blob: 374a308174d2ba7c17f496a4c94364e34815e355 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
*
* There are examples in here of:
* * how to set protection keys on memory
* * how to set/clear bits in pkey registers (the rights register)
* * how to handle SEGV_PKUERR signals and extract pkey-relevant
* information from the siginfo
*
* Things to add:
* make sure KSM and KSM COW breaking works
* prefault pages in at malloc, or not
* protect MPX bounds tables with protection keys?
* make sure VMA splitting/merging is working correctly
* OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
* look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
* do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
*
* Compile like this:
* gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
* gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
*/
#define _GNU_SOURCE
#define __SANE_USERSPACE_TYPES__
#include <errno.h>
#include <linux/elf.h>
#include <linux/futex.h>
#include <time.h>
#include <sys/time.h>
#include <sys/syscall.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <signal.h>
#include <assert.h>
#include <stdlib.h>
#include <ucontext.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <setjmp.h>
#include "pkey-helpers.h"
int iteration_nr = 1;
int test_nr;
u64 shadow_pkey_reg;
int dprint_in_signal;
char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
char buf[256];
void cat_into_file(char *str, char *file)
{
int fd = open(file, O_RDWR);
int ret;
dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
/*
* these need to be raw because they are called under
* pkey_assert()
*/
if (fd < 0) {
fprintf(stderr, "error opening '%s'\n", str);
perror("error: ");
exit(__LINE__);
}
ret = write(fd, str, strlen(str));
if (ret != strlen(str)) {
perror("write to file failed");
fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
exit(__LINE__);
}
close(fd);
}
#if CONTROL_TRACING > 0
static int warned_tracing;
int tracing_root_ok(void)
{
if (geteuid() != 0) {
if (!warned_tracing)
fprintf(stderr, "WARNING: not run as root, "
"can not do tracing control\n");
warned_tracing = 1;
return 0;
}
return 1;
}
#endif
void tracing_on(void)
{
#if CONTROL_TRACING > 0
#define TRACEDIR "/sys/kernel/tracing"
char pidstr[32];
if (!tracing_root_ok())
return;
sprintf(pidstr, "%d", getpid());
cat_into_file("0", TRACEDIR "/tracing_on");
cat_into_file("\n", TRACEDIR "/trace");
if (1) {
cat_into_file("function_graph", TRACEDIR "/current_tracer");
cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
} else {
cat_into_file("nop", TRACEDIR "/current_tracer");
}
cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
cat_into_file("1", TRACEDIR "/tracing_on");
dprintf1("enabled tracing\n");
#endif
}
void tracing_off(void)
{
#if CONTROL_TRACING > 0
if (!tracing_root_ok())
return;
cat_into_file("0", "/sys/kernel/tracing/tracing_on");
#endif
}
void abort_hooks(void)
{
fprintf(stderr, "running %s()...\n", __func__);
tracing_off();
#ifdef SLEEP_ON_ABORT
sleep(SLEEP_ON_ABORT);
#endif
}
/*
* This attempts to have roughly a page of instructions followed by a few
* instructions that do a write, and another page of instructions. That
* way, we are pretty sure that the write is in the second page of
* instructions and has at least a page of padding behind it.
*
* *That* lets us be sure to madvise() away the write instruction, which
* will then fault, which makes sure that the fault code handles
* execute-only memory properly.
*/
#ifdef __powerpc64__
/* This way, both 4K and 64K alignment are maintained */
__attribute__((__aligned__(65536)))
#else
__attribute__((__aligned__(PAGE_SIZE)))
#endif
void lots_o_noops_around_write(int *write_to_me)
{
dprintf3("running %s()\n", __func__);
__page_o_noops();
/* Assume this happens in the second page of instructions: */
*write_to_me = __LINE__;
/* pad out by another page: */
__page_o_noops();
dprintf3("%s() done\n", __func__);
}
void dump_mem(void *dumpme, int len_bytes)
{
char *c = (void *)dumpme;
int i;
for (i = 0; i < len_bytes; i += sizeof(u64)) {
u64 *ptr = (u64 *)(c + i);
dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
}
}
static u32 hw_pkey_get(int pkey, unsigned long flags)
{
u64 pkey_reg = __read_pkey_reg();
dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
__func__, pkey, flags, 0, 0);
dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
return (u32) get_pkey_bits(pkey_reg, pkey);
}
static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
{
u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
u64 old_pkey_reg = __read_pkey_reg();
u64 new_pkey_reg;
/* make sure that 'rights' only contains the bits we expect: */
assert(!(rights & ~mask));
/* modify bits accordingly in old pkey_reg and assign it */
new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
__write_pkey_reg(new_pkey_reg);
dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
__func__, pkey, rights, flags, 0, __read_pkey_reg(),
old_pkey_reg);
return 0;
}
void pkey_disable_set(int pkey, int flags)
{
unsigned long syscall_flags = 0;
int ret;
int pkey_rights;
u64 orig_pkey_reg = read_pkey_reg();
dprintf1("START->%s(%d, 0x%x)\n", __func__,
pkey, flags);
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
pkey_rights = hw_pkey_get(pkey, syscall_flags);
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
pkey, pkey, pkey_rights);
pkey_assert(pkey_rights >= 0);
pkey_rights |= flags;
ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
assert(!ret);
/* pkey_reg and flags have the same format */
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
dprintf1("%s(%d) shadow: 0x%016llx\n",
__func__, pkey, shadow_pkey_reg);
pkey_assert(ret >= 0);
pkey_rights = hw_pkey_get(pkey, syscall_flags);
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
pkey, pkey, pkey_rights);
dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
__func__, pkey, read_pkey_reg());
if (flags)
pkey_assert(read_pkey_reg() >= orig_pkey_reg);
dprintf1("END<---%s(%d, 0x%x)\n", __func__,
pkey, flags);
}
void pkey_disable_clear(int pkey, int flags)
{
unsigned long syscall_flags = 0;
int ret;
int pkey_rights = hw_pkey_get(pkey, syscall_flags);
u64 orig_pkey_reg = read_pkey_reg();
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
pkey, pkey, pkey_rights);
pkey_assert(pkey_rights >= 0);
pkey_rights &= ~flags;
ret = hw_pkey_set(pkey, pkey_rights, 0);
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
pkey_assert(ret >= 0);
pkey_rights = hw_pkey_get(pkey, syscall_flags);
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
pkey, pkey, pkey_rights);
dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
pkey, read_pkey_reg());
if (flags)
assert(read_pkey_reg() <= orig_pkey_reg);
}
void pkey_write_allow(int pkey)
{
pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
}
void pkey_write_deny(int pkey)
{
pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
}
void pkey_access_allow(int pkey)
{
pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
}
void pkey_access_deny(int pkey)
{
pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
}
static char *si_code_str(int si_code)
{
if (si_code == SEGV_MAPERR)
return "SEGV_MAPERR";
if (si_code == SEGV_ACCERR)
return "SEGV_ACCERR";
if (si_code == SEGV_BNDERR)
return "SEGV_BNDERR";
if (si_code == SEGV_PKUERR)
return "SEGV_PKUERR";
return "UNKNOWN";
}
int pkey_faults;
int last_si_pkey = -1;
void signal_handler(int signum, siginfo_t *si, void *vucontext)
{
ucontext_t *uctxt = vucontext;
int trapno;
unsigned long ip;
char *fpregs;
#if defined(__i386__) || defined(__x86_64__) /* arch */
u32 *pkey_reg_ptr;
int pkey_reg_offset;
#endif /* arch */
u64 siginfo_pkey;
u32 *si_pkey_ptr;
dprint_in_signal = 1;
dprintf1(">>>>===============SIGSEGV============================\n");
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
__func__, __LINE__,
__read_pkey_reg(), shadow_pkey_reg);
trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
fpregs = (char *) uctxt->uc_mcontext.fpregs;
dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
__func__, trapno, ip, si_code_str(si->si_code),
si->si_code);
#if defined(__i386__) || defined(__x86_64__) /* arch */
#ifdef __i386__
/*
* 32-bit has some extra padding so that userspace can tell whether
* the XSTATE header is present in addition to the "legacy" FPU
* state. We just assume that it is here.
*/
fpregs += 0x70;
#endif /* i386 */
pkey_reg_offset = pkey_reg_xstate_offset();
pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
/*
* If we got a PKEY fault, we *HAVE* to have at least one bit set in
* here.
*/
dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
if (DEBUG_LEVEL > 4)
dump_mem(pkey_reg_ptr - 128, 256);
pkey_assert(*pkey_reg_ptr);
#endif /* arch */
dprintf1("siginfo: %p\n", si);
dprintf1(" fpregs: %p\n", fpregs);
if ((si->si_code == SEGV_MAPERR) ||
(si->si_code == SEGV_ACCERR) ||
(si->si_code == SEGV_BNDERR)) {
printf("non-PK si_code, exiting...\n");
exit(4);
}
si_pkey_ptr = siginfo_get_pkey_ptr(si);
dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
dump_mem((u8 *)si_pkey_ptr - 8, 24);
siginfo_pkey = *si_pkey_ptr;
pkey_assert(siginfo_pkey < NR_PKEYS);
last_si_pkey = siginfo_pkey;
/*
* need __read_pkey_reg() version so we do not do shadow_pkey_reg
* checking
*/
dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
__read_pkey_reg());
dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
#if defined(__i386__) || defined(__x86_64__) /* arch */
dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
*(u64 *)pkey_reg_ptr = 0x00000000;
dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
#elif defined(__powerpc64__) /* arch */
/* restore access and let the faulting instruction continue */
pkey_access_allow(siginfo_pkey);
#endif /* arch */
pkey_faults++;
dprintf1("<<<<==================================================\n");
dprint_in_signal = 0;
}
int wait_all_children(void)
{
int status;
return waitpid(-1, &status, 0);
}
void sig_chld(int x)
{
dprint_in_signal = 1;
dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
dprint_in_signal = 0;
}
void setup_sigsegv_handler(void)
{
int r, rs;
struct sigaction newact;
struct sigaction oldact;
/* #PF is mapped to sigsegv */
int signum = SIGSEGV;
newact.sa_handler = 0;
newact.sa_sigaction = signal_handler;
/*sigset_t - signals to block while in the handler */
/* get the old signal mask. */
rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
pkey_assert(rs == 0);
/* call sa_sigaction, not sa_handler*/
newact.sa_flags = SA_SIGINFO;
newact.sa_restorer = 0; /* void(*)(), obsolete */
r = sigaction(signum, &newact, &oldact);
r = sigaction(SIGALRM, &newact, &oldact);
pkey_assert(r == 0);
}
void setup_handlers(void)
{
signal(SIGCHLD, &sig_chld);
setup_sigsegv_handler();
}
pid_t fork_lazy_child(void)
{
pid_t forkret;
forkret = fork();
pkey_assert(forkret >= 0);
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
if (!forkret) {
/* in the child */
while (1) {
dprintf1("child sleeping...\n");
sleep(30);
}
}
return forkret;
}
int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
unsigned long pkey)
{
int sret;
dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
ptr, size, orig_prot, pkey);
errno = 0;
sret = syscall(__NR_pkey_mprotect, ptr, size, orig_prot, pkey);
if (errno) {
dprintf2("SYS_mprotect_key sret: %d\n", sret);
dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
if (DEBUG_LEVEL >= 2)
perror("SYS_mprotect_pkey");
}
return sret;
}
int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
{
int ret = syscall(SYS_pkey_alloc, flags, init_val);
dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
__func__, flags, init_val, ret, errno);
return ret;
}
int alloc_pkey(void)
{
int ret;
unsigned long init_val = 0x0;
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
ret = sys_pkey_alloc(0, init_val);
/*
* pkey_alloc() sets PKEY register, so we need to reflect it in
* shadow_pkey_reg:
*/
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
if (ret > 0) {
/* clear both the bits: */
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
~PKEY_MASK);
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__,
__LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
/*
* move the new state in from init_val
* (remember, we cheated and init_val == pkey_reg format)
*/
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
init_val);
}
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
/* for shadow checking: */
read_pkey_reg();
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
return ret;
}
int sys_pkey_free(unsigned long pkey)
{
int ret = syscall(SYS_pkey_free, pkey);
dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
return ret;
}
/*
* I had a bug where pkey bits could be set by mprotect() but
* not cleared. This ensures we get lots of random bit sets
* and clears on the vma and pte pkey bits.
*/
int alloc_random_pkey(void)
{
int max_nr_pkey_allocs;
int ret;
int i;
int alloced_pkeys[NR_PKEYS];
int nr_alloced = 0;
int random_index;
memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
/* allocate every possible key and make a note of which ones we got */
max_nr_pkey_allocs = NR_PKEYS;
for (i = 0; i < max_nr_pkey_allocs; i++) {
int new_pkey = alloc_pkey();
if (new_pkey < 0)
break;
alloced_pkeys[nr_alloced++] = new_pkey;
}
pkey_assert(nr_alloced > 0);
/* select a random one out of the allocated ones */
random_index = rand() % nr_alloced;
ret = alloced_pkeys[random_index];
/* now zero it out so we don't free it next */
alloced_pkeys[random_index] = 0;
/* go through the allocated ones that we did not want and free them */
for (i = 0; i < nr_alloced; i++) {
int free_ret;
if (!alloced_pkeys[i])
continue;
free_ret = sys_pkey_free(alloced_pkeys[i]);
pkey_assert(!free_ret);
}
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n", __func__,
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
return ret;
}
int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
unsigned long pkey)
{
int nr_iterations = random() % 100;
int ret;
while (0) {
int rpkey = alloc_random_pkey();
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
ptr, size, orig_prot, pkey, ret);
if (nr_iterations-- < 0)
break;
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
sys_pkey_free(rpkey);
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, ret, __read_pkey_reg(),
shadow_pkey_reg);
}
pkey_assert(pkey < NR_PKEYS);
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
ptr, size, orig_prot, pkey, ret);
pkey_assert(!ret);
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n", __func__,
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
return ret;
}
struct pkey_malloc_record {
void *ptr;
long size;
int prot;
};
struct pkey_malloc_record *pkey_malloc_records;
struct pkey_malloc_record *pkey_last_malloc_record;
long nr_pkey_malloc_records;
void record_pkey_malloc(void *ptr, long size, int prot)
{
long i;
struct pkey_malloc_record *rec = NULL;
for (i = 0; i < nr_pkey_malloc_records; i++) {
rec = &pkey_malloc_records[i];
/* find a free record */
if (rec)
break;
}
if (!rec) {
/* every record is full */
size_t old_nr_records = nr_pkey_malloc_records;
size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
dprintf2("new_nr_records: %zd\n", new_nr_records);
dprintf2("new_size: %zd\n", new_size);
pkey_malloc_records = realloc(pkey_malloc_records, new_size);
pkey_assert(pkey_malloc_records != NULL);
rec = &pkey_malloc_records[nr_pkey_malloc_records];
/*
* realloc() does not initialize memory, so zero it from
* the first new record all the way to the end.
*/
for (i = 0; i < new_nr_records - old_nr_records; i++)
memset(rec + i, 0, sizeof(*rec));
}
dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
(int)(rec - pkey_malloc_records), rec, ptr, size);
rec->ptr = ptr;
rec->size = size;
rec->prot = prot;
pkey_last_malloc_record = rec;
nr_pkey_malloc_records++;
}
void free_pkey_malloc(void *ptr)
{
long i;
int ret;
dprintf3("%s(%p)\n", __func__, ptr);
for (i = 0; i < nr_pkey_malloc_records; i++) {
struct pkey_malloc_record *rec = &pkey_malloc_records[i];
dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
ptr, i, rec, rec->ptr, rec->size);
if ((ptr < rec->ptr) ||
(ptr >= rec->ptr + rec->size))
continue;
dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
ptr, i, rec, rec->ptr, rec->size);
nr_pkey_malloc_records--;
ret = munmap(rec->ptr, rec->size);
dprintf3("munmap ret: %d\n", ret);
pkey_assert(!ret);
dprintf3("clearing rec->ptr, rec: %p\n", rec);
rec->ptr = NULL;
dprintf3("done clearing rec->ptr, rec: %p\n", rec);
return;
}
pkey_assert(false);
}
void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
{
void *ptr;
int ret;
read_pkey_reg();
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
size, prot, pkey);
pkey_assert(pkey < NR_PKEYS);
ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
pkey_assert(ptr != (void *)-1);
ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
pkey_assert(!ret);
record_pkey_malloc(ptr, size, prot);
read_pkey_reg();
dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
return ptr;
}
void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
{
int ret;
void *ptr;
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
size, prot, pkey);
/*
* Guarantee we can fit at least one huge page in the resulting
* allocation by allocating space for 2:
*/
size = ALIGN_UP(size, HPAGE_SIZE * 2);
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
pkey_assert(ptr != (void *)-1);
record_pkey_malloc(ptr, size, prot);
mprotect_pkey(ptr, size, prot, pkey);
dprintf1("unaligned ptr: %p\n", ptr);
ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
dprintf1(" aligned ptr: %p\n", ptr);
ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
dprintf1("MADV_WILLNEED ret: %d\n", ret);
memset(ptr, 0, HPAGE_SIZE);
dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
return ptr;
}
int hugetlb_setup_ok;
#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
#define GET_NR_HUGE_PAGES 10
void setup_hugetlbfs(void)
{
int err;
int fd;
char buf[256];
long hpagesz_kb;
long hpagesz_mb;
if (geteuid() != 0) {
fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
return;
}
cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
/*
* Now go make sure that we got the pages and that they
* are PMD-level pages. Someone might have made PUD-level
* pages the default.
*/
hpagesz_kb = HPAGE_SIZE / 1024;
hpagesz_mb = hpagesz_kb / 1024;
sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
fd = open(buf, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
hpagesz_mb, strerror(errno));
return;
}
/* -1 to guarantee leaving the trailing \0 */
err = read(fd, buf, sizeof(buf)-1);
close(fd);
if (err <= 0) {
fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
hpagesz_mb, strerror(errno));
return;
}
if (atoi(buf) != GET_NR_HUGE_PAGES) {
fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
hpagesz_mb, buf, GET_NR_HUGE_PAGES);
return;
}
hugetlb_setup_ok = 1;
}
void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
{
void *ptr;
int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
if (!hugetlb_setup_ok)
return PTR_ERR_ENOTSUP;
dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
size = ALIGN_UP(size, HPAGE_SIZE * 2);
pkey_assert(pkey < NR_PKEYS);
ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
pkey_assert(ptr != (void *)-1);
mprotect_pkey(ptr, size, prot, pkey);
record_pkey_malloc(ptr, size, prot);
dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
return ptr;
}
void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
{
void *ptr;
int fd;
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
size, prot, pkey);
pkey_assert(pkey < NR_PKEYS);
fd = open("/dax/foo", O_RDWR);
pkey_assert(fd >= 0);
ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
pkey_assert(ptr != (void *)-1);
mprotect_pkey(ptr, size, prot, pkey);
record_pkey_malloc(ptr, size, prot);
dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
close(fd);
return ptr;
}
void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
malloc_pkey_with_mprotect,
malloc_pkey_with_mprotect_subpage,
malloc_pkey_anon_huge,
malloc_pkey_hugetlb
/* can not do direct with the pkey_mprotect() API:
malloc_pkey_mmap_direct,
malloc_pkey_mmap_dax,
*/
};
void *malloc_pkey(long size, int prot, u16 pkey)
{
void *ret;
static int malloc_type;
int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
pkey_assert(pkey < NR_PKEYS);
while (1) {
pkey_assert(malloc_type < nr_malloc_types);
ret = pkey_malloc[malloc_type](size, prot, pkey);
pkey_assert(ret != (void *)-1);
malloc_type++;
if (malloc_type >= nr_malloc_types)
malloc_type = (random()%nr_malloc_types);
/* try again if the malloc_type we tried is unsupported */
if (ret == PTR_ERR_ENOTSUP)
continue;
break;
}
dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
size, prot, pkey, ret);
return ret;
}
int last_pkey_faults;
#define UNKNOWN_PKEY -2
void expected_pkey_fault(int pkey)
{
dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
__func__, last_pkey_faults, pkey_faults);
dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
pkey_assert(last_pkey_faults + 1 == pkey_faults);
/*
* For exec-only memory, we do not know the pkey in
* advance, so skip this check.
*/
if (pkey != UNKNOWN_PKEY)
pkey_assert(last_si_pkey == pkey);
#if defined(__i386__) || defined(__x86_64__) /* arch */
/*
* The signal handler shold have cleared out PKEY register to let the
* test program continue. We now have to restore it.
*/
if (__read_pkey_reg() != 0)
#else /* arch */
if (__read_pkey_reg() != shadow_pkey_reg)
#endif /* arch */
pkey_assert(0);
__write_pkey_reg(shadow_pkey_reg);
dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
"nuked it\n", __func__, shadow_pkey_reg);
last_pkey_faults = pkey_faults;
last_si_pkey = -1;
}
#define do_not_expect_pkey_fault(msg) do { \
if (last_pkey_faults != pkey_faults) \
dprintf0("unexpected PKey fault: %s\n", msg); \
pkey_assert(last_pkey_faults == pkey_faults); \
} while (0)
int test_fds[10] = { -1 };
int nr_test_fds;
void __save_test_fd(int fd)
{
pkey_assert(fd >= 0);
pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
test_fds[nr_test_fds] = fd;
nr_test_fds++;
}
int get_test_read_fd(void)
{
int test_fd = open("/etc/passwd", O_RDONLY);
__save_test_fd(test_fd);
return test_fd;
}
void close_test_fds(void)
{
int i;
for (i = 0; i < nr_test_fds; i++) {
if (test_fds[i] < 0)
continue;
close(test_fds[i]);
test_fds[i] = -1;
}
nr_test_fds = 0;
}
#define barrier() __asm__ __volatile__("": : :"memory")
__attribute__((noinline)) int read_ptr(int *ptr)
{
/*
* Keep GCC from optimizing this away somehow
*/
barrier();
return *ptr;
}
void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
{
int i, err;
int max_nr_pkey_allocs;
int alloced_pkeys[NR_PKEYS];
int nr_alloced = 0;
long size;
pkey_assert(pkey_last_malloc_record);
size = pkey_last_malloc_record->size;
/*
* This is a bit of a hack. But mprotect() requires
* huge-page-aligned sizes when operating on hugetlbfs.
* So, make sure that we use something that's a multiple
* of a huge page when we can.
*/
if (size >= HPAGE_SIZE)
size = HPAGE_SIZE;
/* allocate every possible key and make sure key-0 never got allocated */
max_nr_pkey_allocs = NR_PKEYS;
for (i = 0; i < max_nr_pkey_allocs; i++) {
int new_pkey = alloc_pkey();
pkey_assert(new_pkey != 0);
if (new_pkey < 0)
break;
alloced_pkeys[nr_alloced++] = new_pkey;
}
/* free all the allocated keys */
for (i = 0; i < nr_alloced; i++) {
int free_ret;
if (!alloced_pkeys[i])
continue;
free_ret = sys_pkey_free(alloced_pkeys[i]);
pkey_assert(!free_ret);
}
/* attach key-0 in various modes */
err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
pkey_assert(!err);
err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
pkey_assert(!err);
err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
pkey_assert(!err);
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
pkey_assert(!err);
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
pkey_assert(!err);
}
void test_read_of_write_disabled_region(int *ptr, u16 pkey)
{
int ptr_contents;
dprintf1("disabling write access to PKEY[1], doing read\n");
pkey_write_deny(pkey);
ptr_contents = read_ptr(ptr);
dprintf1("*ptr: %d\n", ptr_contents);
dprintf1("\n");
}
void test_read_of_access_disabled_region(int *ptr, u16 pkey)
{
int ptr_contents;
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
read_pkey_reg();
pkey_access_deny(pkey);
ptr_contents = read_ptr(ptr);
dprintf1("*ptr: %d\n", ptr_contents);
expected_pkey_fault(pkey);
}
void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
u16 pkey)
{
int ptr_contents;
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
pkey, ptr);
ptr_contents = read_ptr(ptr);
dprintf1("reading ptr before disabling the read : %d\n",
ptr_contents);
read_pkey_reg();
pkey_access_deny(pkey);
ptr_contents = read_ptr(ptr);
dprintf1("*ptr: %d\n", ptr_contents);
expected_pkey_fault(pkey);
}
void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
u16 pkey)
{
*ptr = __LINE__;
dprintf1("disabling write access; after accessing the page, "
"to PKEY[%02d], doing write\n", pkey);
pkey_write_deny(pkey);
*ptr = __LINE__;
expected_pkey_fault(pkey);
}
void test_write_of_write_disabled_region(int *ptr, u16 pkey)
{
dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
pkey_write_deny(pkey);
*ptr = __LINE__;
expected_pkey_fault(pkey);
}
void test_write_of_access_disabled_region(int *ptr, u16 pkey)
{
dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
pkey_access_deny(pkey);
*ptr = __LINE__;
expected_pkey_fault(pkey);
}
void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
u16 pkey)
{
*ptr = __LINE__;
dprintf1("disabling access; after accessing the page, "
" to PKEY[%02d], doing write\n", pkey);
pkey_access_deny(pkey);
*ptr = __LINE__;
expected_pkey_fault(pkey);
}
void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
{
int ret;
int test_fd = get_test_read_fd();
dprintf1("disabling access to PKEY[%02d], "
"having kernel read() to buffer\n", pkey);
pkey_access_deny(pkey);
ret = read(test_fd, ptr, 1);
dprintf1("read ret: %d\n", ret);
pkey_assert(ret);
}
void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
{
int ret;
int test_fd = get_test_read_fd();
pkey_write_deny(pkey);
ret = read(test_fd, ptr, 100);
dprintf1("read ret: %d\n", ret);
if (ret < 0 && (DEBUG_LEVEL > 0))
perror("verbose read result (OK for this to be bad)");
pkey_assert(ret);
}
void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
{
int pipe_ret, vmsplice_ret;
struct iovec iov;
int pipe_fds[2];
pipe_ret = pipe(pipe_fds);
pkey_assert(pipe_ret == 0);
dprintf1("disabling access to PKEY[%02d], "
"having kernel vmsplice from buffer\n", pkey);
pkey_access_deny(pkey);
iov.iov_base = ptr;
iov.iov_len = PAGE_SIZE;
vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
pkey_assert(vmsplice_ret == -1);
close(pipe_fds[0]);
close(pipe_fds[1]);
}
void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
{
int ignored = 0xdada;
int futex_ret;
int some_int = __LINE__;
dprintf1("disabling write to PKEY[%02d], "
"doing futex gunk in buffer\n", pkey);
*ptr = some_int;
pkey_write_deny(pkey);
futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
&ignored, ignored);
if (DEBUG_LEVEL > 0)
perror("futex");
dprintf1("futex() ret: %d\n", futex_ret);
}
/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
{
int err;
int i;
/* Note: 0 is the default pkey, so don't mess with it */
for (i = 1; i < NR_PKEYS; i++) {
if (pkey == i)
continue;
dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
err = sys_pkey_free(i);
pkey_assert(err);
err = sys_pkey_free(i);
pkey_assert(err);
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
pkey_assert(err);
}
}
/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
{
int err;
int bad_pkey = NR_PKEYS+99;
/* pass a known-invalid pkey in: */
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
pkey_assert(err);
}
void become_child(void)
{
pid_t forkret;
forkret = fork();
pkey_assert(forkret >= 0);
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
if (!forkret) {
/* in the child */
return;
}
exit(0);
}
/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
{
int err;
int allocated_pkeys[NR_PKEYS] = {0};
int nr_allocated_pkeys = 0;
int i;
for (i = 0; i < NR_PKEYS*3; i++) {
int new_pkey;
dprintf1("%s() alloc loop: %d\n", __func__, i);
new_pkey = alloc_pkey();
dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
" shadow: 0x%016llx\n",
__func__, __LINE__, err, __read_pkey_reg(),
shadow_pkey_reg);
read_pkey_reg(); /* for shadow checking */
dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
if ((new_pkey == -1) && (errno == ENOSPC)) {
dprintf2("%s() failed to allocate pkey after %d tries\n",
__func__, nr_allocated_pkeys);
} else {
/*
* Ensure the number of successes never
* exceeds the number of keys supported
* in the hardware.
*/
pkey_assert(nr_allocated_pkeys < NR_PKEYS);
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
}
/*
* Make sure that allocation state is properly
* preserved across fork().
*/
if (i == NR_PKEYS*2)
become_child();
}
dprintf3("%s()::%d\n", __func__, __LINE__);
/*
* On x86:
* There are 16 pkeys supported in hardware. Three are
* allocated by the time we get here:
* 1. The default key (0)
* 2. One possibly consumed by an execute-only mapping.
* 3. One allocated by the test code and passed in via
* 'pkey' to this function.
* Ensure that we can allocate at least another 13 (16-3).
*
* On powerpc:
* There are either 5, 28, 29 or 32 pkeys supported in
* hardware depending on the page size (4K or 64K) and
* platform (powernv or powervm). Four are allocated by
* the time we get here. These include pkey-0, pkey-1,
* exec-only pkey and the one allocated by the test code.
* Ensure that we can allocate the remaining.
*/
pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
for (i = 0; i < nr_allocated_pkeys; i++) {
err = sys_pkey_free(allocated_pkeys[i]);
pkey_assert(!err);
read_pkey_reg(); /* for shadow checking */
}
}
void arch_force_pkey_reg_init(void)
{
#if defined(__i386__) || defined(__x86_64__) /* arch */
u64 *buf;
/*
* All keys should be allocated and set to allow reads and
* writes, so the register should be all 0. If not, just
* skip the test.
*/
if (read_pkey_reg())
return;
/*
* Just allocate an absurd about of memory rather than
* doing the XSAVE size enumeration dance.
*/
buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
/* These __builtins require compiling with -mxsave */
/* XSAVE to build a valid buffer: */
__builtin_ia32_xsave(buf, XSTATE_PKEY);
/* Clear XSTATE_BV[PKRU]: */
buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
/* XRSTOR will likely get PKRU back to the init state: */
__builtin_ia32_xrstor(buf, XSTATE_PKEY);
munmap(buf, 1*MB);
#endif
}
/*
* This is mostly useless on ppc for now. But it will not
* hurt anything and should give some better coverage as
* a long-running test that continually checks the pkey
* register.
*/
void test_pkey_init_state(int *ptr, u16 pkey)
{
int err;
int allocated_pkeys[NR_PKEYS] = {0};
int nr_allocated_pkeys = 0;
int i;
for (i = 0; i < NR_PKEYS; i++) {
int new_pkey = alloc_pkey();
if (new_pkey < 0)
continue;
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
}
dprintf3("%s()::%d\n", __func__, __LINE__);
arch_force_pkey_reg_init();
/*
* Loop for a bit, hoping to get exercise the kernel
* context switch code.
*/
for (i = 0; i < 1000000; i++)
read_pkey_reg();
for (i = 0; i < nr_allocated_pkeys; i++) {
err = sys_pkey_free(allocated_pkeys[i]);
pkey_assert(!err);
read_pkey_reg(); /* for shadow checking */
}
}
/*
* pkey 0 is special. It is allocated by default, so you do not
* have to call pkey_alloc() to use it first. Make sure that it
* is usable.
*/
void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
{
long size;
int prot;
assert(pkey_last_malloc_record);
size = pkey_last_malloc_record->size;
/*
* This is a bit of a hack. But mprotect() requires
* huge-page-aligned sizes when operating on hugetlbfs.
* So, make sure that we use something that's a multiple
* of a huge page when we can.
*/
if (size >= HPAGE_SIZE)
size = HPAGE_SIZE;
prot = pkey_last_malloc_record->prot;
/* Use pkey 0 */
mprotect_pkey(ptr, size, prot, 0);
/* Make sure that we can set it back to the original pkey. */
mprotect_pkey(ptr, size, prot, pkey);
}
void test_ptrace_of_child(int *ptr, u16 pkey)
{
__attribute__((__unused__)) int peek_result;
pid_t child_pid;
void *ignored = 0;
long ret;
int status;
/*
* This is the "control" for our little expermient. Make sure
* we can always access it when ptracing.
*/
int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
/*
* Fork a child which is an exact copy of this process, of course.
* That means we can do all of our tests via ptrace() and then plain
* memory access and ensure they work differently.
*/
child_pid = fork_lazy_child();
dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
if (ret)
perror("attach");
dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
pkey_assert(ret != -1);
ret = waitpid(child_pid, &status, WUNTRACED);
if ((ret != child_pid) || !(WIFSTOPPED(status))) {
fprintf(stderr, "weird waitpid result %ld stat %x\n",
ret, status);
pkey_assert(0);
}
dprintf2("waitpid ret: %ld\n", ret);
dprintf2("waitpid status: %d\n", status);
pkey_access_deny(pkey);
pkey_write_deny(pkey);
/* Write access, untested for now:
ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
pkey_assert(ret != -1);
dprintf1("poke at %p: %ld\n", peek_at, ret);
*/
/*
* Try to access the pkey-protected "ptr" via ptrace:
*/
ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
/* expect it to work, without an error: */
pkey_assert(ret != -1);
/* Now access from the current task, and expect an exception: */
peek_result = read_ptr(ptr);
expected_pkey_fault(pkey);
/*
* Try to access the NON-pkey-protected "plain_ptr" via ptrace:
*/
ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
/* expect it to work, without an error: */
pkey_assert(ret != -1);
/* Now access from the current task, and expect NO exception: */
peek_result = read_ptr(plain_ptr);
do_not_expect_pkey_fault("read plain pointer after ptrace");
ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
pkey_assert(ret != -1);
ret = kill(child_pid, SIGKILL);
pkey_assert(ret != -1);
wait(&status);
free(plain_ptr_unaligned);
}
void *get_pointer_to_instructions(void)
{
void *p1;
p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
/* lots_o_noops_around_write should be page-aligned already */
assert(p1 == &lots_o_noops_around_write);
/* Point 'p1' at the *second* page of the function: */
p1 += PAGE_SIZE;
/*
* Try to ensure we fault this in on next touch to ensure
* we get an instruction fault as opposed to a data one
*/
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
return p1;
}
void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
{
void *p1;
int scratch;
int ptr_contents;
int ret;
p1 = get_pointer_to_instructions();
lots_o_noops_around_write(&scratch);
ptr_contents = read_ptr(p1);
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
pkey_assert(!ret);
pkey_access_deny(pkey);
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
/*
* Make sure this is an *instruction* fault
*/
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
lots_o_noops_around_write(&scratch);
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
expect_fault_on_read_execonly_key(p1, pkey);
}
void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
{
void *p1;
int scratch;
int ptr_contents;
int ret;
dprintf1("%s() start\n", __func__);
p1 = get_pointer_to_instructions();
lots_o_noops_around_write(&scratch);
ptr_contents = read_ptr(p1);
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
/* Use a *normal* mprotect(), not mprotect_pkey(): */
ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
pkey_assert(!ret);
/*
* Reset the shadow, assuming that the above mprotect()
* correctly changed PKRU, but to an unknown value since
* the actual allocated pkey is unknown.
*/
shadow_pkey_reg = __read_pkey_reg();
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
/* Make sure this is an *instruction* fault */
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
lots_o_noops_around_write(&scratch);
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
/*
* Put the memory back to non-PROT_EXEC. Should clear the
* exec-only pkey off the VMA and allow it to be readable
* again. Go to PROT_NONE first to check for a kernel bug
* that did not clear the pkey when doing PROT_NONE.
*/
ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
pkey_assert(!ret);
ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
pkey_assert(!ret);
ptr_contents = read_ptr(p1);
do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
}
#if defined(__i386__) || defined(__x86_64__)
void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
{
u32 new_pkru;
pid_t child;
int status, ret;
int pkey_offset = pkey_reg_xstate_offset();
size_t xsave_size = cpu_max_xsave_size();
void *xsave;
u32 *pkey_register;
u64 *xstate_bv;
struct iovec iov;
new_pkru = ~read_pkey_reg();
/* Don't make PROT_EXEC mappings inaccessible */
new_pkru &= ~3;
child = fork();
pkey_assert(child >= 0);
dprintf3("[%d] fork() ret: %d\n", getpid(), child);
if (!child) {
ptrace(PTRACE_TRACEME, 0, 0, 0);
/* Stop and allow the tracer to modify PKRU directly */
raise(SIGSTOP);
/*
* need __read_pkey_reg() version so we do not do shadow_pkey_reg
* checking
*/
if (__read_pkey_reg() != new_pkru)
exit(1);
/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
raise(SIGSTOP);
if (__read_pkey_reg() != 0)
exit(1);
/* Stop and allow the tracer to examine PKRU */
raise(SIGSTOP);
exit(0);
}
pkey_assert(child == waitpid(child, &status, 0));
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
xsave = (void *)malloc(xsave_size);
pkey_assert(xsave > 0);
/* Modify the PKRU register directly */
iov.iov_base = xsave;
iov.iov_len = xsave_size;
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
pkey_register = (u32 *)(xsave + pkey_offset);
pkey_assert(*pkey_register == read_pkey_reg());
*pkey_register = new_pkru;
ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
/* Test that the modification is visible in ptrace before any execution */
memset(xsave, 0xCC, xsave_size);
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
pkey_assert(*pkey_register == new_pkru);
/* Execute the tracee */
ret = ptrace(PTRACE_CONT, child, 0, 0);
pkey_assert(ret == 0);
/* Test that the tracee saw the PKRU value change */
pkey_assert(child == waitpid(child, &status, 0));
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
/* Test that the modification is visible in ptrace after execution */
memset(xsave, 0xCC, xsave_size);
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
pkey_assert(*pkey_register == new_pkru);
/* Clear the PKRU bit from XSTATE_BV */
xstate_bv = (u64 *)(xsave + 512);
*xstate_bv &= ~(1 << 9);
ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
/* Test that the modification is visible in ptrace before any execution */
memset(xsave, 0xCC, xsave_size);
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
pkey_assert(*pkey_register == 0);
ret = ptrace(PTRACE_CONT, child, 0, 0);
pkey_assert(ret == 0);
/* Test that the tracee saw the PKRU value go to 0 */
pkey_assert(child == waitpid(child, &status, 0));
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
/* Test that the modification is visible in ptrace after execution */
memset(xsave, 0xCC, xsave_size);
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
pkey_assert(ret == 0);
pkey_assert(*pkey_register == 0);
ret = ptrace(PTRACE_CONT, child, 0, 0);
pkey_assert(ret == 0);
pkey_assert(child == waitpid(child, &status, 0));
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
pkey_assert(WIFEXITED(status));
pkey_assert(WEXITSTATUS(status) == 0);
free(xsave);
}
#endif
void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
{
int size = PAGE_SIZE;
int sret;
if (cpu_has_pkeys()) {
dprintf1("SKIP: %s: no CPU support\n", __func__);
return;
}
sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
pkey_assert(sret < 0);
}
void (*pkey_tests[])(int *ptr, u16 pkey) = {
test_read_of_write_disabled_region,
test_read_of_access_disabled_region,
test_read_of_access_disabled_region_with_page_already_mapped,
test_write_of_write_disabled_region,
test_write_of_write_disabled_region_with_page_already_mapped,
test_write_of_access_disabled_region,
test_write_of_access_disabled_region_with_page_already_mapped,
test_kernel_write_of_access_disabled_region,
test_kernel_write_of_write_disabled_region,
test_kernel_gup_of_access_disabled_region,
test_kernel_gup_write_to_write_disabled_region,
test_executing_on_unreadable_memory,
test_implicit_mprotect_exec_only_memory,
test_mprotect_with_pkey_0,
test_ptrace_of_child,
test_pkey_init_state,
test_pkey_syscalls_on_non_allocated_pkey,
test_pkey_syscalls_bad_args,
test_pkey_alloc_exhaust,
test_pkey_alloc_free_attach_pkey0,
#if defined(__i386__) || defined(__x86_64__)
test_ptrace_modifies_pkru,
#endif
};
void run_tests_once(void)
{
int *ptr;
int prot = PROT_READ|PROT_WRITE;
for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
int pkey;
int orig_pkey_faults = pkey_faults;
dprintf1("======================\n");
dprintf1("test %d preparing...\n", test_nr);
tracing_on();
pkey = alloc_random_pkey();
dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
dprintf1("test %d starting...\n", test_nr);
pkey_tests[test_nr](ptr, pkey);
dprintf1("freeing test memory: %p\n", ptr);
free_pkey_malloc(ptr);
sys_pkey_free(pkey);
dprintf1("pkey_faults: %d\n", pkey_faults);
dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
tracing_off();
close_test_fds();
printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
dprintf1("======================\n\n");
}
iteration_nr++;
}
void pkey_setup_shadow(void)
{
shadow_pkey_reg = __read_pkey_reg();
}
pid_t parent_pid;
void restore_settings_atexit(void)
{
if (parent_pid == getpid())
cat_into_file(buf, "/proc/sys/vm/nr_hugepages");
}
void save_settings(void)
{
int fd;
int err;
if (geteuid())
return;
fd = open("/proc/sys/vm/nr_hugepages", O_RDONLY);
if (fd < 0) {
fprintf(stderr, "error opening\n");
perror("error: ");
exit(__LINE__);
}
/* -1 to guarantee leaving the trailing \0 */
err = read(fd, buf, sizeof(buf)-1);
if (err < 0) {
fprintf(stderr, "error reading\n");
perror("error: ");
exit(__LINE__);
}
parent_pid = getpid();
atexit(restore_settings_atexit);
close(fd);
}
int main(void)
{
int nr_iterations = 22;
int pkeys_supported = is_pkeys_supported();
srand((unsigned int)time(NULL));
save_settings();
setup_handlers();
printf("has pkeys: %d\n", pkeys_supported);
if (!pkeys_supported) {
int size = PAGE_SIZE;
int *ptr;
printf("running PKEY tests for unsupported CPU/OS\n");
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
assert(ptr != (void *)-1);
test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
exit(0);
}
pkey_setup_shadow();
printf("startup pkey_reg: %016llx\n", read_pkey_reg());
setup_hugetlbfs();
while (nr_iterations-- > 0)
run_tests_once();
printf("done (all tests OK)\n");
return 0;
}