blob: 15a352e45831b6d181d787667bf2cae484787d5b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019-2020 Pengutronix, Michael Tretter <kernel@pengutronix.de>
*
* Convert NAL units between raw byte sequence payloads (RBSP) and C structs.
*
* The conversion is defined in "ITU-T Rec. H.265 (02/2018) high efficiency
* video coding". Decoder drivers may use the parser to parse RBSP from
* encoded streams and configure the hardware, if the hardware is not able to
* parse RBSP itself. Encoder drivers may use the generator to generate the
* RBSP for VPS/SPS/PPS nal units and add them to the encoded stream if the
* hardware does not generate the units.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/v4l2-controls.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/log2.h>
#include "nal-hevc.h"
#include "nal-rbsp.h"
/*
* See Rec. ITU-T H.265 (02/2018) Table 7-1 - NAL unit type codes and NAL unit
* type classes
*/
enum nal_unit_type {
VPS_NUT = 32,
SPS_NUT = 33,
PPS_NUT = 34,
FD_NUT = 38,
};
int nal_hevc_profile_from_v4l2(enum v4l2_mpeg_video_hevc_profile profile)
{
switch (profile) {
case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN:
return 1;
case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10:
return 2;
case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE:
return 3;
default:
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(nal_hevc_profile_from_v4l2);
int nal_hevc_tier_from_v4l2(enum v4l2_mpeg_video_hevc_tier tier)
{
switch (tier) {
case V4L2_MPEG_VIDEO_HEVC_TIER_MAIN:
return 0;
case V4L2_MPEG_VIDEO_HEVC_TIER_HIGH:
return 1;
default:
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(nal_hevc_tier_from_v4l2);
int nal_hevc_level_from_v4l2(enum v4l2_mpeg_video_hevc_level level)
{
/*
* T-Rec-H.265 p. 280: general_level_idc and sub_layer_level_idc[ i ]
* shall be set equal to a value of 30 times the level number
* specified in Table A.6.
*/
int factor = 30 / 10;
switch (level) {
case V4L2_MPEG_VIDEO_HEVC_LEVEL_1:
return factor * 10;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_2:
return factor * 20;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_2_1:
return factor * 21;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_3:
return factor * 30;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_3_1:
return factor * 31;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_4:
return factor * 40;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_4_1:
return factor * 41;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_5:
return factor * 50;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1:
return factor * 51;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_5_2:
return factor * 52;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_6:
return factor * 60;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_6_1:
return factor * 61;
case V4L2_MPEG_VIDEO_HEVC_LEVEL_6_2:
return factor * 62;
default:
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(nal_hevc_level_from_v4l2);
static void nal_hevc_write_start_code_prefix(struct rbsp *rbsp)
{
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
int i = 4;
if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) {
rbsp->error = -EINVAL;
return;
}
p[0] = 0x00;
p[1] = 0x00;
p[2] = 0x00;
p[3] = 0x01;
rbsp->pos += i * 8;
}
static void nal_hevc_read_start_code_prefix(struct rbsp *rbsp)
{
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
int i = 4;
if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) {
rbsp->error = -EINVAL;
return;
}
if (p[0] != 0x00 || p[1] != 0x00 || p[2] != 0x00 || p[3] != 0x01) {
rbsp->error = -EINVAL;
return;
}
rbsp->pos += i * 8;
}
static void nal_hevc_write_filler_data(struct rbsp *rbsp)
{
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
int i;
/* Keep 1 byte extra for terminating the NAL unit */
i = rbsp->size - DIV_ROUND_UP(rbsp->pos, 8) - 1;
memset(p, 0xff, i);
rbsp->pos += i * 8;
}
static void nal_hevc_read_filler_data(struct rbsp *rbsp)
{
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
while (*p == 0xff) {
if (DIV_ROUND_UP(rbsp->pos, 8) > rbsp->size) {
rbsp->error = -EINVAL;
return;
}
p++;
rbsp->pos += 8;
}
}
static void nal_hevc_rbsp_profile_tier_level(struct rbsp *rbsp,
struct nal_hevc_profile_tier_level *ptl)
{
unsigned int i;
unsigned int max_num_sub_layers_minus_1 = 0;
rbsp_bits(rbsp, 2, &ptl->general_profile_space);
rbsp_bit(rbsp, &ptl->general_tier_flag);
rbsp_bits(rbsp, 5, &ptl->general_profile_idc);
for (i = 0; i < 32; i++)
rbsp_bit(rbsp, &ptl->general_profile_compatibility_flag[i]);
rbsp_bit(rbsp, &ptl->general_progressive_source_flag);
rbsp_bit(rbsp, &ptl->general_interlaced_source_flag);
rbsp_bit(rbsp, &ptl->general_non_packed_constraint_flag);
rbsp_bit(rbsp, &ptl->general_frame_only_constraint_flag);
if (ptl->general_profile_idc == 4 ||
ptl->general_profile_compatibility_flag[4] ||
ptl->general_profile_idc == 5 ||
ptl->general_profile_compatibility_flag[5] ||
ptl->general_profile_idc == 6 ||
ptl->general_profile_compatibility_flag[6] ||
ptl->general_profile_idc == 7 ||
ptl->general_profile_compatibility_flag[7] ||
ptl->general_profile_idc == 8 ||
ptl->general_profile_compatibility_flag[8] ||
ptl->general_profile_idc == 9 ||
ptl->general_profile_compatibility_flag[9] ||
ptl->general_profile_idc == 10 ||
ptl->general_profile_compatibility_flag[10]) {
rbsp_bit(rbsp, &ptl->general_max_12bit_constraint_flag);
rbsp_bit(rbsp, &ptl->general_max_10bit_constraint_flag);
rbsp_bit(rbsp, &ptl->general_max_8bit_constraint_flag);
rbsp_bit(rbsp, &ptl->general_max_422chroma_constraint_flag);
rbsp_bit(rbsp, &ptl->general_max_420chroma_constraint_flag);
rbsp_bit(rbsp, &ptl->general_max_monochrome_constraint_flag);
rbsp_bit(rbsp, &ptl->general_intra_constraint_flag);
rbsp_bit(rbsp, &ptl->general_one_picture_only_constraint_flag);
rbsp_bit(rbsp, &ptl->general_lower_bit_rate_constraint_flag);
if (ptl->general_profile_idc == 5 ||
ptl->general_profile_compatibility_flag[5] ||
ptl->general_profile_idc == 9 ||
ptl->general_profile_compatibility_flag[9] ||
ptl->general_profile_idc == 10 ||
ptl->general_profile_compatibility_flag[10]) {
rbsp_bit(rbsp, &ptl->general_max_14bit_constraint_flag);
rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_33bits);
rbsp_bits(rbsp, 33 - 32, &ptl->general_reserved_zero_33bits);
} else {
rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_34bits);
rbsp_bits(rbsp, 34 - 2, &ptl->general_reserved_zero_34bits);
}
} else if (ptl->general_profile_idc == 2 ||
ptl->general_profile_compatibility_flag[2]) {
rbsp_bits(rbsp, 7, &ptl->general_reserved_zero_7bits);
rbsp_bit(rbsp, &ptl->general_one_picture_only_constraint_flag);
rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_35bits);
rbsp_bits(rbsp, 35 - 32, &ptl->general_reserved_zero_35bits);
} else {
rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_43bits);
rbsp_bits(rbsp, 43 - 32, &ptl->general_reserved_zero_43bits);
}
if ((ptl->general_profile_idc >= 1 && ptl->general_profile_idc <= 5) ||
ptl->general_profile_idc == 9 ||
ptl->general_profile_compatibility_flag[1] ||
ptl->general_profile_compatibility_flag[2] ||
ptl->general_profile_compatibility_flag[3] ||
ptl->general_profile_compatibility_flag[4] ||
ptl->general_profile_compatibility_flag[5] ||
ptl->general_profile_compatibility_flag[9])
rbsp_bit(rbsp, &ptl->general_inbld_flag);
else
rbsp_bit(rbsp, &ptl->general_reserved_zero_bit);
rbsp_bits(rbsp, 8, &ptl->general_level_idc);
if (max_num_sub_layers_minus_1 > 0)
rbsp_unsupported(rbsp);
}
static void nal_hevc_rbsp_vps(struct rbsp *rbsp, struct nal_hevc_vps *vps)
{
unsigned int i, j;
unsigned int reserved_0xffff_16bits = 0xffff;
rbsp_bits(rbsp, 4, &vps->video_parameter_set_id);
rbsp_bit(rbsp, &vps->base_layer_internal_flag);
rbsp_bit(rbsp, &vps->base_layer_available_flag);
rbsp_bits(rbsp, 6, &vps->max_layers_minus1);
rbsp_bits(rbsp, 3, &vps->max_sub_layers_minus1);
rbsp_bits(rbsp, 1, &vps->temporal_id_nesting_flag);
rbsp_bits(rbsp, 16, &reserved_0xffff_16bits);
nal_hevc_rbsp_profile_tier_level(rbsp, &vps->profile_tier_level);
rbsp_bit(rbsp, &vps->sub_layer_ordering_info_present_flag);
for (i = vps->sub_layer_ordering_info_present_flag ? 0 : vps->max_sub_layers_minus1;
i <= vps->max_sub_layers_minus1; i++) {
rbsp_uev(rbsp, &vps->max_dec_pic_buffering_minus1[i]);
rbsp_uev(rbsp, &vps->max_num_reorder_pics[i]);
rbsp_uev(rbsp, &vps->max_latency_increase_plus1[i]);
}
rbsp_bits(rbsp, 6, &vps->max_layer_id);
rbsp_uev(rbsp, &vps->num_layer_sets_minus1);
for (i = 0; i <= vps->num_layer_sets_minus1; i++)
for (j = 0; j <= vps->max_layer_id; j++)
rbsp_bit(rbsp, &vps->layer_id_included_flag[i][j]);
rbsp_bit(rbsp, &vps->timing_info_present_flag);
if (vps->timing_info_present_flag)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &vps->extension_flag);
if (vps->extension_flag)
rbsp_unsupported(rbsp);
}
static void nal_hevc_rbsp_sps(struct rbsp *rbsp, struct nal_hevc_sps *sps)
{
unsigned int i;
rbsp_bits(rbsp, 4, &sps->video_parameter_set_id);
rbsp_bits(rbsp, 3, &sps->max_sub_layers_minus1);
rbsp_bit(rbsp, &sps->temporal_id_nesting_flag);
nal_hevc_rbsp_profile_tier_level(rbsp, &sps->profile_tier_level);
rbsp_uev(rbsp, &sps->seq_parameter_set_id);
rbsp_uev(rbsp, &sps->chroma_format_idc);
if (sps->chroma_format_idc == 3)
rbsp_bit(rbsp, &sps->separate_colour_plane_flag);
rbsp_uev(rbsp, &sps->pic_width_in_luma_samples);
rbsp_uev(rbsp, &sps->pic_height_in_luma_samples);
rbsp_bit(rbsp, &sps->conformance_window_flag);
if (sps->conformance_window_flag) {
rbsp_uev(rbsp, &sps->conf_win_left_offset);
rbsp_uev(rbsp, &sps->conf_win_right_offset);
rbsp_uev(rbsp, &sps->conf_win_top_offset);
rbsp_uev(rbsp, &sps->conf_win_bottom_offset);
}
rbsp_uev(rbsp, &sps->bit_depth_luma_minus8);
rbsp_uev(rbsp, &sps->bit_depth_chroma_minus8);
rbsp_uev(rbsp, &sps->log2_max_pic_order_cnt_lsb_minus4);
rbsp_bit(rbsp, &sps->sub_layer_ordering_info_present_flag);
for (i = (sps->sub_layer_ordering_info_present_flag ? 0 : sps->max_sub_layers_minus1);
i <= sps->max_sub_layers_minus1; i++) {
rbsp_uev(rbsp, &sps->max_dec_pic_buffering_minus1[i]);
rbsp_uev(rbsp, &sps->max_num_reorder_pics[i]);
rbsp_uev(rbsp, &sps->max_latency_increase_plus1[i]);
}
rbsp_uev(rbsp, &sps->log2_min_luma_coding_block_size_minus3);
rbsp_uev(rbsp, &sps->log2_diff_max_min_luma_coding_block_size);
rbsp_uev(rbsp, &sps->log2_min_luma_transform_block_size_minus2);
rbsp_uev(rbsp, &sps->log2_diff_max_min_luma_transform_block_size);
rbsp_uev(rbsp, &sps->max_transform_hierarchy_depth_inter);
rbsp_uev(rbsp, &sps->max_transform_hierarchy_depth_intra);
rbsp_bit(rbsp, &sps->scaling_list_enabled_flag);
if (sps->scaling_list_enabled_flag)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &sps->amp_enabled_flag);
rbsp_bit(rbsp, &sps->sample_adaptive_offset_enabled_flag);
rbsp_bit(rbsp, &sps->pcm_enabled_flag);
if (sps->pcm_enabled_flag) {
rbsp_bits(rbsp, 4, &sps->pcm_sample_bit_depth_luma_minus1);
rbsp_bits(rbsp, 4, &sps->pcm_sample_bit_depth_chroma_minus1);
rbsp_uev(rbsp, &sps->log2_min_pcm_luma_coding_block_size_minus3);
rbsp_uev(rbsp, &sps->log2_diff_max_min_pcm_luma_coding_block_size);
rbsp_bit(rbsp, &sps->pcm_loop_filter_disabled_flag);
}
rbsp_uev(rbsp, &sps->num_short_term_ref_pic_sets);
if (sps->num_short_term_ref_pic_sets > 0)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &sps->long_term_ref_pics_present_flag);
if (sps->long_term_ref_pics_present_flag)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &sps->sps_temporal_mvp_enabled_flag);
rbsp_bit(rbsp, &sps->strong_intra_smoothing_enabled_flag);
rbsp_bit(rbsp, &sps->vui_parameters_present_flag);
if (sps->vui_parameters_present_flag)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &sps->extension_present_flag);
if (sps->extension_present_flag) {
rbsp_bit(rbsp, &sps->sps_range_extension_flag);
rbsp_bit(rbsp, &sps->sps_multilayer_extension_flag);
rbsp_bit(rbsp, &sps->sps_3d_extension_flag);
rbsp_bit(rbsp, &sps->sps_scc_extension_flag);
rbsp_bits(rbsp, 5, &sps->sps_extension_4bits);
}
if (sps->sps_range_extension_flag)
rbsp_unsupported(rbsp);
if (sps->sps_multilayer_extension_flag)
rbsp_unsupported(rbsp);
if (sps->sps_3d_extension_flag)
rbsp_unsupported(rbsp);
if (sps->sps_scc_extension_flag)
rbsp_unsupported(rbsp);
if (sps->sps_extension_4bits)
rbsp_unsupported(rbsp);
}
static void nal_hevc_rbsp_pps(struct rbsp *rbsp, struct nal_hevc_pps *pps)
{
unsigned int i;
rbsp_uev(rbsp, &pps->pps_pic_parameter_set_id);
rbsp_uev(rbsp, &pps->pps_seq_parameter_set_id);
rbsp_bit(rbsp, &pps->dependent_slice_segments_enabled_flag);
rbsp_bit(rbsp, &pps->output_flag_present_flag);
rbsp_bits(rbsp, 3, &pps->num_extra_slice_header_bits);
rbsp_bit(rbsp, &pps->sign_data_hiding_enabled_flag);
rbsp_bit(rbsp, &pps->cabac_init_present_flag);
rbsp_uev(rbsp, &pps->num_ref_idx_l0_default_active_minus1);
rbsp_uev(rbsp, &pps->num_ref_idx_l1_default_active_minus1);
rbsp_sev(rbsp, &pps->init_qp_minus26);
rbsp_bit(rbsp, &pps->constrained_intra_pred_flag);
rbsp_bit(rbsp, &pps->transform_skip_enabled_flag);
rbsp_bit(rbsp, &pps->cu_qp_delta_enabled_flag);
if (pps->cu_qp_delta_enabled_flag)
rbsp_uev(rbsp, &pps->diff_cu_qp_delta_depth);
rbsp_sev(rbsp, &pps->pps_cb_qp_offset);
rbsp_sev(rbsp, &pps->pps_cr_qp_offset);
rbsp_bit(rbsp, &pps->pps_slice_chroma_qp_offsets_present_flag);
rbsp_bit(rbsp, &pps->weighted_pred_flag);
rbsp_bit(rbsp, &pps->weighted_bipred_flag);
rbsp_bit(rbsp, &pps->transquant_bypass_enabled_flag);
rbsp_bit(rbsp, &pps->tiles_enabled_flag);
rbsp_bit(rbsp, &pps->entropy_coding_sync_enabled_flag);
if (pps->tiles_enabled_flag) {
rbsp_uev(rbsp, &pps->num_tile_columns_minus1);
rbsp_uev(rbsp, &pps->num_tile_rows_minus1);
rbsp_bit(rbsp, &pps->uniform_spacing_flag);
if (!pps->uniform_spacing_flag) {
for (i = 0; i < pps->num_tile_columns_minus1; i++)
rbsp_uev(rbsp, &pps->column_width_minus1[i]);
for (i = 0; i < pps->num_tile_rows_minus1; i++)
rbsp_uev(rbsp, &pps->row_height_minus1[i]);
}
rbsp_bit(rbsp, &pps->loop_filter_across_tiles_enabled_flag);
}
rbsp_bit(rbsp, &pps->pps_loop_filter_across_slices_enabled_flag);
rbsp_bit(rbsp, &pps->deblocking_filter_control_present_flag);
if (pps->deblocking_filter_control_present_flag) {
rbsp_bit(rbsp, &pps->deblocking_filter_override_enabled_flag);
rbsp_bit(rbsp, &pps->pps_deblocking_filter_disabled_flag);
if (!pps->pps_deblocking_filter_disabled_flag) {
rbsp_sev(rbsp, &pps->pps_beta_offset_div2);
rbsp_sev(rbsp, &pps->pps_tc_offset_div2);
}
}
rbsp_bit(rbsp, &pps->pps_scaling_list_data_present_flag);
if (pps->pps_scaling_list_data_present_flag)
rbsp_unsupported(rbsp);
rbsp_bit(rbsp, &pps->lists_modification_present_flag);
rbsp_uev(rbsp, &pps->log2_parallel_merge_level_minus2);
rbsp_bit(rbsp, &pps->slice_segment_header_extension_present_flag);
rbsp_bit(rbsp, &pps->pps_extension_present_flag);
if (pps->pps_extension_present_flag) {
rbsp_bit(rbsp, &pps->pps_range_extension_flag);
rbsp_bit(rbsp, &pps->pps_multilayer_extension_flag);
rbsp_bit(rbsp, &pps->pps_3d_extension_flag);
rbsp_bit(rbsp, &pps->pps_scc_extension_flag);
rbsp_bits(rbsp, 4, &pps->pps_extension_4bits);
}
if (pps->pps_range_extension_flag)
rbsp_unsupported(rbsp);
if (pps->pps_multilayer_extension_flag)
rbsp_unsupported(rbsp);
if (pps->pps_3d_extension_flag)
rbsp_unsupported(rbsp);
if (pps->pps_scc_extension_flag)
rbsp_unsupported(rbsp);
if (pps->pps_extension_4bits)
rbsp_unsupported(rbsp);
}
/**
* nal_hevc_write_vps() - Write PPS NAL unit into RBSP format
* @dev: device pointer
* @dest: the buffer that is filled with RBSP data
* @n: maximum size of @dest in bytes
* @vps: &struct nal_hevc_vps to convert to RBSP
*
* Convert @vps to RBSP data and write it into @dest.
*
* The size of the VPS NAL unit is not known in advance and this function will
* fail, if @dest does not hold sufficient space for the VPS NAL unit.
*
* Return: number of bytes written to @dest or negative error code
*/
ssize_t nal_hevc_write_vps(const struct device *dev,
void *dest, size_t n, struct nal_hevc_vps *vps)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit = 0;
unsigned int nal_unit_type = VPS_NUT;
unsigned int nuh_layer_id = 0;
unsigned int nuh_temporal_id_plus1 = 1;
if (!dest)
return -EINVAL;
rbsp_init(&rbsp, dest, n, &write);
nal_hevc_write_start_code_prefix(&rbsp);
/* NAL unit header */
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
nal_hevc_rbsp_vps(&rbsp, vps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_write_vps);
/**
* nal_hevc_read_vps() - Read VPS NAL unit from RBSP format
* @dev: device pointer
* @vps: the &struct nal_hevc_vps to fill from the RBSP data
* @src: the buffer that contains the RBSP data
* @n: size of @src in bytes
*
* Read RBSP data from @src and use it to fill @vps.
*
* Return: number of bytes read from @src or negative error code
*/
ssize_t nal_hevc_read_vps(const struct device *dev,
struct nal_hevc_vps *vps, void *src, size_t n)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit;
unsigned int nal_unit_type;
unsigned int nuh_layer_id;
unsigned int nuh_temporal_id_plus1;
if (!src)
return -EINVAL;
rbsp_init(&rbsp, src, n, &read);
nal_hevc_read_start_code_prefix(&rbsp);
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
if (rbsp.error ||
forbidden_zero_bit != 0 ||
nal_unit_type != VPS_NUT)
return -EINVAL;
nal_hevc_rbsp_vps(&rbsp, vps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_read_vps);
/**
* nal_hevc_write_sps() - Write SPS NAL unit into RBSP format
* @dev: device pointer
* @dest: the buffer that is filled with RBSP data
* @n: maximum size of @dest in bytes
* @sps: &struct nal_hevc_sps to convert to RBSP
*
* Convert @sps to RBSP data and write it into @dest.
*
* The size of the SPS NAL unit is not known in advance and this function will
* fail, if @dest does not hold sufficient space for the SPS NAL unit.
*
* Return: number of bytes written to @dest or negative error code
*/
ssize_t nal_hevc_write_sps(const struct device *dev,
void *dest, size_t n, struct nal_hevc_sps *sps)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit = 0;
unsigned int nal_unit_type = SPS_NUT;
unsigned int nuh_layer_id = 0;
unsigned int nuh_temporal_id_plus1 = 1;
if (!dest)
return -EINVAL;
rbsp_init(&rbsp, dest, n, &write);
nal_hevc_write_start_code_prefix(&rbsp);
/* NAL unit header */
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
nal_hevc_rbsp_sps(&rbsp, sps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_write_sps);
/**
* nal_hevc_read_sps() - Read SPS NAL unit from RBSP format
* @dev: device pointer
* @sps: the &struct nal_hevc_sps to fill from the RBSP data
* @src: the buffer that contains the RBSP data
* @n: size of @src in bytes
*
* Read RBSP data from @src and use it to fill @sps.
*
* Return: number of bytes read from @src or negative error code
*/
ssize_t nal_hevc_read_sps(const struct device *dev,
struct nal_hevc_sps *sps, void *src, size_t n)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit;
unsigned int nal_unit_type;
unsigned int nuh_layer_id;
unsigned int nuh_temporal_id_plus1;
if (!src)
return -EINVAL;
rbsp_init(&rbsp, src, n, &read);
nal_hevc_read_start_code_prefix(&rbsp);
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
if (rbsp.error ||
forbidden_zero_bit != 0 ||
nal_unit_type != SPS_NUT)
return -EINVAL;
nal_hevc_rbsp_sps(&rbsp, sps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_read_sps);
/**
* nal_hevc_write_pps() - Write PPS NAL unit into RBSP format
* @dev: device pointer
* @dest: the buffer that is filled with RBSP data
* @n: maximum size of @dest in bytes
* @pps: &struct nal_hevc_pps to convert to RBSP
*
* Convert @pps to RBSP data and write it into @dest.
*
* The size of the PPS NAL unit is not known in advance and this function will
* fail, if @dest does not hold sufficient space for the PPS NAL unit.
*
* Return: number of bytes written to @dest or negative error code
*/
ssize_t nal_hevc_write_pps(const struct device *dev,
void *dest, size_t n, struct nal_hevc_pps *pps)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit = 0;
unsigned int nal_unit_type = PPS_NUT;
unsigned int nuh_layer_id = 0;
unsigned int nuh_temporal_id_plus1 = 1;
if (!dest)
return -EINVAL;
rbsp_init(&rbsp, dest, n, &write);
nal_hevc_write_start_code_prefix(&rbsp);
/* NAL unit header */
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
nal_hevc_rbsp_pps(&rbsp, pps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_write_pps);
/**
* nal_hevc_read_pps() - Read PPS NAL unit from RBSP format
* @dev: device pointer
* @pps: the &struct nal_hevc_pps to fill from the RBSP data
* @src: the buffer that contains the RBSP data
* @n: size of @src in bytes
*
* Read RBSP data from @src and use it to fill @pps.
*
* Return: number of bytes read from @src or negative error code
*/
ssize_t nal_hevc_read_pps(const struct device *dev,
struct nal_hevc_pps *pps, void *src, size_t n)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit;
unsigned int nal_unit_type;
unsigned int nuh_layer_id;
unsigned int nuh_temporal_id_plus1;
if (!src)
return -EINVAL;
rbsp_init(&rbsp, src, n, &read);
nal_hevc_read_start_code_prefix(&rbsp);
/* NAL unit header */
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
nal_hevc_rbsp_pps(&rbsp, pps);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_read_pps);
/**
* nal_hevc_write_filler() - Write filler data RBSP
* @dev: device pointer
* @dest: buffer to fill with filler data
* @n: size of the buffer to fill with filler data
*
* Write a filler data RBSP to @dest with a size of @n bytes and return the
* number of written filler data bytes.
*
* Use this function to generate dummy data in an RBSP data stream that can be
* safely ignored by hevc decoders.
*
* The RBSP format of the filler data is specified in Rec. ITU-T H.265
* (02/2018) 7.3.2.8 Filler data RBSP syntax.
*
* Return: number of filler data bytes (including marker) or negative error
*/
ssize_t nal_hevc_write_filler(const struct device *dev, void *dest, size_t n)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit = 0;
unsigned int nal_unit_type = FD_NUT;
unsigned int nuh_layer_id = 0;
unsigned int nuh_temporal_id_plus1 = 1;
if (!dest)
return -EINVAL;
rbsp_init(&rbsp, dest, n, &write);
nal_hevc_write_start_code_prefix(&rbsp);
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
nal_hevc_write_filler_data(&rbsp);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_write_filler);
/**
* nal_hevc_read_filler() - Read filler data RBSP
* @dev: device pointer
* @src: buffer with RBSP data that is read
* @n: maximum size of src that shall be read
*
* Read a filler data RBSP from @src up to a maximum size of @n bytes and
* return the size of the filler data in bytes including the marker.
*
* This function is used to parse filler data and skip the respective bytes in
* the RBSP data.
*
* The RBSP format of the filler data is specified in Rec. ITU-T H.265
* (02/2018) 7.3.2.8 Filler data RBSP syntax.
*
* Return: number of filler data bytes (including marker) or negative error
*/
ssize_t nal_hevc_read_filler(const struct device *dev, void *src, size_t n)
{
struct rbsp rbsp;
unsigned int forbidden_zero_bit;
unsigned int nal_unit_type;
unsigned int nuh_layer_id;
unsigned int nuh_temporal_id_plus1;
if (!src)
return -EINVAL;
rbsp_init(&rbsp, src, n, &read);
nal_hevc_read_start_code_prefix(&rbsp);
rbsp_bit(&rbsp, &forbidden_zero_bit);
rbsp_bits(&rbsp, 6, &nal_unit_type);
rbsp_bits(&rbsp, 6, &nuh_layer_id);
rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1);
if (rbsp.error)
return rbsp.error;
if (forbidden_zero_bit != 0 ||
nal_unit_type != FD_NUT)
return -EINVAL;
nal_hevc_read_filler_data(&rbsp);
rbsp_trailing_bits(&rbsp);
if (rbsp.error)
return rbsp.error;
return DIV_ROUND_UP(rbsp.pos, 8);
}
EXPORT_SYMBOL_GPL(nal_hevc_read_filler);