bcachefs: Initial commit

Initially forked from drivers/md/bcache, bcachefs is a new copy-on-write
filesystem with every feature you could possibly want.

Website: https://bcachefs.org

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
diff --git a/fs/bcachefs/alloc.c b/fs/bcachefs/alloc.c
new file mode 100644
index 0000000..e6e506e
--- /dev/null
+++ b/fs/bcachefs/alloc.c
@@ -0,0 +1,2205 @@
+/*
+ * Primary bucket allocation code
+ *
+ * Copyright 2012 Google, Inc.
+ *
+ * Allocation in bcache is done in terms of buckets:
+ *
+ * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
+ * btree pointers - they must match for the pointer to be considered valid.
+ *
+ * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
+ * bucket simply by incrementing its gen.
+ *
+ * The gens (along with the priorities; it's really the gens are important but
+ * the code is named as if it's the priorities) are written in an arbitrary list
+ * of buckets on disk, with a pointer to them in the journal header.
+ *
+ * When we invalidate a bucket, we have to write its new gen to disk and wait
+ * for that write to complete before we use it - otherwise after a crash we
+ * could have pointers that appeared to be good but pointed to data that had
+ * been overwritten.
+ *
+ * Since the gens and priorities are all stored contiguously on disk, we can
+ * batch this up: We fill up the free_inc list with freshly invalidated buckets,
+ * call prio_write(), and when prio_write() finishes we pull buckets off the
+ * free_inc list and optionally discard them.
+ *
+ * free_inc isn't the only freelist - if it was, we'd often have to sleep while
+ * priorities and gens were being written before we could allocate. c->free is a
+ * smaller freelist, and buckets on that list are always ready to be used.
+ *
+ * If we've got discards enabled, that happens when a bucket moves from the
+ * free_inc list to the free list.
+ *
+ * It's important to ensure that gens don't wrap around - with respect to
+ * either the oldest gen in the btree or the gen on disk. This is quite
+ * difficult to do in practice, but we explicitly guard against it anyways - if
+ * a bucket is in danger of wrapping around we simply skip invalidating it that
+ * time around, and we garbage collect or rewrite the priorities sooner than we
+ * would have otherwise.
+ *
+ * bch2_bucket_alloc() allocates a single bucket from a specific device.
+ *
+ * bch2_bucket_alloc_set() allocates one or more buckets from different devices
+ * in a given filesystem.
+ *
+ * invalidate_buckets() drives all the processes described above. It's called
+ * from bch2_bucket_alloc() and a few other places that need to make sure free
+ * buckets are ready.
+ *
+ * invalidate_buckets_(lru|fifo)() find buckets that are available to be
+ * invalidated, and then invalidate them and stick them on the free_inc list -
+ * in either lru or fifo order.
+ */
+
+#include "bcachefs.h"
+#include "alloc.h"
+#include "btree_cache.h"
+#include "btree_io.h"
+#include "btree_update.h"
+#include "btree_update_interior.h"
+#include "btree_gc.h"
+#include "buckets.h"
+#include "checksum.h"
+#include "clock.h"
+#include "debug.h"
+#include "disk_groups.h"
+#include "error.h"
+#include "extents.h"
+#include "io.h"
+#include "journal.h"
+#include "journal_io.h"
+#include "super-io.h"
+#include "trace.h"
+
+#include <linux/blkdev.h>
+#include <linux/kthread.h>
+#include <linux/math64.h>
+#include <linux/random.h>
+#include <linux/rculist.h>
+#include <linux/rcupdate.h>
+#include <linux/sched/task.h>
+#include <linux/sort.h>
+
+static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int);
+
+/* Ratelimiting/PD controllers */
+
+static void pd_controllers_update(struct work_struct *work)
+{
+	struct bch_fs *c = container_of(to_delayed_work(work),
+					   struct bch_fs,
+					   pd_controllers_update);
+	struct bch_dev *ca;
+	unsigned i;
+
+	for_each_member_device(ca, c, i) {
+		struct bch_dev_usage stats = bch2_dev_usage_read(c, ca);
+
+		u64 free = bucket_to_sector(ca,
+				__dev_buckets_free(ca, stats)) << 9;
+		/*
+		 * Bytes of internal fragmentation, which can be
+		 * reclaimed by copy GC
+		 */
+		s64 fragmented = (bucket_to_sector(ca,
+					stats.buckets[BCH_DATA_USER] +
+					stats.buckets[BCH_DATA_CACHED]) -
+				  (stats.sectors[BCH_DATA_USER] +
+				   stats.sectors[BCH_DATA_CACHED])) << 9;
+
+		fragmented = max(0LL, fragmented);
+
+		bch2_pd_controller_update(&ca->copygc_pd,
+					 free, fragmented, -1);
+	}
+
+	schedule_delayed_work(&c->pd_controllers_update,
+			      c->pd_controllers_update_seconds * HZ);
+}
+
+/* Persistent alloc info: */
+
+static unsigned bch_alloc_val_u64s(const struct bch_alloc *a)
+{
+	unsigned bytes = offsetof(struct bch_alloc, data);
+
+	if (a->fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
+		bytes += 2;
+	if (a->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
+		bytes += 2;
+
+	return DIV_ROUND_UP(bytes, sizeof(u64));
+}
+
+const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k)
+{
+	if (k.k->p.inode >= c->sb.nr_devices ||
+	    !c->devs[k.k->p.inode])
+		return "invalid device";
+
+	switch (k.k->type) {
+	case BCH_ALLOC: {
+		struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
+
+		if (bch_alloc_val_u64s(a.v) != bkey_val_u64s(a.k))
+			return "incorrect value size";
+		break;
+	}
+	default:
+		return "invalid type";
+	}
+
+	return NULL;
+}
+
+void bch2_alloc_to_text(struct bch_fs *c, char *buf,
+			size_t size, struct bkey_s_c k)
+{
+	buf[0] = '\0';
+
+	switch (k.k->type) {
+	case BCH_ALLOC:
+		break;
+	}
+}
+
+static inline unsigned get_alloc_field(const u8 **p, unsigned bytes)
+{
+	unsigned v;
+
+	switch (bytes) {
+	case 1:
+		v = **p;
+		break;
+	case 2:
+		v = le16_to_cpup((void *) *p);
+		break;
+	case 4:
+		v = le32_to_cpup((void *) *p);
+		break;
+	default:
+		BUG();
+	}
+
+	*p += bytes;
+	return v;
+}
+
+static inline void put_alloc_field(u8 **p, unsigned bytes, unsigned v)
+{
+	switch (bytes) {
+	case 1:
+		**p = v;
+		break;
+	case 2:
+		*((__le16 *) *p) = cpu_to_le16(v);
+		break;
+	case 4:
+		*((__le32 *) *p) = cpu_to_le32(v);
+		break;
+	default:
+		BUG();
+	}
+
+	*p += bytes;
+}
+
+static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k)
+{
+	struct bch_dev *ca;
+	struct bkey_s_c_alloc a;
+	struct bucket_mark new;
+	struct bucket *g;
+	const u8 *d;
+
+	if (k.k->type != BCH_ALLOC)
+		return;
+
+	a = bkey_s_c_to_alloc(k);
+	ca = bch_dev_bkey_exists(c, a.k->p.inode);
+
+	if (a.k->p.offset >= ca->mi.nbuckets)
+		return;
+
+	percpu_down_read(&c->usage_lock);
+
+	g = bucket(ca, a.k->p.offset);
+	bucket_cmpxchg(g, new, ({
+		new.gen = a.v->gen;
+		new.gen_valid = 1;
+	}));
+
+	d = a.v->data;
+	if (a.v->fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
+		g->io_time[READ] = get_alloc_field(&d, 2);
+	if (a.v->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
+		g->io_time[WRITE] = get_alloc_field(&d, 2);
+
+	percpu_up_read(&c->usage_lock);
+}
+
+int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list)
+{
+	struct journal_replay *r;
+	struct btree_iter iter;
+	struct bkey_s_c k;
+	struct bch_dev *ca;
+	unsigned i;
+	int ret;
+
+	for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) {
+		bch2_alloc_read_key(c, k);
+		bch2_btree_iter_cond_resched(&iter);
+	}
+
+	ret = bch2_btree_iter_unlock(&iter);
+	if (ret)
+		return ret;
+
+	list_for_each_entry(r, journal_replay_list, list) {
+		struct bkey_i *k, *n;
+		struct jset_entry *entry;
+
+		for_each_jset_key(k, n, entry, &r->j)
+			if (entry->btree_id == BTREE_ID_ALLOC)
+				bch2_alloc_read_key(c, bkey_i_to_s_c(k));
+	}
+
+	mutex_lock(&c->bucket_clock[READ].lock);
+	for_each_member_device(ca, c, i) {
+		down_read(&ca->bucket_lock);
+		bch2_recalc_oldest_io(c, ca, READ);
+		up_read(&ca->bucket_lock);
+	}
+	mutex_unlock(&c->bucket_clock[READ].lock);
+
+	mutex_lock(&c->bucket_clock[WRITE].lock);
+	for_each_member_device(ca, c, i) {
+		down_read(&ca->bucket_lock);
+		bch2_recalc_oldest_io(c, ca, WRITE);
+		up_read(&ca->bucket_lock);
+	}
+	mutex_unlock(&c->bucket_clock[WRITE].lock);
+
+	return 0;
+}
+
+static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca,
+				  size_t b, struct btree_iter *iter,
+				  u64 *journal_seq, bool nowait)
+{
+	struct bucket_mark m;
+	__BKEY_PADDED(k, DIV_ROUND_UP(sizeof(struct bch_alloc), 8)) alloc_key;
+	struct bucket *g;
+	struct bkey_i_alloc *a;
+	u8 *d;
+	int ret;
+	unsigned flags = BTREE_INSERT_ATOMIC|
+		BTREE_INSERT_NOFAIL|
+		BTREE_INSERT_USE_RESERVE|
+		BTREE_INSERT_USE_ALLOC_RESERVE;
+
+	if (nowait)
+		flags |= BTREE_INSERT_NOWAIT;
+
+	bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b));
+
+	do {
+		ret = btree_iter_err(bch2_btree_iter_peek_slot(iter));
+		if (ret)
+			break;
+
+		percpu_down_read(&c->usage_lock);
+		g = bucket(ca, b);
+
+		/* read mark under btree node lock: */
+		m = READ_ONCE(g->mark);
+		a = bkey_alloc_init(&alloc_key.k);
+		a->k.p		= iter->pos;
+		a->v.fields	= 0;
+		a->v.gen	= m.gen;
+		set_bkey_val_u64s(&a->k, bch_alloc_val_u64s(&a->v));
+
+		d = a->v.data;
+		if (a->v.fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
+			put_alloc_field(&d, 2, g->io_time[READ]);
+		if (a->v.fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
+			put_alloc_field(&d, 2, g->io_time[WRITE]);
+		percpu_up_read(&c->usage_lock);
+
+		ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, flags,
+					   BTREE_INSERT_ENTRY(iter, &a->k_i));
+		bch2_btree_iter_cond_resched(iter);
+	} while (ret == -EINTR);
+
+	return ret;
+}
+
+int bch2_alloc_replay_key(struct bch_fs *c, struct bpos pos)
+{
+	struct bch_dev *ca;
+	struct btree_iter iter;
+	int ret;
+
+	if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode])
+		return 0;
+
+	ca = bch_dev_bkey_exists(c, pos.inode);
+
+	if (pos.offset >= ca->mi.nbuckets)
+		return 0;
+
+	bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
+			     BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
+
+	ret = __bch2_alloc_write_key(c, ca, pos.offset, &iter,
+				     NULL, false);
+	bch2_btree_iter_unlock(&iter);
+	return ret;
+}
+
+int bch2_alloc_write(struct bch_fs *c)
+{
+	struct bch_dev *ca;
+	unsigned i;
+	int ret = 0;
+
+	for_each_rw_member(ca, c, i) {
+		struct btree_iter iter;
+		unsigned long bucket;
+
+		bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
+				     BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
+
+		down_read(&ca->bucket_lock);
+		for_each_set_bit(bucket, ca->buckets_dirty, ca->mi.nbuckets) {
+			ret = __bch2_alloc_write_key(c, ca, bucket, &iter,
+						     NULL, false);
+			if (ret)
+				break;
+
+			clear_bit(bucket, ca->buckets_dirty);
+		}
+		up_read(&ca->bucket_lock);
+		bch2_btree_iter_unlock(&iter);
+
+		if (ret) {
+			percpu_ref_put(&ca->io_ref);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+/* Bucket IO clocks: */
+
+static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw)
+{
+	struct bucket_clock *clock = &c->bucket_clock[rw];
+	struct bucket_array *buckets = bucket_array(ca);
+	struct bucket *g;
+	u16 max_last_io = 0;
+	unsigned i;
+
+	lockdep_assert_held(&c->bucket_clock[rw].lock);
+
+	/* Recalculate max_last_io for this device: */
+	for_each_bucket(g, buckets)
+		max_last_io = max(max_last_io, bucket_last_io(c, g, rw));
+
+	ca->max_last_bucket_io[rw] = max_last_io;
+
+	/* Recalculate global max_last_io: */
+	max_last_io = 0;
+
+	for_each_member_device(ca, c, i)
+		max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]);
+
+	clock->max_last_io = max_last_io;
+}
+
+static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw)
+{
+	struct bucket_clock *clock = &c->bucket_clock[rw];
+	struct bucket_array *buckets;
+	struct bch_dev *ca;
+	struct bucket *g;
+	unsigned i;
+
+	trace_rescale_prios(c);
+
+	for_each_member_device(ca, c, i) {
+		down_read(&ca->bucket_lock);
+		buckets = bucket_array(ca);
+
+		for_each_bucket(g, buckets)
+			g->io_time[rw] = clock->hand -
+			bucket_last_io(c, g, rw) / 2;
+
+		bch2_recalc_oldest_io(c, ca, rw);
+
+		up_read(&ca->bucket_lock);
+	}
+}
+
+static void bch2_inc_clock_hand(struct io_timer *timer)
+{
+	struct bucket_clock *clock = container_of(timer,
+						struct bucket_clock, rescale);
+	struct bch_fs *c = container_of(clock,
+					struct bch_fs, bucket_clock[clock->rw]);
+	struct bch_dev *ca;
+	u64 capacity;
+	unsigned i;
+
+	mutex_lock(&clock->lock);
+
+	/* if clock cannot be advanced more, rescale prio */
+	if (clock->max_last_io >= U16_MAX - 2)
+		bch2_rescale_bucket_io_times(c, clock->rw);
+
+	BUG_ON(clock->max_last_io >= U16_MAX - 2);
+
+	for_each_member_device(ca, c, i)
+		ca->max_last_bucket_io[clock->rw]++;
+	clock->max_last_io++;
+	clock->hand++;
+
+	mutex_unlock(&clock->lock);
+
+	capacity = READ_ONCE(c->capacity);
+
+	if (!capacity)
+		return;
+
+	/*
+	 * we only increment when 0.1% of the filesystem capacity has been read
+	 * or written too, this determines if it's time
+	 *
+	 * XXX: we shouldn't really be going off of the capacity of devices in
+	 * RW mode (that will be 0 when we're RO, yet we can still service
+	 * reads)
+	 */
+	timer->expire += capacity >> 10;
+
+	bch2_io_timer_add(&c->io_clock[clock->rw], timer);
+}
+
+static void bch2_bucket_clock_init(struct bch_fs *c, int rw)
+{
+	struct bucket_clock *clock = &c->bucket_clock[rw];
+
+	clock->hand		= 1;
+	clock->rw		= rw;
+	clock->rescale.fn	= bch2_inc_clock_hand;
+	clock->rescale.expire	= c->capacity >> 10;
+	mutex_init(&clock->lock);
+}
+
+/* Background allocator thread: */
+
+/*
+ * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
+ * (marking them as invalidated on disk), then optionally issues discard
+ * commands to the newly free buckets, then puts them on the various freelists.
+ */
+
+static void verify_not_on_freelist(struct bch_fs *c, struct bch_dev *ca,
+				   size_t bucket)
+{
+	if (expensive_debug_checks(c) &&
+	    test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) {
+		size_t iter;
+		long i;
+		unsigned j;
+
+		for (j = 0; j < RESERVE_NR; j++)
+			fifo_for_each_entry(i, &ca->free[j], iter)
+				BUG_ON(i == bucket);
+		fifo_for_each_entry(i, &ca->free_inc, iter)
+			BUG_ON(i == bucket);
+	}
+}
+
+#define BUCKET_GC_GEN_MAX	96U
+
+/**
+ * wait_buckets_available - wait on reclaimable buckets
+ *
+ * If there aren't enough available buckets to fill up free_inc, wait until
+ * there are.
+ */
+static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
+{
+	unsigned long gc_count = c->gc_count;
+	int ret = 0;
+
+	while (1) {
+		set_current_state(TASK_INTERRUPTIBLE);
+		if (kthread_should_stop()) {
+			ret = 1;
+			break;
+		}
+
+		if (gc_count != c->gc_count)
+			ca->inc_gen_really_needs_gc = 0;
+
+		if ((ssize_t) (dev_buckets_available(c, ca) -
+			       ca->inc_gen_really_needs_gc) >=
+		    (ssize_t) fifo_free(&ca->free_inc))
+			break;
+
+		up_read(&c->gc_lock);
+		schedule();
+		try_to_freeze();
+		down_read(&c->gc_lock);
+	}
+
+	__set_current_state(TASK_RUNNING);
+	return ret;
+}
+
+static bool bch2_can_invalidate_bucket(struct bch_dev *ca,
+				       size_t bucket,
+				       struct bucket_mark mark)
+{
+	u8 gc_gen;
+
+	if (!is_available_bucket(mark))
+		return false;
+
+	gc_gen = bucket_gc_gen(ca, bucket);
+
+	if (gc_gen >= BUCKET_GC_GEN_MAX / 2)
+		ca->inc_gen_needs_gc++;
+
+	if (gc_gen >= BUCKET_GC_GEN_MAX)
+		ca->inc_gen_really_needs_gc++;
+
+	return gc_gen < BUCKET_GC_GEN_MAX;
+}
+
+static void bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
+				       size_t bucket)
+{
+	struct bucket_mark m;
+
+	percpu_down_read(&c->usage_lock);
+	spin_lock(&c->freelist_lock);
+
+	if (!bch2_invalidate_bucket(c, ca, bucket, &m)) {
+		spin_unlock(&c->freelist_lock);
+		percpu_up_read(&c->usage_lock);
+		return;
+	}
+
+	verify_not_on_freelist(c, ca, bucket);
+	BUG_ON(!fifo_push(&ca->free_inc, bucket));
+
+	spin_unlock(&c->freelist_lock);
+	percpu_up_read(&c->usage_lock);
+
+	/* gc lock held: */
+	bucket_io_clock_reset(c, ca, bucket, READ);
+	bucket_io_clock_reset(c, ca, bucket, WRITE);
+
+	if (m.cached_sectors) {
+		ca->allocator_invalidating_data = true;
+	} else if (m.journal_seq_valid) {
+		u64 journal_seq = atomic64_read(&c->journal.seq);
+		u64 bucket_seq	= journal_seq;
+
+		bucket_seq &= ~((u64) U16_MAX);
+		bucket_seq |= m.journal_seq;
+
+		if (bucket_seq > journal_seq)
+			bucket_seq -= 1 << 16;
+
+		ca->allocator_journal_seq_flush =
+			max(ca->allocator_journal_seq_flush, bucket_seq);
+	}
+}
+
+/*
+ * Determines what order we're going to reuse buckets, smallest bucket_key()
+ * first.
+ *
+ *
+ * - We take into account the read prio of the bucket, which gives us an
+ *   indication of how hot the data is -- we scale the prio so that the prio
+ *   farthest from the clock is worth 1/8th of the closest.
+ *
+ * - The number of sectors of cached data in the bucket, which gives us an
+ *   indication of the cost in cache misses this eviction will cause.
+ *
+ * - If hotness * sectors used compares equal, we pick the bucket with the
+ *   smallest bucket_gc_gen() - since incrementing the same bucket's generation
+ *   number repeatedly forces us to run mark and sweep gc to avoid generation
+ *   number wraparound.
+ */
+
+static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca,
+				     size_t b, struct bucket_mark m)
+{
+	unsigned last_io = bucket_last_io(c, bucket(ca, b), READ);
+	unsigned max_last_io = ca->max_last_bucket_io[READ];
+
+	/*
+	 * Time since last read, scaled to [0, 8) where larger value indicates
+	 * more recently read data:
+	 */
+	unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io;
+
+	/* How much we want to keep the data in this bucket: */
+	unsigned long data_wantness =
+		(hotness + 1) * bucket_sectors_used(m);
+
+	unsigned long needs_journal_commit =
+		bucket_needs_journal_commit(m, c->journal.last_seq_ondisk);
+
+	return  (data_wantness << 9) |
+		(needs_journal_commit << 8) |
+		bucket_gc_gen(ca, b);
+}
+
+static inline int bucket_alloc_cmp(alloc_heap *h,
+				   struct alloc_heap_entry l,
+				   struct alloc_heap_entry r)
+{
+	return (l.key > r.key) - (l.key < r.key) ?:
+		(l.nr < r.nr)  - (l.nr  > r.nr) ?:
+		(l.bucket > r.bucket) - (l.bucket < r.bucket);
+}
+
+static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
+{
+	struct bucket_array *buckets;
+	struct alloc_heap_entry e = { 0 };
+	size_t b;
+
+	ca->alloc_heap.used = 0;
+
+	mutex_lock(&c->bucket_clock[READ].lock);
+	down_read(&ca->bucket_lock);
+
+	buckets = bucket_array(ca);
+
+	bch2_recalc_oldest_io(c, ca, READ);
+
+	/*
+	 * Find buckets with lowest read priority, by building a maxheap sorted
+	 * by read priority and repeatedly replacing the maximum element until
+	 * all buckets have been visited.
+	 */
+	for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
+		struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
+		unsigned long key = bucket_sort_key(c, ca, b, m);
+
+		if (!bch2_can_invalidate_bucket(ca, b, m))
+			continue;
+
+		if (e.nr && e.bucket + e.nr == b && e.key == key) {
+			e.nr++;
+		} else {
+			if (e.nr)
+				heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp);
+
+			e = (struct alloc_heap_entry) {
+				.bucket = b,
+				.nr	= 1,
+				.key	= key,
+			};
+		}
+
+		cond_resched();
+	}
+
+	if (e.nr)
+		heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp);
+
+	up_read(&ca->bucket_lock);
+	mutex_unlock(&c->bucket_clock[READ].lock);
+
+	heap_resort(&ca->alloc_heap, bucket_alloc_cmp);
+
+	while (heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp)) {
+		for (b = e.bucket;
+		     b < e.bucket + e.nr;
+		     b++) {
+			if (fifo_full(&ca->free_inc))
+				return;
+
+			bch2_invalidate_one_bucket(c, ca, b);
+		}
+	}
+}
+
+static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
+{
+	struct bucket_array *buckets = bucket_array(ca);
+	struct bucket_mark m;
+	size_t b, checked;
+
+	for (checked = 0;
+	     checked < ca->mi.nbuckets && !fifo_full(&ca->free_inc);
+	     checked++) {
+		if (ca->fifo_last_bucket <  ca->mi.first_bucket ||
+		    ca->fifo_last_bucket >= ca->mi.nbuckets)
+			ca->fifo_last_bucket = ca->mi.first_bucket;
+
+		b = ca->fifo_last_bucket++;
+
+		m = READ_ONCE(buckets->b[b].mark);
+
+		if (bch2_can_invalidate_bucket(ca, b, m))
+			bch2_invalidate_one_bucket(c, ca, b);
+
+		cond_resched();
+	}
+}
+
+static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
+{
+	struct bucket_array *buckets = bucket_array(ca);
+	struct bucket_mark m;
+	size_t checked;
+
+	for (checked = 0;
+	     checked < ca->mi.nbuckets / 2 && !fifo_full(&ca->free_inc);
+	     checked++) {
+		size_t b = bch2_rand_range(ca->mi.nbuckets -
+					   ca->mi.first_bucket) +
+			ca->mi.first_bucket;
+
+		m = READ_ONCE(buckets->b[b].mark);
+
+		if (bch2_can_invalidate_bucket(ca, b, m))
+			bch2_invalidate_one_bucket(c, ca, b);
+
+		cond_resched();
+	}
+}
+
+static void find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
+{
+	ca->inc_gen_needs_gc			= 0;
+	ca->inc_gen_really_needs_gc		= 0;
+
+	switch (ca->mi.replacement) {
+	case CACHE_REPLACEMENT_LRU:
+		find_reclaimable_buckets_lru(c, ca);
+		break;
+	case CACHE_REPLACEMENT_FIFO:
+		find_reclaimable_buckets_fifo(c, ca);
+		break;
+	case CACHE_REPLACEMENT_RANDOM:
+		find_reclaimable_buckets_random(c, ca);
+		break;
+	}
+}
+
+static int size_t_cmp(const void *_l, const void *_r)
+{
+	const size_t *l = _l, *r = _r;
+
+	return (*l > *r) - (*l < *r);
+}
+
+static void sort_free_inc(struct bch_fs *c, struct bch_dev *ca)
+{
+	BUG_ON(ca->free_inc.front);
+
+	spin_lock(&c->freelist_lock);
+	sort(ca->free_inc.data,
+	     ca->free_inc.back,
+	     sizeof(ca->free_inc.data[0]),
+	     size_t_cmp, NULL);
+	spin_unlock(&c->freelist_lock);
+}
+
+static int bch2_invalidate_free_inc(struct bch_fs *c, struct bch_dev *ca,
+				    u64 *journal_seq, size_t nr,
+				    bool nowait)
+{
+	struct btree_iter iter;
+	int ret = 0;
+
+	bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0),
+			     BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
+
+	/* Only use nowait if we've already invalidated at least one bucket: */
+	while (ca->nr_invalidated < min(nr, fifo_used(&ca->free_inc))) {
+		size_t b = fifo_idx_entry(&ca->free_inc, ca->nr_invalidated);
+
+		ret = __bch2_alloc_write_key(c, ca, b, &iter, journal_seq,
+					     nowait && ca->nr_invalidated);
+		if (ret)
+			break;
+
+		ca->nr_invalidated++;
+	}
+
+	bch2_btree_iter_unlock(&iter);
+
+	/* If we used NOWAIT, don't return the error: */
+	return ca->nr_invalidated ? 0 : ret;
+}
+
+static bool __push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
+{
+	unsigned i;
+
+	/*
+	 * Don't remove from free_inc until after it's added to
+	 * freelist, so gc can find it:
+	 */
+	spin_lock(&c->freelist_lock);
+	for (i = 0; i < RESERVE_NR; i++)
+		if (fifo_push(&ca->free[i], bucket)) {
+			fifo_pop(&ca->free_inc, bucket);
+			--ca->nr_invalidated;
+			closure_wake_up(&c->freelist_wait);
+			spin_unlock(&c->freelist_lock);
+			return true;
+		}
+	spin_unlock(&c->freelist_lock);
+
+	return false;
+}
+
+static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
+{
+	int ret = 0;
+
+	while (1) {
+		set_current_state(TASK_INTERRUPTIBLE);
+
+		if (__push_invalidated_bucket(c, ca, bucket))
+			break;
+
+		if ((current->flags & PF_KTHREAD) &&
+		    kthread_should_stop()) {
+			ret = 1;
+			break;
+		}
+
+		schedule();
+		try_to_freeze();
+	}
+
+	__set_current_state(TASK_RUNNING);
+	return ret;
+}
+
+/*
+ * Given an invalidated, ready to use bucket: issue a discard to it if enabled,
+ * then add it to the freelist, waiting until there's room if necessary:
+ */
+static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca)
+{
+	while (ca->nr_invalidated) {
+		size_t bucket = fifo_peek(&ca->free_inc);
+
+		BUG_ON(fifo_empty(&ca->free_inc) || !ca->nr_invalidated);
+
+		if (ca->mi.discard &&
+		    bdev_max_discard_sectors(ca->disk_sb.bdev))
+			blkdev_issue_discard(ca->disk_sb.bdev,
+					     bucket_to_sector(ca, bucket),
+					     ca->mi.bucket_size, GFP_NOIO);
+
+		if (push_invalidated_bucket(c, ca, bucket))
+			return 1;
+	}
+
+	return 0;
+}
+
+/**
+ * bch_allocator_thread - move buckets from free_inc to reserves
+ *
+ * The free_inc FIFO is populated by find_reclaimable_buckets(), and
+ * the reserves are depleted by bucket allocation. When we run out
+ * of free_inc, try to invalidate some buckets and write out
+ * prios and gens.
+ */
+static int bch2_allocator_thread(void *arg)
+{
+	struct bch_dev *ca = arg;
+	struct bch_fs *c = ca->fs;
+	u64 journal_seq;
+	int ret;
+
+	set_freezable();
+
+	while (1) {
+		while (1) {
+			cond_resched();
+
+			pr_debug("discarding %zu invalidated buckets",
+				 ca->nr_invalidated);
+
+			ret = discard_invalidated_buckets(c, ca);
+			if (ret)
+				goto stop;
+
+			if (fifo_empty(&ca->free_inc))
+				break;
+
+			pr_debug("invalidating %zu buckets",
+				 fifo_used(&ca->free_inc));
+
+			journal_seq = 0;
+			ret = bch2_invalidate_free_inc(c, ca, &journal_seq,
+						       SIZE_MAX, true);
+			if (ret) {
+				bch_err(ca, "error invalidating buckets: %i", ret);
+				goto stop;
+			}
+
+			if (!ca->nr_invalidated) {
+				bch_err(ca, "allocator thread unable to make forward progress!");
+				goto stop;
+			}
+
+			if (ca->allocator_invalidating_data)
+				ret = bch2_journal_flush_seq(&c->journal, journal_seq);
+			else if (ca->allocator_journal_seq_flush)
+				ret = bch2_journal_flush_seq(&c->journal,
+						       ca->allocator_journal_seq_flush);
+
+			/*
+			 * journal error - buckets haven't actually been
+			 * invalidated, can't discard them:
+			 */
+			if (ret) {
+				bch_err(ca, "journal error: %i", ret);
+				goto stop;
+			}
+		}
+
+		pr_debug("free_inc now empty");
+
+		/* Reset front/back so we can easily sort fifo entries later: */
+		ca->free_inc.front = ca->free_inc.back	= 0;
+		ca->allocator_journal_seq_flush		= 0;
+		ca->allocator_invalidating_data		= false;
+
+		down_read(&c->gc_lock);
+		while (1) {
+			size_t prev = fifo_used(&ca->free_inc);
+
+			if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) {
+				up_read(&c->gc_lock);
+				bch_err(ca, "gc failure");
+				goto stop;
+			}
+
+			/*
+			 * Find some buckets that we can invalidate, either
+			 * they're completely unused, or only contain clean data
+			 * that's been written back to the backing device or
+			 * another cache tier
+			 */
+
+			pr_debug("scanning for reclaimable buckets");
+
+			find_reclaimable_buckets(c, ca);
+
+			pr_debug("found %zu buckets (free_inc %zu/%zu)",
+				 fifo_used(&ca->free_inc) - prev,
+				 fifo_used(&ca->free_inc), ca->free_inc.size);
+
+			trace_alloc_batch(ca, fifo_used(&ca->free_inc),
+					  ca->free_inc.size);
+
+			if ((ca->inc_gen_needs_gc >= ca->free_inc.size ||
+			     (!fifo_full(&ca->free_inc) &&
+			      ca->inc_gen_really_needs_gc >=
+			      fifo_free(&ca->free_inc))) &&
+			    c->gc_thread) {
+				atomic_inc(&c->kick_gc);
+				wake_up_process(c->gc_thread);
+			}
+
+			if (fifo_full(&ca->free_inc))
+				break;
+
+			if (!fifo_empty(&ca->free_inc) &&
+			    !fifo_full(&ca->free[RESERVE_MOVINGGC]))
+				break;
+
+			/*
+			 * copygc may be waiting until either its reserve fills
+			 * up, or we can't make forward progress:
+			 */
+			ca->allocator_blocked = true;
+			closure_wake_up(&c->freelist_wait);
+
+			ret = wait_buckets_available(c, ca);
+			if (ret) {
+				up_read(&c->gc_lock);
+				goto stop;
+			}
+		}
+
+		ca->allocator_blocked = false;
+		up_read(&c->gc_lock);
+
+		pr_debug("free_inc now %zu/%zu",
+			 fifo_used(&ca->free_inc),
+			 ca->free_inc.size);
+
+		sort_free_inc(c, ca);
+
+		/*
+		 * free_inc is now full of newly-invalidated buckets: next,
+		 * write out the new bucket gens:
+		 */
+	}
+
+stop:
+	pr_debug("alloc thread stopping (ret %i)", ret);
+	return 0;
+}
+
+/* Allocation */
+
+/*
+ * Open buckets represent a bucket that's currently being allocated from.  They
+ * serve two purposes:
+ *
+ *  - They track buckets that have been partially allocated, allowing for
+ *    sub-bucket sized allocations - they're used by the sector allocator below
+ *
+ *  - They provide a reference to the buckets they own that mark and sweep GC
+ *    can find, until the new allocation has a pointer to it inserted into the
+ *    btree
+ *
+ * When allocating some space with the sector allocator, the allocation comes
+ * with a reference to an open bucket - the caller is required to put that
+ * reference _after_ doing the index update that makes its allocation reachable.
+ */
+
+void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob)
+{
+	struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+
+	percpu_down_read(&c->usage_lock);
+	spin_lock(&ob->lock);
+
+	bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr),
+			       false, gc_pos_alloc(c, ob), 0);
+	ob->valid = false;
+
+	spin_unlock(&ob->lock);
+	percpu_up_read(&c->usage_lock);
+
+	spin_lock(&c->freelist_lock);
+	ob->freelist = c->open_buckets_freelist;
+	c->open_buckets_freelist = ob - c->open_buckets;
+	c->open_buckets_nr_free++;
+	spin_unlock(&c->freelist_lock);
+
+	closure_wake_up(&c->open_buckets_wait);
+}
+
+static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c)
+{
+	struct open_bucket *ob;
+
+	BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free);
+
+	ob = c->open_buckets + c->open_buckets_freelist;
+	c->open_buckets_freelist = ob->freelist;
+	atomic_set(&ob->pin, 1);
+
+	c->open_buckets_nr_free--;
+	return ob;
+}
+
+/* _only_ for allocating the journal on a new device: */
+long bch2_bucket_alloc_new_fs(struct bch_dev *ca)
+{
+	struct bucket_array *buckets;
+	ssize_t b;
+
+	rcu_read_lock();
+	buckets = bucket_array(ca);
+
+	for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++)
+		if (is_available_bucket(buckets->b[b].mark))
+			goto success;
+	b = -1;
+success:
+	rcu_read_unlock();
+	return b;
+}
+
+static inline unsigned open_buckets_reserved(enum alloc_reserve reserve)
+{
+	switch (reserve) {
+	case RESERVE_ALLOC:
+		return 0;
+	case RESERVE_BTREE:
+		return BTREE_NODE_RESERVE / 2;
+	default:
+		return BTREE_NODE_RESERVE;
+	}
+}
+
+/**
+ * bch_bucket_alloc - allocate a single bucket from a specific device
+ *
+ * Returns index of bucket on success, 0 on failure
+ * */
+int bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca,
+		      enum alloc_reserve reserve,
+		      bool may_alloc_partial,
+		      struct closure *cl)
+{
+	struct bucket_array *buckets;
+	struct open_bucket *ob;
+	long bucket;
+
+	spin_lock(&c->freelist_lock);
+
+	if (may_alloc_partial &&
+	    ca->open_buckets_partial_nr) {
+		int ret = ca->open_buckets_partial[--ca->open_buckets_partial_nr];
+		c->open_buckets[ret].on_partial_list = false;
+		spin_unlock(&c->freelist_lock);
+		return ret;
+	}
+
+	if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) {
+		if (cl)
+			closure_wait(&c->open_buckets_wait, cl);
+		spin_unlock(&c->freelist_lock);
+		trace_open_bucket_alloc_fail(ca, reserve);
+		return OPEN_BUCKETS_EMPTY;
+	}
+
+	if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket)))
+		goto out;
+
+	switch (reserve) {
+	case RESERVE_ALLOC:
+		if (fifo_pop(&ca->free[RESERVE_BTREE], bucket))
+			goto out;
+		break;
+	case RESERVE_BTREE:
+		if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >=
+		    ca->free[RESERVE_BTREE].size &&
+		    fifo_pop(&ca->free[RESERVE_BTREE], bucket))
+			goto out;
+		break;
+	case RESERVE_MOVINGGC:
+		if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket))
+			goto out;
+		break;
+	default:
+		break;
+	}
+
+	if (cl)
+		closure_wait(&c->freelist_wait, cl);
+
+	spin_unlock(&c->freelist_lock);
+
+	trace_bucket_alloc_fail(ca, reserve);
+	return FREELIST_EMPTY;
+out:
+	verify_not_on_freelist(c, ca, bucket);
+
+	ob = bch2_open_bucket_alloc(c);
+
+	spin_lock(&ob->lock);
+	buckets = bucket_array(ca);
+
+	ob->valid	= true;
+	ob->sectors_free = ca->mi.bucket_size;
+	ob->ptr		= (struct bch_extent_ptr) {
+		.gen	= buckets->b[bucket].mark.gen,
+		.offset	= bucket_to_sector(ca, bucket),
+		.dev	= ca->dev_idx,
+	};
+
+	bucket_io_clock_reset(c, ca, bucket, READ);
+	bucket_io_clock_reset(c, ca, bucket, WRITE);
+	spin_unlock(&ob->lock);
+
+	spin_unlock(&c->freelist_lock);
+
+	bch2_wake_allocator(ca);
+
+	trace_bucket_alloc(ca, reserve);
+	return ob - c->open_buckets;
+}
+
+static int __dev_alloc_cmp(struct write_point *wp,
+			   unsigned l, unsigned r)
+{
+	return ((wp->next_alloc[l] > wp->next_alloc[r]) -
+		(wp->next_alloc[l] < wp->next_alloc[r]));
+}
+
+#define dev_alloc_cmp(l, r) __dev_alloc_cmp(wp, l, r)
+
+struct dev_alloc_list bch2_wp_alloc_list(struct bch_fs *c,
+					 struct write_point *wp,
+					 struct bch_devs_mask *devs)
+{
+	struct dev_alloc_list ret = { .nr = 0 };
+	struct bch_dev *ca;
+	unsigned i;
+
+	for_each_member_device_rcu(ca, c, i, devs)
+		ret.devs[ret.nr++] = i;
+
+	bubble_sort(ret.devs, ret.nr, dev_alloc_cmp);
+	return ret;
+}
+
+void bch2_wp_rescale(struct bch_fs *c, struct bch_dev *ca,
+		     struct write_point *wp)
+{
+	u64 *v = wp->next_alloc + ca->dev_idx;
+	u64 free_space = dev_buckets_free(c, ca);
+	u64 free_space_inv = free_space
+		? div64_u64(1ULL << 48, free_space)
+		: 1ULL << 48;
+	u64 scale = *v / 4;
+
+	if (*v + free_space_inv >= *v)
+		*v += free_space_inv;
+	else
+		*v = U64_MAX;
+
+	for (v = wp->next_alloc;
+	     v < wp->next_alloc + ARRAY_SIZE(wp->next_alloc); v++)
+		*v = *v < scale ? 0 : *v - scale;
+}
+
+static enum bucket_alloc_ret bch2_bucket_alloc_set(struct bch_fs *c,
+					struct write_point *wp,
+					unsigned nr_replicas,
+					enum alloc_reserve reserve,
+					struct bch_devs_mask *devs,
+					struct closure *cl)
+{
+	enum bucket_alloc_ret ret = NO_DEVICES;
+	struct dev_alloc_list devs_sorted;
+	struct bch_dev *ca;
+	unsigned i, nr_ptrs_effective = 0;
+	bool have_cache_dev = false;
+
+	BUG_ON(nr_replicas > ARRAY_SIZE(wp->ptrs));
+
+	for (i = wp->first_ptr; i < wp->nr_ptrs; i++) {
+		ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev);
+
+		nr_ptrs_effective += ca->mi.durability;
+		have_cache_dev |= !ca->mi.durability;
+	}
+
+	if (nr_ptrs_effective >= nr_replicas)
+		return ALLOC_SUCCESS;
+
+	devs_sorted = bch2_wp_alloc_list(c, wp, devs);
+
+	for (i = 0; i < devs_sorted.nr; i++) {
+		int ob;
+
+		ca = rcu_dereference(c->devs[devs_sorted.devs[i]]);
+		if (!ca)
+			continue;
+
+		if (!ca->mi.durability &&
+		    (have_cache_dev ||
+		     wp->type != BCH_DATA_USER))
+			continue;
+
+		ob = bch2_bucket_alloc(c, ca, reserve,
+				       wp->type == BCH_DATA_USER, cl);
+		if (ob < 0) {
+			ret = ob;
+			if (ret == OPEN_BUCKETS_EMPTY)
+				break;
+			continue;
+		}
+
+		BUG_ON(ob <= 0 || ob > U8_MAX);
+		BUG_ON(wp->nr_ptrs >= ARRAY_SIZE(wp->ptrs));
+
+		wp->ptrs[wp->nr_ptrs++] = c->open_buckets + ob;
+
+		bch2_wp_rescale(c, ca, wp);
+
+		nr_ptrs_effective += ca->mi.durability;
+		have_cache_dev |= !ca->mi.durability;
+
+		__clear_bit(ca->dev_idx, devs->d);
+
+		if (nr_ptrs_effective >= nr_replicas) {
+			ret = ALLOC_SUCCESS;
+			break;
+		}
+	}
+
+	EBUG_ON(reserve == RESERVE_MOVINGGC &&
+		ret != ALLOC_SUCCESS &&
+		ret != OPEN_BUCKETS_EMPTY);
+
+	switch (ret) {
+	case ALLOC_SUCCESS:
+		return 0;
+	case NO_DEVICES:
+		return -EROFS;
+	case FREELIST_EMPTY:
+	case OPEN_BUCKETS_EMPTY:
+		return cl ? -EAGAIN : -ENOSPC;
+	default:
+		BUG();
+	}
+}
+
+/* Sector allocator */
+
+static void writepoint_drop_ptr(struct bch_fs *c,
+				struct write_point *wp,
+				unsigned i)
+{
+	struct open_bucket *ob = wp->ptrs[i];
+	struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+
+	BUG_ON(ca->open_buckets_partial_nr >=
+	       ARRAY_SIZE(ca->open_buckets_partial));
+
+	if (wp->type == BCH_DATA_USER) {
+		spin_lock(&c->freelist_lock);
+		ob->on_partial_list = true;
+		ca->open_buckets_partial[ca->open_buckets_partial_nr++] =
+			ob - c->open_buckets;
+		spin_unlock(&c->freelist_lock);
+
+		closure_wake_up(&c->open_buckets_wait);
+		closure_wake_up(&c->freelist_wait);
+	} else {
+		bch2_open_bucket_put(c, ob);
+	}
+
+	array_remove_item(wp->ptrs, wp->nr_ptrs, i);
+
+	if (i < wp->first_ptr)
+		wp->first_ptr--;
+}
+
+static void writepoint_drop_ptrs(struct bch_fs *c,
+				 struct write_point *wp,
+				 u16 target, bool in_target)
+{
+	int i;
+
+	for (i = wp->first_ptr - 1; i >= 0; --i)
+		if (bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev,
+				       target) == in_target)
+			writepoint_drop_ptr(c, wp, i);
+}
+
+static void verify_not_stale(struct bch_fs *c, const struct write_point *wp)
+{
+#ifdef CONFIG_BCACHEFS_DEBUG
+	struct open_bucket *ob;
+	unsigned i;
+
+	writepoint_for_each_ptr_all(wp, ob, i) {
+		struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+
+		BUG_ON(ptr_stale(ca, &ob->ptr));
+	}
+#endif
+}
+
+static int open_bucket_add_buckets(struct bch_fs *c,
+				   u16 target,
+				   struct write_point *wp,
+				   struct bch_devs_list *devs_have,
+				   unsigned nr_replicas,
+				   enum alloc_reserve reserve,
+				   struct closure *cl)
+{
+	struct bch_devs_mask devs = c->rw_devs[wp->type];
+	const struct bch_devs_mask *t;
+	struct open_bucket *ob;
+	unsigned i;
+	int ret;
+
+	percpu_down_read(&c->usage_lock);
+	rcu_read_lock();
+
+	/* Don't allocate from devices we already have pointers to: */
+	for (i = 0; i < devs_have->nr; i++)
+		__clear_bit(devs_have->devs[i], devs.d);
+
+	writepoint_for_each_ptr_all(wp, ob, i)
+		__clear_bit(ob->ptr.dev, devs.d);
+
+	t = bch2_target_to_mask(c, target);
+	if (t)
+		bitmap_and(devs.d, devs.d, t->d, BCH_SB_MEMBERS_MAX);
+
+	ret = bch2_bucket_alloc_set(c, wp, nr_replicas, reserve, &devs, cl);
+
+	rcu_read_unlock();
+	percpu_up_read(&c->usage_lock);
+
+	return ret;
+}
+
+static struct write_point *__writepoint_find(struct hlist_head *head,
+					     unsigned long write_point)
+{
+	struct write_point *wp;
+
+	hlist_for_each_entry_rcu(wp, head, node)
+		if (wp->write_point == write_point)
+			return wp;
+
+	return NULL;
+}
+
+static struct hlist_head *writepoint_hash(struct bch_fs *c,
+					  unsigned long write_point)
+{
+	unsigned hash =
+		hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash)));
+
+	return &c->write_points_hash[hash];
+}
+
+static struct write_point *writepoint_find(struct bch_fs *c,
+					   unsigned long write_point)
+{
+	struct write_point *wp, *oldest;
+	struct hlist_head *head;
+
+	if (!(write_point & 1UL)) {
+		wp = (struct write_point *) write_point;
+		mutex_lock(&wp->lock);
+		return wp;
+	}
+
+	head = writepoint_hash(c, write_point);
+restart_find:
+	wp = __writepoint_find(head, write_point);
+	if (wp) {
+lock_wp:
+		mutex_lock(&wp->lock);
+		if (wp->write_point == write_point)
+			goto out;
+		mutex_unlock(&wp->lock);
+		goto restart_find;
+	}
+
+	oldest = NULL;
+	for (wp = c->write_points;
+	     wp < c->write_points + ARRAY_SIZE(c->write_points);
+	     wp++)
+		if (!oldest || time_before64(wp->last_used, oldest->last_used))
+			oldest = wp;
+
+	mutex_lock(&oldest->lock);
+	mutex_lock(&c->write_points_hash_lock);
+	wp = __writepoint_find(head, write_point);
+	if (wp && wp != oldest) {
+		mutex_unlock(&c->write_points_hash_lock);
+		mutex_unlock(&oldest->lock);
+		goto lock_wp;
+	}
+
+	wp = oldest;
+	hlist_del_rcu(&wp->node);
+	wp->write_point = write_point;
+	hlist_add_head_rcu(&wp->node, head);
+	mutex_unlock(&c->write_points_hash_lock);
+out:
+	wp->last_used = sched_clock();
+	return wp;
+}
+
+/*
+ * Get us an open_bucket we can allocate from, return with it locked:
+ */
+struct write_point *bch2_alloc_sectors_start(struct bch_fs *c,
+				unsigned target,
+				struct write_point_specifier write_point,
+				struct bch_devs_list *devs_have,
+				unsigned nr_replicas,
+				unsigned nr_replicas_required,
+				enum alloc_reserve reserve,
+				unsigned flags,
+				struct closure *cl)
+{
+	struct write_point *wp;
+	struct open_bucket *ob;
+	struct bch_dev *ca;
+	unsigned nr_ptrs_have, nr_ptrs_effective;
+	int ret, i, cache_idx = -1;
+
+	BUG_ON(!nr_replicas || !nr_replicas_required);
+
+	wp = writepoint_find(c, write_point.v);
+
+	wp->first_ptr = 0;
+
+	/* does writepoint have ptrs we can't use? */
+	writepoint_for_each_ptr(wp, ob, i)
+		if (bch2_dev_list_has_dev(*devs_have, ob->ptr.dev)) {
+			swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
+			wp->first_ptr++;
+		}
+
+	nr_ptrs_have = wp->first_ptr;
+
+	/* does writepoint have ptrs we don't want to use? */
+	if (target)
+		writepoint_for_each_ptr(wp, ob, i)
+			if (!bch2_dev_in_target(c, ob->ptr.dev, target)) {
+				swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
+				wp->first_ptr++;
+			}
+
+	if (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS) {
+		ret = open_bucket_add_buckets(c, target, wp, devs_have,
+					      nr_replicas, reserve, cl);
+	} else {
+		ret = open_bucket_add_buckets(c, target, wp, devs_have,
+					      nr_replicas, reserve, NULL);
+		if (!ret)
+			goto alloc_done;
+
+		wp->first_ptr = nr_ptrs_have;
+
+		ret = open_bucket_add_buckets(c, 0, wp, devs_have,
+					      nr_replicas, reserve, cl);
+	}
+
+	if (ret && ret != -EROFS)
+		goto err;
+alloc_done:
+	/* check for more than one cache: */
+	for (i = wp->nr_ptrs - 1; i >= wp->first_ptr; --i) {
+		ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev);
+
+		if (ca->mi.durability)
+			continue;
+
+		/*
+		 * if we ended up with more than one cache device, prefer the
+		 * one in the target we want:
+		 */
+		if (cache_idx >= 0) {
+			if (!bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev,
+						target)) {
+				writepoint_drop_ptr(c, wp, i);
+			} else {
+				writepoint_drop_ptr(c, wp, cache_idx);
+				cache_idx = i;
+			}
+		} else {
+			cache_idx = i;
+		}
+	}
+
+	/* we might have more effective replicas than required: */
+	nr_ptrs_effective = 0;
+	writepoint_for_each_ptr(wp, ob, i) {
+		ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+		nr_ptrs_effective += ca->mi.durability;
+	}
+
+	if (ret == -EROFS &&
+	    nr_ptrs_effective >= nr_replicas_required)
+		ret = 0;
+
+	if (ret)
+		goto err;
+
+	if (nr_ptrs_effective > nr_replicas) {
+		writepoint_for_each_ptr(wp, ob, i) {
+			ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+
+			if (ca->mi.durability &&
+			    ca->mi.durability <= nr_ptrs_effective - nr_replicas &&
+			    !bch2_dev_in_target(c, ob->ptr.dev, target)) {
+				swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
+				wp->first_ptr++;
+				nr_ptrs_effective -= ca->mi.durability;
+			}
+		}
+	}
+
+	if (nr_ptrs_effective > nr_replicas) {
+		writepoint_for_each_ptr(wp, ob, i) {
+			ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+
+			if (ca->mi.durability &&
+			    ca->mi.durability <= nr_ptrs_effective - nr_replicas) {
+				swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
+				wp->first_ptr++;
+				nr_ptrs_effective -= ca->mi.durability;
+			}
+		}
+	}
+
+	/* Remove pointers we don't want to use: */
+	if (target)
+		writepoint_drop_ptrs(c, wp, target, false);
+
+	BUG_ON(wp->first_ptr >= wp->nr_ptrs);
+	BUG_ON(nr_ptrs_effective < nr_replicas_required);
+
+	wp->sectors_free = UINT_MAX;
+
+	writepoint_for_each_ptr(wp, ob, i)
+		wp->sectors_free = min(wp->sectors_free, ob->sectors_free);
+
+	BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX);
+
+	verify_not_stale(c, wp);
+
+	return wp;
+err:
+	mutex_unlock(&wp->lock);
+	return ERR_PTR(ret);
+}
+
+/*
+ * Append pointers to the space we just allocated to @k, and mark @sectors space
+ * as allocated out of @ob
+ */
+void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp,
+				    struct bkey_i_extent *e, unsigned sectors)
+{
+	struct open_bucket *ob;
+	unsigned i;
+
+	BUG_ON(sectors > wp->sectors_free);
+	wp->sectors_free -= sectors;
+
+	writepoint_for_each_ptr(wp, ob, i) {
+		struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
+		struct bch_extent_ptr tmp = ob->ptr;
+
+		EBUG_ON(bch2_extent_has_device(extent_i_to_s_c(e), ob->ptr.dev));
+
+		tmp.cached = bkey_extent_is_cached(&e->k) ||
+			(!ca->mi.durability && wp->type == BCH_DATA_USER);
+
+		tmp.offset += ca->mi.bucket_size - ob->sectors_free;
+		extent_ptr_append(e, tmp);
+
+		BUG_ON(sectors > ob->sectors_free);
+		ob->sectors_free -= sectors;
+	}
+}
+
+/*
+ * Append pointers to the space we just allocated to @k, and mark @sectors space
+ * as allocated out of @ob
+ */
+void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp)
+{
+	int i;
+
+	for (i = wp->nr_ptrs - 1; i >= 0; --i) {
+		struct open_bucket *ob = wp->ptrs[i];
+
+		if (!ob->sectors_free) {
+			array_remove_item(wp->ptrs, wp->nr_ptrs, i);
+			bch2_open_bucket_put(c, ob);
+		}
+	}
+
+	mutex_unlock(&wp->lock);
+}
+
+/* Startup/shutdown (ro/rw): */
+
+void bch2_recalc_capacity(struct bch_fs *c)
+{
+	struct bch_dev *ca;
+	u64 total_capacity, capacity = 0, reserved_sectors = 0;
+	unsigned long ra_pages = 0;
+	unsigned i, j;
+
+	lockdep_assert_held(&c->state_lock);
+
+	for_each_online_member(ca, c, i) {
+		struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
+
+		ra_pages += bdi->ra_pages;
+	}
+
+	bch2_set_ra_pages(c, ra_pages);
+
+	for_each_rw_member(ca, c, i) {
+		size_t reserve = 0;
+
+		/*
+		 * We need to reserve buckets (from the number
+		 * of currently available buckets) against
+		 * foreground writes so that mainly copygc can
+		 * make forward progress.
+		 *
+		 * We need enough to refill the various reserves
+		 * from scratch - copygc will use its entire
+		 * reserve all at once, then run against when
+		 * its reserve is refilled (from the formerly
+		 * available buckets).
+		 *
+		 * This reserve is just used when considering if
+		 * allocations for foreground writes must wait -
+		 * not -ENOSPC calculations.
+		 */
+		for (j = 0; j < RESERVE_NONE; j++)
+			reserve += ca->free[j].size;
+
+		reserve += ca->free_inc.size;
+
+		reserve += ARRAY_SIZE(c->write_points);
+
+		reserve += 1;	/* btree write point */
+
+		reserved_sectors += bucket_to_sector(ca, reserve);
+
+		capacity += bucket_to_sector(ca, ca->mi.nbuckets -
+					     ca->mi.first_bucket);
+	}
+
+	total_capacity = capacity;
+
+	capacity *= (100 - c->opts.gc_reserve_percent);
+	capacity = div64_u64(capacity, 100);
+
+	BUG_ON(reserved_sectors > total_capacity);
+
+	capacity = min(capacity, total_capacity - reserved_sectors);
+
+	c->capacity = capacity;
+
+	if (c->capacity) {
+		bch2_io_timer_add(&c->io_clock[READ],
+				 &c->bucket_clock[READ].rescale);
+		bch2_io_timer_add(&c->io_clock[WRITE],
+				 &c->bucket_clock[WRITE].rescale);
+	} else {
+		bch2_io_timer_del(&c->io_clock[READ],
+				 &c->bucket_clock[READ].rescale);
+		bch2_io_timer_del(&c->io_clock[WRITE],
+				 &c->bucket_clock[WRITE].rescale);
+	}
+
+	/* Wake up case someone was waiting for buckets */
+	closure_wake_up(&c->freelist_wait);
+}
+
+static void bch2_stop_write_point(struct bch_fs *c, struct bch_dev *ca,
+				  struct write_point *wp)
+{
+	struct bch_devs_mask not_self;
+
+	bitmap_complement(not_self.d, ca->self.d, BCH_SB_MEMBERS_MAX);
+
+	mutex_lock(&wp->lock);
+	wp->first_ptr = wp->nr_ptrs;
+	writepoint_drop_ptrs(c, wp, dev_to_target(ca->dev_idx), true);
+	mutex_unlock(&wp->lock);
+}
+
+static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
+{
+	struct open_bucket *ob;
+	bool ret = false;
+
+	for (ob = c->open_buckets;
+	     ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
+	     ob++) {
+		spin_lock(&ob->lock);
+		if (ob->valid && !ob->on_partial_list &&
+		    ob->ptr.dev == ca->dev_idx)
+			ret = true;
+		spin_unlock(&ob->lock);
+	}
+
+	return ret;
+}
+
+/* device goes ro: */
+void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
+{
+	unsigned i;
+
+	BUG_ON(ca->alloc_thread);
+
+	/* First, remove device from allocation groups: */
+
+	for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
+		clear_bit(ca->dev_idx, c->rw_devs[i].d);
+
+	/*
+	 * Capacity is calculated based off of devices in allocation groups:
+	 */
+	bch2_recalc_capacity(c);
+
+	/* Next, close write points that point to this device... */
+	for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
+		bch2_stop_write_point(c, ca, &c->write_points[i]);
+
+	bch2_stop_write_point(c, ca, &ca->copygc_write_point);
+	bch2_stop_write_point(c, ca, &c->rebalance_write_point);
+	bch2_stop_write_point(c, ca, &c->btree_write_point);
+
+	mutex_lock(&c->btree_reserve_cache_lock);
+	while (c->btree_reserve_cache_nr) {
+		struct btree_alloc *a =
+			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
+
+		bch2_open_bucket_put_refs(c, &a->ob.nr, a->ob.refs);
+	}
+	mutex_unlock(&c->btree_reserve_cache_lock);
+
+	/*
+	 * Wake up threads that were blocked on allocation, so they can notice
+	 * the device can no longer be removed and the capacity has changed:
+	 */
+	closure_wake_up(&c->freelist_wait);
+
+	/*
+	 * journal_res_get() can block waiting for free space in the journal -
+	 * it needs to notice there may not be devices to allocate from anymore:
+	 */
+	wake_up(&c->journal.wait);
+
+	/* Now wait for any in flight writes: */
+
+	closure_wait_event(&c->open_buckets_wait,
+			   !bch2_dev_has_open_write_point(c, ca));
+}
+
+/* device goes rw: */
+void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
+{
+	unsigned i;
+
+	for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
+		if (ca->mi.data_allowed & (1 << i))
+			set_bit(ca->dev_idx, c->rw_devs[i].d);
+}
+
+/* stop allocator thread: */
+void bch2_dev_allocator_stop(struct bch_dev *ca)
+{
+	struct task_struct *p;
+
+	p = rcu_dereference_protected(ca->alloc_thread, 1);
+	ca->alloc_thread = NULL;
+
+	/*
+	 * We need an rcu barrier between setting ca->alloc_thread = NULL and
+	 * the thread shutting down to avoid bch2_wake_allocator() racing:
+	 *
+	 * XXX: it would be better to have the rcu barrier be asynchronous
+	 * instead of blocking us here
+	 */
+	synchronize_rcu();
+
+	if (p) {
+		kthread_stop(p);
+		put_task_struct(p);
+	}
+}
+
+/* start allocator thread: */
+int bch2_dev_allocator_start(struct bch_dev *ca)
+{
+	struct task_struct *p;
+
+	/*
+	 * allocator thread already started?
+	 */
+	if (ca->alloc_thread)
+		return 0;
+
+	p = kthread_create(bch2_allocator_thread, ca,
+			   "bch_alloc[%s]", ca->name);
+	if (IS_ERR(p))
+		return PTR_ERR(p);
+
+	get_task_struct(p);
+	rcu_assign_pointer(ca->alloc_thread, p);
+	wake_up_process(p);
+	return 0;
+}
+
+static void allocator_start_issue_discards(struct bch_fs *c)
+{
+	struct bch_dev *ca;
+	unsigned dev_iter;
+	size_t i, bu;
+
+	for_each_rw_member(ca, c, dev_iter) {
+		unsigned done = 0;
+
+		fifo_for_each_entry(bu, &ca->free_inc, i) {
+			if (done == ca->nr_invalidated)
+				break;
+
+			blkdev_issue_discard(ca->disk_sb.bdev,
+					     bucket_to_sector(ca, bu),
+					     ca->mi.bucket_size, GFP_NOIO);
+			done++;
+		}
+	}
+}
+
+static int __bch2_fs_allocator_start(struct bch_fs *c)
+{
+	struct bch_dev *ca;
+	size_t bu, i;
+	unsigned dev_iter;
+	u64 journal_seq = 0;
+	bool invalidating_data = false;
+	int ret = 0;
+
+	if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
+		return -1;
+
+	/* Scan for buckets that are already invalidated: */
+	for_each_rw_member(ca, c, dev_iter) {
+		struct btree_iter iter;
+		struct bucket_mark m;
+		struct bkey_s_c k;
+
+		for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), 0, k) {
+			if (k.k->type != BCH_ALLOC)
+				continue;
+
+			bu = k.k->p.offset;
+			m = READ_ONCE(bucket(ca, bu)->mark);
+
+			if (!is_available_bucket(m) || m.cached_sectors)
+				continue;
+
+			percpu_down_read(&c->usage_lock);
+			bch2_mark_alloc_bucket(c, ca, bu, true,
+					gc_pos_alloc(c, NULL),
+					BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
+					BCH_BUCKET_MARK_GC_LOCK_HELD);
+			percpu_up_read(&c->usage_lock);
+
+			fifo_push(&ca->free_inc, bu);
+			ca->nr_invalidated++;
+
+			if (fifo_full(&ca->free_inc))
+				break;
+		}
+		bch2_btree_iter_unlock(&iter);
+	}
+
+	/* did we find enough buckets? */
+	for_each_rw_member(ca, c, dev_iter)
+		if (fifo_used(&ca->free_inc) < ca->free[RESERVE_BTREE].size) {
+			percpu_ref_put(&ca->io_ref);
+			goto not_enough;
+		}
+
+	return 0;
+not_enough:
+	pr_debug("did not find enough empty buckets; issuing discards");
+
+	/* clear out free_inc - find_reclaimable_buckets() assumes it's empty */
+	for_each_rw_member(ca, c, dev_iter)
+		discard_invalidated_buckets(c, ca);
+
+	pr_debug("scanning for reclaimable buckets");
+
+	for_each_rw_member(ca, c, dev_iter) {
+		BUG_ON(!fifo_empty(&ca->free_inc));
+		ca->free_inc.front = ca->free_inc.back	= 0;
+
+		find_reclaimable_buckets(c, ca);
+		sort_free_inc(c, ca);
+
+		invalidating_data |= ca->allocator_invalidating_data;
+
+		fifo_for_each_entry(bu, &ca->free_inc, i)
+			if (!fifo_push(&ca->free[RESERVE_BTREE], bu))
+				break;
+	}
+
+	pr_debug("done scanning for reclaimable buckets");
+
+	/*
+	 * We're moving buckets to freelists _before_ they've been marked as
+	 * invalidated on disk - we have to so that we can allocate new btree
+	 * nodes to mark them as invalidated on disk.
+	 *
+	 * However, we can't _write_ to any of these buckets yet - they might
+	 * have cached data in them, which is live until they're marked as
+	 * invalidated on disk:
+	 */
+	if (invalidating_data) {
+		pr_debug("invalidating existing data");
+		set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
+	} else {
+		pr_debug("issuing discards");
+		allocator_start_issue_discards(c);
+	}
+
+	/*
+	 * XXX: it's possible for this to deadlock waiting on journal reclaim,
+	 * since we're holding btree writes. What then?
+	 */
+
+	for_each_rw_member(ca, c, dev_iter) {
+		ret = bch2_invalidate_free_inc(c, ca, &journal_seq,
+					       ca->free[RESERVE_BTREE].size,
+					       false);
+		if (ret) {
+			percpu_ref_put(&ca->io_ref);
+			return ret;
+		}
+	}
+
+	if (invalidating_data) {
+		pr_debug("flushing journal");
+
+		ret = bch2_journal_flush_seq(&c->journal, journal_seq);
+		if (ret)
+			return ret;
+
+		pr_debug("issuing discards");
+		allocator_start_issue_discards(c);
+	}
+
+	for_each_rw_member(ca, c, dev_iter)
+		while (ca->nr_invalidated) {
+			BUG_ON(!fifo_pop(&ca->free_inc, bu));
+			ca->nr_invalidated--;
+		}
+
+	set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
+
+	/* now flush dirty btree nodes: */
+	if (invalidating_data) {
+		struct bucket_table *tbl;
+		struct rhash_head *pos;
+		struct btree *b;
+		bool flush_updates;
+		size_t nr_pending_updates;
+
+		clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
+again:
+		pr_debug("flushing dirty btree nodes");
+		cond_resched();
+
+		flush_updates = false;
+		nr_pending_updates = bch2_btree_interior_updates_nr_pending(c);
+
+
+		rcu_read_lock();
+		for_each_cached_btree(b, c, tbl, i, pos)
+			if (btree_node_dirty(b) && (!b->written || b->level)) {
+				if (btree_node_may_write(b)) {
+					rcu_read_unlock();
+					btree_node_lock_type(c, b, SIX_LOCK_read);
+					bch2_btree_node_write(c, b, SIX_LOCK_read);
+					six_unlock_read(&b->lock);
+					goto again;
+				} else {
+					flush_updates = true;
+				}
+			}
+		rcu_read_unlock();
+
+		/*
+		 * This is ugly, but it's needed to flush btree node writes
+		 * without spinning...
+		 */
+		if (flush_updates) {
+			closure_wait_event(&c->btree_interior_update_wait,
+				bch2_btree_interior_updates_nr_pending(c) <
+				nr_pending_updates);
+			goto again;
+		}
+	}
+
+	return 0;
+}
+
+int bch2_fs_allocator_start(struct bch_fs *c)
+{
+	struct bch_dev *ca;
+	unsigned i;
+	int ret;
+
+	down_read(&c->gc_lock);
+	ret = __bch2_fs_allocator_start(c);
+	up_read(&c->gc_lock);
+
+	if (ret)
+		return ret;
+
+	for_each_rw_member(ca, c, i) {
+		ret = bch2_dev_allocator_start(ca);
+		if (ret) {
+			percpu_ref_put(&ca->io_ref);
+			return ret;
+		}
+	}
+
+	return bch2_alloc_write(c);
+}
+
+void bch2_fs_allocator_init(struct bch_fs *c)
+{
+	struct open_bucket *ob;
+	struct write_point *wp;
+
+	mutex_init(&c->write_points_hash_lock);
+	spin_lock_init(&c->freelist_lock);
+	bch2_bucket_clock_init(c, READ);
+	bch2_bucket_clock_init(c, WRITE);
+
+	/* open bucket 0 is a sentinal NULL: */
+	spin_lock_init(&c->open_buckets[0].lock);
+
+	for (ob = c->open_buckets + 1;
+	     ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) {
+		spin_lock_init(&ob->lock);
+		c->open_buckets_nr_free++;
+
+		ob->freelist = c->open_buckets_freelist;
+		c->open_buckets_freelist = ob - c->open_buckets;
+	}
+
+	writepoint_init(&c->btree_write_point, BCH_DATA_BTREE);
+	writepoint_init(&c->rebalance_write_point, BCH_DATA_USER);
+
+	for (wp = c->write_points;
+	     wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) {
+		writepoint_init(wp, BCH_DATA_USER);
+
+		wp->last_used	= sched_clock();
+		wp->write_point	= (unsigned long) wp;
+		hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point));
+	}
+
+	c->pd_controllers_update_seconds = 5;
+	INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);
+}