blob: a6c2fc4586eb36bda9beea1736960c3297f03473 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Frontend driver for mobile DVB-T demodulator DiBcom 3000M-B
* DiBcom (http://www.dibcom.fr/)
*
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@posteo.de)
*
* based on GPL code from DibCom, which has
*
* Copyright (C) 2004 Amaury Demol for DiBcom
*
* Acknowledgements
*
* Amaury Demol from DiBcom for providing specs and driver
* sources, on which this driver (and the dvb-dibusb) are based.
*
* see Documentation/driver-api/media/drivers/dvb-usb.rst for more information
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <media/dvb_frontend.h>
#include "dib3000.h"
#include "dib3000mb_priv.h"
/* Version information */
#define DRIVER_VERSION "0.1"
#define DRIVER_DESC "DiBcom 3000M-B DVB-T demodulator"
#define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@posteo.de"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=setfe,8=getfe (|-able)).");
#define deb_info(args...) dprintk(0x01, args)
#define deb_i2c(args...) dprintk(0x02, args)
#define deb_srch(args...) dprintk(0x04, args)
#define deb_info(args...) dprintk(0x01, args)
#define deb_xfer(args...) dprintk(0x02, args)
#define deb_setf(args...) dprintk(0x04, args)
#define deb_getf(args...) dprintk(0x08, args)
static int dib3000_read_reg(struct dib3000_state *state, u16 reg)
{
u8 wb[] = { ((reg >> 8) | 0x80) & 0xff, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[] = {
{ .addr = state->config.demod_address, .flags = 0, .buf = wb, .len = 2 },
{ .addr = state->config.demod_address, .flags = I2C_M_RD, .buf = rb, .len = 2 },
};
if (i2c_transfer(state->i2c, msg, 2) != 2)
deb_i2c("i2c read error\n");
deb_i2c("reading i2c bus (reg: %5d 0x%04x, val: %5d 0x%04x)\n",reg,reg,
(rb[0] << 8) | rb[1],(rb[0] << 8) | rb[1]);
return (rb[0] << 8) | rb[1];
}
static int dib3000_write_reg(struct dib3000_state *state, u16 reg, u16 val)
{
u8 b[] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg[] = {
{ .addr = state->config.demod_address, .flags = 0, .buf = b, .len = 4 }
};
deb_i2c("writing i2c bus (reg: %5d 0x%04x, val: %5d 0x%04x)\n",reg,reg,val,val);
return i2c_transfer(state->i2c,msg, 1) != 1 ? -EREMOTEIO : 0;
}
static int dib3000_search_status(u16 irq,u16 lock)
{
if (irq & 0x02) {
if (lock & 0x01) {
deb_srch("auto search succeeded\n");
return 1; // auto search succeeded
} else {
deb_srch("auto search not successful\n");
return 0; // auto search failed
}
} else if (irq & 0x01) {
deb_srch("auto search failed\n");
return 0; // auto search failed
}
return -1; // try again
}
/* for auto search */
static u16 dib3000_seq[2][2][2] = /* fft,gua, inv */
{ /* fft */
{ /* gua */
{ 0, 1 }, /* 0 0 { 0,1 } */
{ 3, 9 }, /* 0 1 { 0,1 } */
},
{
{ 2, 5 }, /* 1 0 { 0,1 } */
{ 6, 11 }, /* 1 1 { 0,1 } */
}
};
static int dib3000mb_get_frontend(struct dvb_frontend* fe,
struct dtv_frontend_properties *c);
static int dib3000mb_set_frontend(struct dvb_frontend *fe, int tuner)
{
struct dib3000_state* state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
enum fe_code_rate fe_cr = FEC_NONE;
int search_state, seq;
if (tuner && fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
switch (c->bandwidth_hz) {
case 8000000:
wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]);
wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz);
break;
case 7000000:
wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[1]);
wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_7mhz);
break;
case 6000000:
wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[0]);
wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_6mhz);
break;
case 0:
return -EOPNOTSUPP;
default:
pr_err("unknown bandwidth value.\n");
return -EINVAL;
}
deb_setf("bandwidth: %d MHZ\n", c->bandwidth_hz / 1000000);
}
wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4);
switch (c->transmission_mode) {
case TRANSMISSION_MODE_2K:
deb_setf("transmission mode: 2k\n");
wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_2K);
break;
case TRANSMISSION_MODE_8K:
deb_setf("transmission mode: 8k\n");
wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_8K);
break;
case TRANSMISSION_MODE_AUTO:
deb_setf("transmission mode: auto\n");
break;
default:
return -EINVAL;
}
switch (c->guard_interval) {
case GUARD_INTERVAL_1_32:
deb_setf("guard 1_32\n");
wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_32);
break;
case GUARD_INTERVAL_1_16:
deb_setf("guard 1_16\n");
wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_16);
break;
case GUARD_INTERVAL_1_8:
deb_setf("guard 1_8\n");
wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_8);
break;
case GUARD_INTERVAL_1_4:
deb_setf("guard 1_4\n");
wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_4);
break;
case GUARD_INTERVAL_AUTO:
deb_setf("guard auto\n");
break;
default:
return -EINVAL;
}
switch (c->inversion) {
case INVERSION_OFF:
deb_setf("inversion off\n");
wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_OFF);
break;
case INVERSION_AUTO:
deb_setf("inversion auto\n");
break;
case INVERSION_ON:
deb_setf("inversion on\n");
wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_ON);
break;
default:
return -EINVAL;
}
switch (c->modulation) {
case QPSK:
deb_setf("modulation: qpsk\n");
wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_QPSK);
break;
case QAM_16:
deb_setf("modulation: qam16\n");
wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_16QAM);
break;
case QAM_64:
deb_setf("modulation: qam64\n");
wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_64QAM);
break;
case QAM_AUTO:
break;
default:
return -EINVAL;
}
switch (c->hierarchy) {
case HIERARCHY_NONE:
deb_setf("hierarchy: none\n");
fallthrough;
case HIERARCHY_1:
deb_setf("hierarchy: alpha=1\n");
wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_1);
break;
case HIERARCHY_2:
deb_setf("hierarchy: alpha=2\n");
wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_2);
break;
case HIERARCHY_4:
deb_setf("hierarchy: alpha=4\n");
wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_4);
break;
case HIERARCHY_AUTO:
deb_setf("hierarchy: alpha=auto\n");
break;
default:
return -EINVAL;
}
if (c->hierarchy == HIERARCHY_NONE) {
wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_OFF);
wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_HP);
fe_cr = c->code_rate_HP;
} else if (c->hierarchy != HIERARCHY_AUTO) {
wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_ON);
wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_LP);
fe_cr = c->code_rate_LP;
}
switch (fe_cr) {
case FEC_1_2:
deb_setf("fec: 1_2\n");
wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_1_2);
break;
case FEC_2_3:
deb_setf("fec: 2_3\n");
wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_2_3);
break;
case FEC_3_4:
deb_setf("fec: 3_4\n");
wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_3_4);
break;
case FEC_5_6:
deb_setf("fec: 5_6\n");
wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_5_6);
break;
case FEC_7_8:
deb_setf("fec: 7_8\n");
wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_7_8);
break;
case FEC_NONE:
deb_setf("fec: none\n");
break;
case FEC_AUTO:
deb_setf("fec: auto\n");
break;
default:
return -EINVAL;
}
seq = dib3000_seq
[c->transmission_mode == TRANSMISSION_MODE_AUTO]
[c->guard_interval == GUARD_INTERVAL_AUTO]
[c->inversion == INVERSION_AUTO];
deb_setf("seq? %d\n", seq);
wr(DIB3000MB_REG_SEQ, seq);
wr(DIB3000MB_REG_ISI, seq ? DIB3000MB_ISI_INHIBIT : DIB3000MB_ISI_ACTIVATE);
if (c->transmission_mode == TRANSMISSION_MODE_2K) {
if (c->guard_interval == GUARD_INTERVAL_1_8) {
wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_2K_1_8);
} else {
wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_DEFAULT);
}
wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_2K);
} else {
wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_DEFAULT);
}
wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_OFF);
wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF);
wr(DIB3000MB_REG_MOBILE_MODE, DIB3000MB_MOBILE_MODE_OFF);
wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_high);
wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_ACTIVATE);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC + DIB3000MB_RESTART_CTRL);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF);
/* wait for AGC lock */
msleep(70);
wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low);
/* something has to be auto searched */
if (c->modulation == QAM_AUTO ||
c->hierarchy == HIERARCHY_AUTO ||
fe_cr == FEC_AUTO ||
c->inversion == INVERSION_AUTO) {
int as_count=0;
deb_setf("autosearch enabled.\n");
wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AUTO_SEARCH);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF);
while ((search_state =
dib3000_search_status(
rd(DIB3000MB_REG_AS_IRQ_PENDING),
rd(DIB3000MB_REG_LOCK2_VALUE))) < 0 && as_count++ < 100)
msleep(1);
deb_setf("search_state after autosearch %d after %d checks\n",
search_state, as_count);
if (search_state == 1) {
if (dib3000mb_get_frontend(fe, c) == 0) {
deb_setf("reading tuning data from frontend succeeded.\n");
return dib3000mb_set_frontend(fe, 0);
}
}
} else {
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_CTRL);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF);
}
return 0;
}
static int dib3000mb_fe_init(struct dvb_frontend* fe, int mobile_mode)
{
struct dib3000_state* state = fe->demodulator_priv;
deb_info("dib3000mb is getting up.\n");
wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_UP);
wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC);
wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE);
wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE_RST);
wr(DIB3000MB_REG_CLOCK, DIB3000MB_CLOCK_DEFAULT);
wr(DIB3000MB_REG_ELECT_OUT_MODE, DIB3000MB_ELECT_OUT_MODE_ON);
wr(DIB3000MB_REG_DDS_FREQ_MSB, DIB3000MB_DDS_FREQ_MSB);
wr(DIB3000MB_REG_DDS_FREQ_LSB, DIB3000MB_DDS_FREQ_LSB);
wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]);
wr_foreach(dib3000mb_reg_impulse_noise,
dib3000mb_impulse_noise_values[DIB3000MB_IMPNOISE_OFF]);
wr_foreach(dib3000mb_reg_agc_gain, dib3000mb_default_agc_gain);
wr(DIB3000MB_REG_PHASE_NOISE, DIB3000MB_PHASE_NOISE_DEFAULT);
wr_foreach(dib3000mb_reg_phase_noise, dib3000mb_default_noise_phase);
wr_foreach(dib3000mb_reg_lock_duration, dib3000mb_default_lock_duration);
wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low);
wr(DIB3000MB_REG_LOCK0_MASK, DIB3000MB_LOCK0_DEFAULT);
wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4);
wr(DIB3000MB_REG_LOCK2_MASK, DIB3000MB_LOCK2_DEFAULT);
wr(DIB3000MB_REG_SEQ, dib3000_seq[1][1][1]);
wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz);
wr(DIB3000MB_REG_UNK_68, DIB3000MB_UNK_68);
wr(DIB3000MB_REG_UNK_69, DIB3000MB_UNK_69);
wr(DIB3000MB_REG_UNK_71, DIB3000MB_UNK_71);
wr(DIB3000MB_REG_UNK_77, DIB3000MB_UNK_77);
wr(DIB3000MB_REG_UNK_78, DIB3000MB_UNK_78);
wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT);
wr(DIB3000MB_REG_UNK_92, DIB3000MB_UNK_92);
wr(DIB3000MB_REG_UNK_96, DIB3000MB_UNK_96);
wr(DIB3000MB_REG_UNK_97, DIB3000MB_UNK_97);
wr(DIB3000MB_REG_UNK_106, DIB3000MB_UNK_106);
wr(DIB3000MB_REG_UNK_107, DIB3000MB_UNK_107);
wr(DIB3000MB_REG_UNK_108, DIB3000MB_UNK_108);
wr(DIB3000MB_REG_UNK_122, DIB3000MB_UNK_122);
wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF);
wr(DIB3000MB_REG_BERLEN, DIB3000MB_BERLEN_DEFAULT);
wr_foreach(dib3000mb_reg_filter_coeffs, dib3000mb_filter_coeffs);
wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_ON);
wr(DIB3000MB_REG_MULTI_DEMOD_MSB, DIB3000MB_MULTI_DEMOD_MSB);
wr(DIB3000MB_REG_MULTI_DEMOD_LSB, DIB3000MB_MULTI_DEMOD_LSB);
wr(DIB3000MB_REG_OUTPUT_MODE, DIB3000MB_OUTPUT_MODE_SLAVE);
wr(DIB3000MB_REG_FIFO_142, DIB3000MB_FIFO_142);
wr(DIB3000MB_REG_MPEG2_OUT_MODE, DIB3000MB_MPEG2_OUT_MODE_188);
wr(DIB3000MB_REG_PID_PARSE, DIB3000MB_PID_PARSE_ACTIVATE);
wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT);
wr(DIB3000MB_REG_FIFO_146, DIB3000MB_FIFO_146);
wr(DIB3000MB_REG_FIFO_147, DIB3000MB_FIFO_147);
wr(DIB3000MB_REG_DATA_IN_DIVERSITY, DIB3000MB_DATA_DIVERSITY_IN_OFF);
return 0;
}
static int dib3000mb_get_frontend(struct dvb_frontend* fe,
struct dtv_frontend_properties *c)
{
struct dib3000_state* state = fe->demodulator_priv;
enum fe_code_rate *cr;
u16 tps_val;
int inv_test1,inv_test2;
u32 dds_val, threshold = 0x800000;
if (!rd(DIB3000MB_REG_TPS_LOCK))
return 0;
dds_val = ((rd(DIB3000MB_REG_DDS_VALUE_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_VALUE_LSB);
deb_getf("DDS_VAL: %x %x %x\n", dds_val, rd(DIB3000MB_REG_DDS_VALUE_MSB), rd(DIB3000MB_REG_DDS_VALUE_LSB));
if (dds_val < threshold)
inv_test1 = 0;
else if (dds_val == threshold)
inv_test1 = 1;
else
inv_test1 = 2;
dds_val = ((rd(DIB3000MB_REG_DDS_FREQ_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_FREQ_LSB);
deb_getf("DDS_FREQ: %x %x %x\n", dds_val, rd(DIB3000MB_REG_DDS_FREQ_MSB), rd(DIB3000MB_REG_DDS_FREQ_LSB));
if (dds_val < threshold)
inv_test2 = 0;
else if (dds_val == threshold)
inv_test2 = 1;
else
inv_test2 = 2;
c->inversion =
((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) ||
((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)) ?
INVERSION_ON : INVERSION_OFF;
deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, c->inversion);
switch ((tps_val = rd(DIB3000MB_REG_TPS_QAM))) {
case DIB3000_CONSTELLATION_QPSK:
deb_getf("QPSK\n");
c->modulation = QPSK;
break;
case DIB3000_CONSTELLATION_16QAM:
deb_getf("QAM16\n");
c->modulation = QAM_16;
break;
case DIB3000_CONSTELLATION_64QAM:
deb_getf("QAM64\n");
c->modulation = QAM_64;
break;
default:
pr_err("Unexpected constellation returned by TPS (%d)\n", tps_val);
break;
}
deb_getf("TPS: %d\n", tps_val);
if (rd(DIB3000MB_REG_TPS_HRCH)) {
deb_getf("HRCH ON\n");
cr = &c->code_rate_LP;
c->code_rate_HP = FEC_NONE;
switch ((tps_val = rd(DIB3000MB_REG_TPS_VIT_ALPHA))) {
case DIB3000_ALPHA_0:
deb_getf("HIERARCHY_NONE\n");
c->hierarchy = HIERARCHY_NONE;
break;
case DIB3000_ALPHA_1:
deb_getf("HIERARCHY_1\n");
c->hierarchy = HIERARCHY_1;
break;
case DIB3000_ALPHA_2:
deb_getf("HIERARCHY_2\n");
c->hierarchy = HIERARCHY_2;
break;
case DIB3000_ALPHA_4:
deb_getf("HIERARCHY_4\n");
c->hierarchy = HIERARCHY_4;
break;
default:
pr_err("Unexpected ALPHA value returned by TPS (%d)\n", tps_val);
break;
}
deb_getf("TPS: %d\n", tps_val);
tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_LP);
} else {
deb_getf("HRCH OFF\n");
cr = &c->code_rate_HP;
c->code_rate_LP = FEC_NONE;
c->hierarchy = HIERARCHY_NONE;
tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_HP);
}
switch (tps_val) {
case DIB3000_FEC_1_2:
deb_getf("FEC_1_2\n");
*cr = FEC_1_2;
break;
case DIB3000_FEC_2_3:
deb_getf("FEC_2_3\n");
*cr = FEC_2_3;
break;
case DIB3000_FEC_3_4:
deb_getf("FEC_3_4\n");
*cr = FEC_3_4;
break;
case DIB3000_FEC_5_6:
deb_getf("FEC_5_6\n");
*cr = FEC_4_5;
break;
case DIB3000_FEC_7_8:
deb_getf("FEC_7_8\n");
*cr = FEC_7_8;
break;
default:
pr_err("Unexpected FEC returned by TPS (%d)\n", tps_val);
break;
}
deb_getf("TPS: %d\n",tps_val);
switch ((tps_val = rd(DIB3000MB_REG_TPS_GUARD_TIME))) {
case DIB3000_GUARD_TIME_1_32:
deb_getf("GUARD_INTERVAL_1_32\n");
c->guard_interval = GUARD_INTERVAL_1_32;
break;
case DIB3000_GUARD_TIME_1_16:
deb_getf("GUARD_INTERVAL_1_16\n");
c->guard_interval = GUARD_INTERVAL_1_16;
break;
case DIB3000_GUARD_TIME_1_8:
deb_getf("GUARD_INTERVAL_1_8\n");
c->guard_interval = GUARD_INTERVAL_1_8;
break;
case DIB3000_GUARD_TIME_1_4:
deb_getf("GUARD_INTERVAL_1_4\n");
c->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
pr_err("Unexpected Guard Time returned by TPS (%d)\n", tps_val);
break;
}
deb_getf("TPS: %d\n", tps_val);
switch ((tps_val = rd(DIB3000MB_REG_TPS_FFT))) {
case DIB3000_TRANSMISSION_MODE_2K:
deb_getf("TRANSMISSION_MODE_2K\n");
c->transmission_mode = TRANSMISSION_MODE_2K;
break;
case DIB3000_TRANSMISSION_MODE_8K:
deb_getf("TRANSMISSION_MODE_8K\n");
c->transmission_mode = TRANSMISSION_MODE_8K;
break;
default:
pr_err("unexpected transmission mode return by TPS (%d)\n", tps_val);
break;
}
deb_getf("TPS: %d\n", tps_val);
return 0;
}
static int dib3000mb_read_status(struct dvb_frontend *fe,
enum fe_status *stat)
{
struct dib3000_state* state = fe->demodulator_priv;
*stat = 0;
if (rd(DIB3000MB_REG_AGC_LOCK))
*stat |= FE_HAS_SIGNAL;
if (rd(DIB3000MB_REG_CARRIER_LOCK))
*stat |= FE_HAS_CARRIER;
if (rd(DIB3000MB_REG_VIT_LCK))
*stat |= FE_HAS_VITERBI;
if (rd(DIB3000MB_REG_TS_SYNC_LOCK))
*stat |= (FE_HAS_SYNC | FE_HAS_LOCK);
deb_getf("actual status is %2x\n",*stat);
deb_getf("autoval: tps: %d, qam: %d, hrch: %d, alpha: %d, hp: %d, lp: %d, guard: %d, fft: %d cell: %d\n",
rd(DIB3000MB_REG_TPS_LOCK),
rd(DIB3000MB_REG_TPS_QAM),
rd(DIB3000MB_REG_TPS_HRCH),
rd(DIB3000MB_REG_TPS_VIT_ALPHA),
rd(DIB3000MB_REG_TPS_CODE_RATE_HP),
rd(DIB3000MB_REG_TPS_CODE_RATE_LP),
rd(DIB3000MB_REG_TPS_GUARD_TIME),
rd(DIB3000MB_REG_TPS_FFT),
rd(DIB3000MB_REG_TPS_CELL_ID));
//*stat = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
return 0;
}
static int dib3000mb_read_ber(struct dvb_frontend* fe, u32 *ber)
{
struct dib3000_state* state = fe->demodulator_priv;
*ber = ((rd(DIB3000MB_REG_BER_MSB) << 16) | rd(DIB3000MB_REG_BER_LSB));
return 0;
}
/* see dib3000-watch dvb-apps for exact calcuations of signal_strength and snr */
static int dib3000mb_read_signal_strength(struct dvb_frontend* fe, u16 *strength)
{
struct dib3000_state* state = fe->demodulator_priv;
*strength = rd(DIB3000MB_REG_SIGNAL_POWER) * 0xffff / 0x170;
return 0;
}
static int dib3000mb_read_snr(struct dvb_frontend* fe, u16 *snr)
{
struct dib3000_state* state = fe->demodulator_priv;
short sigpow = rd(DIB3000MB_REG_SIGNAL_POWER);
int icipow = ((rd(DIB3000MB_REG_NOISE_POWER_MSB) & 0xff) << 16) |
rd(DIB3000MB_REG_NOISE_POWER_LSB);
*snr = (sigpow << 8) / ((icipow > 0) ? icipow : 1);
return 0;
}
static int dib3000mb_read_unc_blocks(struct dvb_frontend* fe, u32 *unc)
{
struct dib3000_state* state = fe->demodulator_priv;
*unc = rd(DIB3000MB_REG_PACKET_ERROR_RATE);
return 0;
}
static int dib3000mb_sleep(struct dvb_frontend* fe)
{
struct dib3000_state* state = fe->demodulator_priv;
deb_info("dib3000mb is going to bed.\n");
wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_DOWN);
return 0;
}
static int dib3000mb_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 800;
return 0;
}
static int dib3000mb_fe_init_nonmobile(struct dvb_frontend* fe)
{
return dib3000mb_fe_init(fe, 0);
}
static int dib3000mb_set_frontend_and_tuner(struct dvb_frontend *fe)
{
return dib3000mb_set_frontend(fe, 1);
}
static void dib3000mb_release(struct dvb_frontend* fe)
{
struct dib3000_state *state = fe->demodulator_priv;
kfree(state);
}
/* pid filter and transfer stuff */
static int dib3000mb_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0);
wr(index+DIB3000MB_REG_FIRST_PID,pid);
return 0;
}
static int dib3000mb_fifo_control(struct dvb_frontend *fe, int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
deb_xfer("%s fifo\n",onoff ? "enabling" : "disabling");
if (onoff) {
wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_ACTIVATE);
} else {
wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT);
}
return 0;
}
static int dib3000mb_pid_parse(struct dvb_frontend *fe, int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
deb_xfer("%s pid parsing\n",onoff ? "enabling" : "disabling");
wr(DIB3000MB_REG_PID_PARSE,onoff);
return 0;
}
static int dib3000mb_tuner_pass_ctrl(struct dvb_frontend *fe, int onoff, u8 pll_addr)
{
struct dib3000_state *state = fe->demodulator_priv;
if (onoff) {
wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(pll_addr));
} else {
wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(pll_addr));
}
return 0;
}
static const struct dvb_frontend_ops dib3000mb_ops;
struct dvb_frontend* dib3000mb_attach(const struct dib3000_config* config,
struct i2c_adapter* i2c, struct dib_fe_xfer_ops *xfer_ops)
{
struct dib3000_state* state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct dib3000_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->i2c = i2c;
memcpy(&state->config,config,sizeof(struct dib3000_config));
/* check for the correct demod */
if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM)
goto error;
if (rd(DIB3000_REG_DEVICE_ID) != DIB3000MB_DEVICE_ID)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &dib3000mb_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/* set the xfer operations */
xfer_ops->pid_parse = dib3000mb_pid_parse;
xfer_ops->fifo_ctrl = dib3000mb_fifo_control;
xfer_ops->pid_ctrl = dib3000mb_pid_control;
xfer_ops->tuner_pass_ctrl = dib3000mb_tuner_pass_ctrl;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static const struct dvb_frontend_ops dib3000mb_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "DiBcom 3000M-B DVB-T",
.frequency_min_hz = 44250 * kHz,
.frequency_max_hz = 867250 * kHz,
.frequency_stepsize_hz = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib3000mb_release,
.init = dib3000mb_fe_init_nonmobile,
.sleep = dib3000mb_sleep,
.set_frontend = dib3000mb_set_frontend_and_tuner,
.get_frontend = dib3000mb_get_frontend,
.get_tune_settings = dib3000mb_fe_get_tune_settings,
.read_status = dib3000mb_read_status,
.read_ber = dib3000mb_read_ber,
.read_signal_strength = dib3000mb_read_signal_strength,
.read_snr = dib3000mb_read_snr,
.read_ucblocks = dib3000mb_read_unc_blocks,
};
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(dib3000mb_attach);