blob: 51c9cf9013dc2805960c4cabfab36ec9bbe192f2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Rockchip NAND Flash controller driver.
* Copyright (C) 2020 Rockchip Inc.
* Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/*
* NFC Page Data Layout:
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
* ......
* NAND Page Data Layout:
* 1024 * n data + m Bytes oob
* Original Bad Block Mask Location:
* First byte of oob(spare).
* nand_chip->oob_poi data layout:
* 4Bytes sys data + .... + 4Bytes sys data + ECC data.
*/
/* NAND controller register definition */
#define NFC_READ (0)
#define NFC_WRITE (1)
#define NFC_FMCTL (0x00)
#define FMCTL_CE_SEL_M 0xFF
#define FMCTL_CE_SEL(x) (1 << (x))
#define FMCTL_WP BIT(8)
#define FMCTL_RDY BIT(9)
#define NFC_FMWAIT (0x04)
#define FLCTL_RST BIT(0)
#define FLCTL_WR (1) /* 0: read, 1: write */
#define FLCTL_XFER_ST BIT(2)
#define FLCTL_XFER_EN BIT(3)
#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
#define FLCTL_XFER_READY BIT(20)
#define FLCTL_XFER_SECTOR (22)
#define FLCTL_TOG_FIX BIT(29)
#define BCHCTL_BANK_M (7 << 5)
#define BCHCTL_BANK (5)
#define DMA_ST BIT(0)
#define DMA_WR (1) /* 0: write, 1: read */
#define DMA_EN BIT(2)
#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
#define DMA_INC_NUM (9) /* 1 - 16 */
#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
(((x) >> (e).high) & (e).high_mask) << (e).low_bn)
#define INT_DMA BIT(0)
#define NFC_BANK (0x800)
#define NFC_BANK_STEP (0x100)
#define BANK_DATA (0x00)
#define BANK_ADDR (0x04)
#define BANK_CMD (0x08)
#define NFC_SRAM0 (0x1000)
#define NFC_SRAM1 (0x1400)
#define NFC_SRAM_SIZE (0x400)
#define NFC_TIMEOUT (500000)
#define NFC_MAX_OOB_PER_STEP 128
#define NFC_MIN_OOB_PER_STEP 64
#define MAX_DATA_SIZE 0xFFFC
#define MAX_ADDRESS_CYC 6
#define NFC_ECC_MAX_MODES 4
#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
enum nfc_type {
NFC_V6,
NFC_V8,
NFC_V9,
};
/**
* struct rk_ecc_cnt_status: represent a ecc status data.
* @err_flag_bit: error flag bit index at register.
* @low: ECC count low bit index at register.
* @low_mask: mask bit.
* @low_bn: ECC count low bit number.
* @high: ECC count high bit index at register.
* @high_mask: mask bit
*/
struct rk_ecc_cnt_status {
u8 err_flag_bit;
u8 low;
u8 low_mask;
u8 low_bn;
u8 high;
u8 high_mask;
};
/**
* struct nfc_cfg: Rockchip NAND controller configuration
* @type: NFC version
* @ecc_strengths: ECC strengths
* @ecc_cfgs: ECC config values
* @flctl_off: FLCTL register offset
* @bchctl_off: BCHCTL register offset
* @dma_data_buf_off: DMA_DATA_BUF register offset
* @dma_oob_buf_off: DMA_OOB_BUF register offset
* @dma_cfg_off: DMA_CFG register offset
* @dma_st_off: DMA_ST register offset
* @bch_st_off: BCG_ST register offset
* @randmz_off: RANDMZ register offset
* @int_en_off: interrupt enable register offset
* @int_clr_off: interrupt clean register offset
* @int_st_off: interrupt status register offset
* @oob0_off: oob0 register offset
* @oob1_off: oob1 register offset
* @ecc0: represent ECC0 status data
* @ecc1: represent ECC1 status data
*/
struct nfc_cfg {
enum nfc_type type;
u8 ecc_strengths[NFC_ECC_MAX_MODES];
u32 ecc_cfgs[NFC_ECC_MAX_MODES];
u32 flctl_off;
u32 bchctl_off;
u32 dma_cfg_off;
u32 dma_data_buf_off;
u32 dma_oob_buf_off;
u32 dma_st_off;
u32 bch_st_off;
u32 randmz_off;
u32 int_en_off;
u32 int_clr_off;
u32 int_st_off;
u32 oob0_off;
u32 oob1_off;
struct rk_ecc_cnt_status ecc0;
struct rk_ecc_cnt_status ecc1;
};
struct rk_nfc_nand_chip {
struct list_head node;
struct nand_chip chip;
u16 boot_blks;
u16 metadata_size;
u32 boot_ecc;
u32 timing;
u8 nsels;
u8 sels[] __counted_by(nsels);
};
struct rk_nfc {
struct nand_controller controller;
const struct nfc_cfg *cfg;
struct device *dev;
struct clk *nfc_clk;
struct clk *ahb_clk;
void __iomem *regs;
u32 selected_bank;
u32 band_offset;
u32 cur_ecc;
u32 cur_timing;
struct completion done;
struct list_head chips;
u8 *page_buf;
u32 *oob_buf;
u32 page_buf_size;
u32 oob_buf_size;
unsigned long assigned_cs;
};
static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
{
return container_of(chip, struct rk_nfc_nand_chip, chip);
}
static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
{
return (u8 *)p + i * chip->ecc.size;
}
static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
{
u8 *poi;
poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
return poi;
}
static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
u8 *poi;
poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
return poi;
}
static inline int rk_nfc_data_len(struct nand_chip *chip)
{
return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
}
static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
return nfc->page_buf + i * rk_nfc_data_len(chip);
}
static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
}
static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
u32 reg, i;
for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
if (strength == nfc->cfg->ecc_strengths[i]) {
reg = nfc->cfg->ecc_cfgs[i];
break;
}
}
if (i >= NFC_ECC_MAX_MODES)
return -EINVAL;
writel(reg, nfc->regs + nfc->cfg->bchctl_off);
/* Save chip ECC setting */
nfc->cur_ecc = strength;
return 0;
}
static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u32 val;
if (cs < 0) {
nfc->selected_bank = -1;
/* Deselect the currently selected target. */
val = readl_relaxed(nfc->regs + NFC_FMCTL);
val &= ~FMCTL_CE_SEL_M;
writel(val, nfc->regs + NFC_FMCTL);
return;
}
nfc->selected_bank = rknand->sels[cs];
nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
val = readl_relaxed(nfc->regs + NFC_FMCTL);
val &= ~FMCTL_CE_SEL_M;
val |= FMCTL_CE_SEL(nfc->selected_bank);
writel(val, nfc->regs + NFC_FMCTL);
/*
* Compare current chip timing with selected chip timing and
* change if needed.
*/
if (nfc->cur_timing != rknand->timing) {
writel(rknand->timing, nfc->regs + NFC_FMWAIT);
nfc->cur_timing = rknand->timing;
}
/*
* Compare current chip ECC setting with selected chip ECC setting and
* change if needed.
*/
if (nfc->cur_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
}
static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
{
int rc;
u32 val;
rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
val & FMCTL_RDY, 10, NFC_TIMEOUT);
return rc;
}
static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
BANK_DATA);
}
static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
{
int i;
for (i = 0; i < len; i++)
writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
}
static int rk_nfc_cmd(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
unsigned int i, j, remaining, start;
int reg_offset = nfc->band_offset;
u8 *inbuf = NULL;
const u8 *outbuf;
u32 cnt = 0;
int ret = 0;
for (i = 0; i < subop->ninstrs; i++) {
const struct nand_op_instr *instr = &subop->instrs[i];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb(instr->ctx.cmd.opcode,
nfc->regs + reg_offset + BANK_CMD);
break;
case NAND_OP_ADDR_INSTR:
remaining = nand_subop_get_num_addr_cyc(subop, i);
start = nand_subop_get_addr_start_off(subop, i);
for (j = 0; j < 8 && j + start < remaining; j++)
writeb(instr->ctx.addr.addrs[j + start],
nfc->regs + reg_offset + BANK_ADDR);
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
start = nand_subop_get_data_start_off(subop, i);
cnt = nand_subop_get_data_len(subop, i);
if (instr->type == NAND_OP_DATA_OUT_INSTR) {
outbuf = instr->ctx.data.buf.out + start;
rk_nfc_write_buf(nfc, outbuf, cnt);
} else {
inbuf = instr->ctx.data.buf.in + start;
rk_nfc_read_buf(nfc, inbuf, cnt);
}
break;
case NAND_OP_WAITRDY_INSTR:
if (rk_nfc_wait_ioready(nfc) < 0) {
ret = -ETIMEDOUT;
dev_err(nfc->dev, "IO not ready\n");
}
break;
}
}
return ret;
}
static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
rk_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
NAND_OP_PARSER_PATTERN(
rk_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
);
static int rk_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only)
rk_nfc_select_chip(chip, op->cs);
return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
check_only);
}
static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
const struct nand_interface_config *conf)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *timings;
u32 rate, tc2rw, trwpw, trw2c;
u32 temp;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -EOPNOTSUPP;
if (target < 0)
return 0;
if (IS_ERR(nfc->nfc_clk))
rate = clk_get_rate(nfc->ahb_clk);
else
rate = clk_get_rate(nfc->nfc_clk);
/* Turn clock rate into kHz. */
rate /= 1000;
tc2rw = 1;
trw2c = 1;
trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
temp = timings->tREA_max / 1000;
temp = DIV_ROUND_UP(temp * rate, 1000000);
if (trwpw < temp)
trwpw = temp;
/*
* ACCON: access timing control register
* -------------------------------------
* 31:18: reserved
* 17:12: csrw, clock cycles from the falling edge of CSn to the
* falling edge of RDn or WRn
* 11:11: reserved
* 10:05: rwpw, the width of RDn or WRn in processor clock cycles
* 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
* rising edge of CSn
*/
/* Save chip timing */
rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
return 0;
}
static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
dma_addr_t dma_data, dma_addr_t dma_oob)
{
u32 dma_reg, fl_reg, bch_reg;
dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
(7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
(n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
(nfc->selected_bank << BCHCTL_BANK);
writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
}
writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
fl_reg |= FLCTL_XFER_ST;
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
}
static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
{
void __iomem *ptr;
u32 reg;
ptr = nfc->regs + nfc->cfg->flctl_off;
return readl_relaxed_poll_timeout(ptr, reg,
reg & FLCTL_XFER_READY,
10, NFC_TIMEOUT);
}
static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_on, int page)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int i, pages_per_blk;
pages_per_blk = mtd->erasesize / mtd->writesize;
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
(page < (pages_per_blk * rknand->boot_blks)) &&
rknand->boot_ecc != ecc->strength) {
/*
* There's currently no method to notify the MTD framework that
* a different ECC strength is in use for the boot blocks.
*/
return -EIO;
}
if (!buf)
memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
for (i = 0; i < ecc->steps; i++) {
/* Copy data to the NFC buffer. */
if (buf)
memcpy(rk_nfc_data_ptr(chip, i),
rk_nfc_buf_to_data_ptr(chip, buf, i),
ecc->size);
/*
* The first four bytes of OOB are reserved for the
* boot ROM. In some debugging cases, such as with a
* read, erase and write back test these 4 bytes stored
* in OOB also need to be written back.
*
* The function nand_block_bad detects bad blocks like:
*
* bad = chip->oob_poi[chip->badblockpos];
*
* chip->badblockpos == 0 for a large page NAND Flash,
* so chip->oob_poi[0] is the bad block mask (BBM).
*
* The OOB data layout on the NFC is:
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* or
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* The code here just swaps the first 4 bytes with the last
* 4 bytes without losing any data.
*
* The chip->oob_poi data layout:
*
* BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
*
* The rk_nfc_ooblayout_free() function already has reserved
* these 4 bytes together with 2 bytes for BBM
* by reducing it's length:
*
* oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
*/
if (!i)
memcpy(rk_nfc_oob_ptr(chip, i),
rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
NFC_SYS_DATA_SIZE);
else
memcpy(rk_nfc_oob_ptr(chip, i),
rk_nfc_buf_to_oob_ptr(chip, i - 1),
NFC_SYS_DATA_SIZE);
/* Copy ECC data to the NFC buffer. */
memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
rk_nfc_buf_to_oob_ecc_ptr(chip, i),
ecc->bytes);
}
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
return nand_prog_page_end_op(chip);
}
static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_on, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
NFC_MIN_OOB_PER_STEP;
int pages_per_blk = mtd->erasesize / mtd->writesize;
int ret = 0, i, boot_rom_mode = 0;
dma_addr_t dma_data, dma_oob;
u32 tmp;
u8 *oob;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (buf)
memcpy(nfc->page_buf, buf, mtd->writesize);
else
memset(nfc->page_buf, 0xFF, mtd->writesize);
/*
* The first blocks (4, 8 or 16 depending on the device) are used
* by the boot ROM and the first 32 bits of OOB need to link to
* the next page address in the same block. We can't directly copy
* OOB data from the MTD framework, because this page address
* conflicts for example with the bad block marker (BBM),
* so we shift all OOB data including the BBM with 4 byte positions.
* As a consequence the OOB size available to the MTD framework is
* also reduced with 4 bytes.
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* If a NAND is not a boot medium or the page is not a boot block,
* the first 4 bytes are left untouched by writing 0xFF to them.
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* The code here just swaps the first 4 bytes with the last
* 4 bytes without losing any data.
*
* The chip->oob_poi data layout:
*
* BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
*
* Configure the ECC algorithm supported by the boot ROM.
*/
if ((page < (pages_per_blk * rknand->boot_blks)) &&
(chip->options & NAND_IS_BOOT_MEDIUM)) {
boot_rom_mode = 1;
if (rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
}
for (i = 0; i < ecc->steps; i++) {
if (!i)
oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
else
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
if (nfc->cfg->type == NFC_V9)
nfc->oob_buf[i] = tmp;
else
nfc->oob_buf[i * (oob_step / 4)] = tmp;
}
dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
mtd->writesize, DMA_TO_DEVICE);
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
ecc->steps * oob_step,
DMA_TO_DEVICE);
reinit_completion(&nfc->done);
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
dma_oob);
ret = wait_for_completion_timeout(&nfc->done,
msecs_to_jiffies(100));
if (!ret)
dev_warn(nfc->dev, "write: wait dma done timeout.\n");
/*
* Whether the DMA transfer is completed or not. The driver
* needs to check the NFC`s status register to see if the data
* transfer was completed.
*/
ret = rk_nfc_wait_for_xfer_done(nfc);
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
DMA_TO_DEVICE);
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
DMA_TO_DEVICE);
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
if (ret) {
dev_err(nfc->dev, "write: wait transfer done timeout.\n");
return -ETIMEDOUT;
}
return nand_prog_page_end_op(chip);
}
static int rk_nfc_write_oob(struct nand_chip *chip, int page)
{
return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
}
static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
int page)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int i, pages_per_blk;
pages_per_blk = mtd->erasesize / mtd->writesize;
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
(page < (pages_per_blk * rknand->boot_blks)) &&
rknand->boot_ecc != ecc->strength) {
/*
* There's currently no method to notify the MTD framework that
* a different ECC strength is in use for the boot blocks.
*/
return -EIO;
}
nand_read_page_op(chip, page, 0, NULL, 0);
rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
for (i = 0; i < ecc->steps; i++) {
/*
* The first four bytes of OOB are reserved for the
* boot ROM. In some debugging cases, such as with a read,
* erase and write back test, these 4 bytes also must be
* saved somewhere, otherwise this information will be
* lost during a write back.
*/
if (!i)
memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
rk_nfc_oob_ptr(chip, i),
NFC_SYS_DATA_SIZE);
else
memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
rk_nfc_oob_ptr(chip, i),
NFC_SYS_DATA_SIZE);
/* Copy ECC data from the NFC buffer. */
memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
ecc->bytes);
/* Copy data from the NFC buffer. */
if (buf)
memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
rk_nfc_data_ptr(chip, i),
ecc->size);
}
return 0;
}
static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
NFC_MIN_OOB_PER_STEP;
int pages_per_blk = mtd->erasesize / mtd->writesize;
dma_addr_t dma_data, dma_oob;
int ret = 0, i, cnt, boot_rom_mode = 0;
int max_bitflips = 0, bch_st, ecc_fail = 0;
u8 *oob;
u32 tmp;
nand_read_page_op(chip, page, 0, NULL, 0);
dma_data = dma_map_single(nfc->dev, nfc->page_buf,
mtd->writesize,
DMA_FROM_DEVICE);
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
ecc->steps * oob_step,
DMA_FROM_DEVICE);
/*
* The first blocks (4, 8 or 16 depending on the device)
* are used by the boot ROM.
* Configure the ECC algorithm supported by the boot ROM.
*/
if ((page < (pages_per_blk * rknand->boot_blks)) &&
(chip->options & NAND_IS_BOOT_MEDIUM)) {
boot_rom_mode = 1;
if (rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
}
reinit_completion(&nfc->done);
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
dma_oob);
ret = wait_for_completion_timeout(&nfc->done,
msecs_to_jiffies(100));
if (!ret)
dev_warn(nfc->dev, "read: wait dma done timeout.\n");
/*
* Whether the DMA transfer is completed or not. The driver
* needs to check the NFC`s status register to see if the data
* transfer was completed.
*/
ret = rk_nfc_wait_for_xfer_done(nfc);
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
DMA_FROM_DEVICE);
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
DMA_FROM_DEVICE);
if (ret) {
ret = -ETIMEDOUT;
dev_err(nfc->dev, "read: wait transfer done timeout.\n");
goto timeout_err;
}
for (i = 0; i < ecc->steps; i++) {
if (!i)
oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
else
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
if (nfc->cfg->type == NFC_V9)
tmp = nfc->oob_buf[i];
else
tmp = nfc->oob_buf[i * (oob_step / 4)];
*oob++ = (u8)tmp;
*oob++ = (u8)(tmp >> 8);
*oob++ = (u8)(tmp >> 16);
*oob++ = (u8)(tmp >> 24);
}
for (i = 0; i < (ecc->steps / 2); i++) {
bch_st = readl_relaxed(nfc->regs +
nfc->cfg->bch_st_off + i * 4);
if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
mtd->ecc_stats.failed++;
ecc_fail = 1;
} else {
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
mtd->ecc_stats.corrected += cnt;
max_bitflips = max_t(u32, max_bitflips, cnt);
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
mtd->ecc_stats.corrected += cnt;
max_bitflips = max_t(u32, max_bitflips, cnt);
}
}
if (buf)
memcpy(buf, nfc->page_buf, mtd->writesize);
timeout_err:
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
if (ret)
return ret;
if (ecc_fail) {
dev_err(nfc->dev, "read page: %x ecc error!\n", page);
return 0;
}
return max_bitflips;
}
static int rk_nfc_read_oob(struct nand_chip *chip, int page)
{
return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
}
static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
{
/* Disable flash wp. */
writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
/* Config default timing 40ns at 150 Mhz NFC clock. */
writel(0x1081, nfc->regs + NFC_FMWAIT);
nfc->cur_timing = 0x1081;
/* Disable randomizer and DMA. */
writel(0, nfc->regs + nfc->cfg->randmz_off);
writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
}
static irqreturn_t rk_nfc_irq(int irq, void *id)
{
struct rk_nfc *nfc = id;
u32 sta, ien;
sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
if (!(sta & ien))
return IRQ_NONE;
writel(sta, nfc->regs + nfc->cfg->int_clr_off);
writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
complete(&nfc->done);
return IRQ_HANDLED;
}
static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
{
int ret;
if (!IS_ERR(nfc->nfc_clk)) {
ret = clk_prepare_enable(nfc->nfc_clk);
if (ret) {
dev_err(dev, "failed to enable NFC clk\n");
return ret;
}
}
ret = clk_prepare_enable(nfc->ahb_clk);
if (ret) {
dev_err(dev, "failed to enable ahb clk\n");
clk_disable_unprepare(nfc->nfc_clk);
return ret;
}
return 0;
}
static void rk_nfc_disable_clks(struct rk_nfc *nfc)
{
clk_disable_unprepare(nfc->nfc_clk);
clk_disable_unprepare(nfc->ahb_clk);
}
static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
if (section)
return -ERANGE;
oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
oob_region->offset = 2;
return 0;
}
static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
if (section)
return -ERANGE;
oob_region->length = mtd->oobsize - rknand->metadata_size;
oob_region->offset = rknand->metadata_size;
return 0;
}
static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
.free = rk_nfc_ooblayout_free,
.ecc = rk_nfc_ooblayout_ecc,
};
static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
const u8 *strengths = nfc->cfg->ecc_strengths;
u8 max_strength, nfc_max_strength;
int i;
nfc_max_strength = nfc->cfg->ecc_strengths[0];
/* If optional dt settings not present. */
if (!ecc->size || !ecc->strength ||
ecc->strength > nfc_max_strength) {
chip->ecc.size = 1024;
ecc->steps = mtd->writesize / ecc->size;
/*
* HW ECC always requests the number of ECC bytes per 1024 byte
* blocks. The first 4 OOB bytes are reserved for sys data.
*/
max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
fls(8 * 1024);
if (max_strength > nfc_max_strength)
max_strength = nfc_max_strength;
for (i = 0; i < 4; i++) {
if (max_strength >= strengths[i])
break;
}
if (i >= 4) {
dev_err(nfc->dev, "unsupported ECC strength\n");
return -EOPNOTSUPP;
}
ecc->strength = strengths[i];
}
ecc->steps = mtd->writesize / ecc->size;
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
return 0;
}
static int rk_nfc_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int new_page_len, new_oob_len;
void *buf;
int ret;
if (chip->options & NAND_BUSWIDTH_16) {
dev_err(dev, "16 bits bus width not supported");
return -EINVAL;
}
if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
return 0;
ret = rk_nfc_ecc_init(dev, mtd);
if (ret)
return ret;
rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
dev_err(dev,
"driver needs at least %d bytes of meta data\n",
NFC_SYS_DATA_SIZE + 2);
return -EIO;
}
/* Check buffer first, avoid duplicate alloc buffer. */
new_page_len = mtd->writesize + mtd->oobsize;
if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
buf = krealloc(nfc->page_buf, new_page_len,
GFP_KERNEL | GFP_DMA);
if (!buf)
return -ENOMEM;
nfc->page_buf = buf;
nfc->page_buf_size = new_page_len;
}
new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
buf = krealloc(nfc->oob_buf, new_oob_len,
GFP_KERNEL | GFP_DMA);
if (!buf) {
kfree(nfc->page_buf);
nfc->page_buf = NULL;
return -ENOMEM;
}
nfc->oob_buf = buf;
nfc->oob_buf_size = new_oob_len;
}
if (!nfc->page_buf) {
nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
if (!nfc->page_buf)
return -ENOMEM;
nfc->page_buf_size = new_page_len;
}
if (!nfc->oob_buf) {
nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
if (!nfc->oob_buf) {
kfree(nfc->page_buf);
nfc->page_buf = NULL;
return -ENOMEM;
}
nfc->oob_buf_size = new_oob_len;
}
chip->ecc.write_page_raw = rk_nfc_write_page_raw;
chip->ecc.write_page = rk_nfc_write_page_hwecc;
chip->ecc.write_oob = rk_nfc_write_oob;
chip->ecc.read_page_raw = rk_nfc_read_page_raw;
chip->ecc.read_page = rk_nfc_read_page_hwecc;
chip->ecc.read_oob = rk_nfc_read_oob;
return 0;
}
static const struct nand_controller_ops rk_nfc_controller_ops = {
.attach_chip = rk_nfc_attach_chip,
.exec_op = rk_nfc_exec_op,
.setup_interface = rk_nfc_setup_interface,
};
static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
struct device_node *np)
{
struct rk_nfc_nand_chip *rknand;
struct nand_chip *chip;
struct mtd_info *mtd;
int nsels;
u32 tmp;
int ret;
int i;
if (!of_get_property(np, "reg", &nsels))
return -ENODEV;
nsels /= sizeof(u32);
if (!nsels || nsels > NFC_MAX_NSELS) {
dev_err(dev, "invalid reg property size %d\n", nsels);
return -EINVAL;
}
rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
GFP_KERNEL);
if (!rknand)
return -ENOMEM;
rknand->nsels = nsels;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "reg property failure : %d\n", ret);
return ret;
}
if (tmp >= NFC_MAX_NSELS) {
dev_err(dev, "invalid CS: %u\n", tmp);
return -EINVAL;
}
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
dev_err(dev, "CS %u already assigned\n", tmp);
return -EINVAL;
}
rknand->sels[i] = tmp;
}
chip = &rknand->chip;
chip->controller = &nfc->controller;
nand_set_flash_node(chip, np);
nand_set_controller_data(chip, nfc);
chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
/* Set default mode in case dt entry is missing. */
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
mtd = nand_to_mtd(chip);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
if (!mtd->name) {
dev_err(nfc->dev, "NAND label property is mandatory\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
rk_nfc_hw_init(nfc);
ret = nand_scan(chip, nsels);
if (ret)
return ret;
if (chip->options & NAND_IS_BOOT_MEDIUM) {
ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
rknand->boot_blks = ret ? 0 : tmp;
ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
&tmp);
rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "MTD parse partition error\n");
nand_cleanup(chip);
return ret;
}
list_add_tail(&rknand->node, &nfc->chips);
return 0;
}
static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
{
struct rk_nfc_nand_chip *rknand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
chip = &rknand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&rknand->node);
}
}
static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
{
struct device_node *np = dev->of_node;
int nchips = of_get_child_count(np);
int ret;
if (!nchips || nchips > NFC_MAX_NSELS) {
dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
nchips);
return -EINVAL;
}
for_each_child_of_node_scoped(np, nand_np) {
ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
rk_nfc_chips_cleanup(nfc);
return ret;
}
}
return 0;
}
static struct nfc_cfg nfc_v6_cfg = {
.type = NFC_V6,
.ecc_strengths = {60, 40, 24, 16},
.ecc_cfgs = {
0x00040011, 0x00040001, 0x00000011, 0x00000001,
},
.flctl_off = 0x08,
.bchctl_off = 0x0C,
.dma_cfg_off = 0x10,
.dma_data_buf_off = 0x14,
.dma_oob_buf_off = 0x18,
.dma_st_off = 0x1C,
.bch_st_off = 0x20,
.randmz_off = 0x150,
.int_en_off = 0x16C,
.int_clr_off = 0x170,
.int_st_off = 0x174,
.oob0_off = 0x200,
.oob1_off = 0x230,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x1F,
.low_bn = 5,
.high = 27,
.high_mask = 0x1,
},
.ecc1 = {
.err_flag_bit = 15,
.low = 16,
.low_mask = 0x1F,
.low_bn = 5,
.high = 29,
.high_mask = 0x1,
},
};
static struct nfc_cfg nfc_v8_cfg = {
.type = NFC_V8,
.ecc_strengths = {16, 16, 16, 16},
.ecc_cfgs = {
0x00000001, 0x00000001, 0x00000001, 0x00000001,
},
.flctl_off = 0x08,
.bchctl_off = 0x0C,
.dma_cfg_off = 0x10,
.dma_data_buf_off = 0x14,
.dma_oob_buf_off = 0x18,
.dma_st_off = 0x1C,
.bch_st_off = 0x20,
.randmz_off = 0x150,
.int_en_off = 0x16C,
.int_clr_off = 0x170,
.int_st_off = 0x174,
.oob0_off = 0x200,
.oob1_off = 0x230,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x1F,
.low_bn = 5,
.high = 27,
.high_mask = 0x1,
},
.ecc1 = {
.err_flag_bit = 15,
.low = 16,
.low_mask = 0x1F,
.low_bn = 5,
.high = 29,
.high_mask = 0x1,
},
};
static struct nfc_cfg nfc_v9_cfg = {
.type = NFC_V9,
.ecc_strengths = {70, 60, 40, 16},
.ecc_cfgs = {
0x00000001, 0x06000001, 0x04000001, 0x02000001,
},
.flctl_off = 0x10,
.bchctl_off = 0x20,
.dma_cfg_off = 0x30,
.dma_data_buf_off = 0x34,
.dma_oob_buf_off = 0x38,
.dma_st_off = 0x3C,
.bch_st_off = 0x150,
.randmz_off = 0x208,
.int_en_off = 0x120,
.int_clr_off = 0x124,
.int_st_off = 0x128,
.oob0_off = 0x200,
.oob1_off = 0x204,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x7F,
.low_bn = 7,
.high = 0,
.high_mask = 0x0,
},
.ecc1 = {
.err_flag_bit = 18,
.low = 19,
.low_mask = 0x7F,
.low_bn = 7,
.high = 0,
.high_mask = 0x0,
},
};
static const struct of_device_id rk_nfc_id_table[] = {
{
.compatible = "rockchip,px30-nfc",
.data = &nfc_v9_cfg
},
{
.compatible = "rockchip,rk2928-nfc",
.data = &nfc_v6_cfg
},
{
.compatible = "rockchip,rv1108-nfc",
.data = &nfc_v8_cfg
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
static int rk_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rk_nfc *nfc;
int ret, irq;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nand_controller_init(&nfc->controller);
INIT_LIST_HEAD(&nfc->chips);
nfc->controller.ops = &rk_nfc_controller_ops;
nfc->cfg = of_device_get_match_data(dev);
nfc->dev = dev;
init_completion(&nfc->done);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs)) {
ret = PTR_ERR(nfc->regs);
goto release_nfc;
}
nfc->nfc_clk = devm_clk_get(dev, "nfc");
if (IS_ERR(nfc->nfc_clk)) {
dev_dbg(dev, "no NFC clk\n");
/* Some earlier models, such as rk3066, have no NFC clk. */
}
nfc->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(nfc->ahb_clk)) {
dev_err(dev, "no ahb clk\n");
ret = PTR_ERR(nfc->ahb_clk);
goto release_nfc;
}
ret = rk_nfc_enable_clks(dev, nfc);
if (ret)
goto release_nfc;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -EINVAL;
goto clk_disable;
}
writel(0, nfc->regs + nfc->cfg->int_en_off);
ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
if (ret) {
dev_err(dev, "failed to request NFC irq\n");
goto clk_disable;
}
platform_set_drvdata(pdev, nfc);
ret = rk_nfc_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init NAND chips\n");
goto clk_disable;
}
return 0;
clk_disable:
rk_nfc_disable_clks(nfc);
release_nfc:
return ret;
}
static void rk_nfc_remove(struct platform_device *pdev)
{
struct rk_nfc *nfc = platform_get_drvdata(pdev);
kfree(nfc->page_buf);
kfree(nfc->oob_buf);
rk_nfc_chips_cleanup(nfc);
rk_nfc_disable_clks(nfc);
}
static int __maybe_unused rk_nfc_suspend(struct device *dev)
{
struct rk_nfc *nfc = dev_get_drvdata(dev);
rk_nfc_disable_clks(nfc);
return 0;
}
static int __maybe_unused rk_nfc_resume(struct device *dev)
{
struct rk_nfc *nfc = dev_get_drvdata(dev);
struct rk_nfc_nand_chip *rknand;
struct nand_chip *chip;
int ret;
u32 i;
ret = rk_nfc_enable_clks(dev, nfc);
if (ret)
return ret;
/* Reset NAND chip if VCC was powered off. */
list_for_each_entry(rknand, &nfc->chips, node) {
chip = &rknand->chip;
for (i = 0; i < rknand->nsels; i++)
nand_reset(chip, i);
}
return 0;
}
static const struct dev_pm_ops rk_nfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
};
static struct platform_driver rk_nfc_driver = {
.probe = rk_nfc_probe,
.remove_new = rk_nfc_remove,
.driver = {
.name = "rockchip-nfc",
.of_match_table = rk_nfc_id_table,
.pm = &rk_nfc_pm_ops,
},
};
module_platform_driver(rk_nfc_driver);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
MODULE_ALIAS("platform:rockchip-nand-controller");