10k_io_reset_done(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
int err = fm10k_handle_resume(interface);
if (err) {
dev_warn(&pdev->dev,
"%s failed: %d\n", __func__, err);
netif_device_detach(interface->netdev);
}
}
static const struct pci_error_handlers fm10k_err_handler = {
.error_detected = fm10k_io_error_detected,
.slot_reset = fm10k_io_slot_reset,
.resume = fm10k_io_resume,
.reset_prepare = fm10k_io_reset_prepare,
.reset_done = fm10k_io_reset_done,
};
static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
static struct pci_driver fm10k_driver = {
.name = fm10k_driver_name,
.id_table = fm10k_pci_tbl,
.probe = fm10k_probe,
.remove = fm10k_remove,
.driver = {
.pm = &fm10k_pm_ops,
},
.sriov_configure = fm10k_iov_configure,
.err_handler = &fm10k_err_handler
};
/**
* fm10k_register_pci_driver - register driver interface
*
* This function is called on module load in order to register the driver.
**/
int fm10k_register_pci_driver(void)
{
return pci_register_driver(&fm10k_driver);
}
/**
* fm10k_unregister_pci_driver - unregister driver interface
*
* This function is called on module unload in order to remove the driver.
**/
void fm10k_unregister_pci_driver(void)
{
pci_unregister_driver(&fm10k_driver);
}