blob: 48ea2de911f1357bf69c7169dc0fce8f522e4c56 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#ifndef __MSM_GPU_H__
#define __MSM_GPU_H__
#include <linux/adreno-smmu-priv.h>
#include <linux/clk.h>
#include <linux/interconnect.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include "msm_drv.h"
#include "msm_fence.h"
#include "msm_ringbuffer.h"
#include "msm_gem.h"
struct msm_gem_submit;
struct msm_gpu_perfcntr;
struct msm_gpu_state;
struct msm_gpu_config {
const char *ioname;
unsigned int nr_rings;
};
/* So far, with hardware that I've seen to date, we can have:
* + zero, one, or two z180 2d cores
* + a3xx or a2xx 3d core, which share a common CP (the firmware
* for the CP seems to implement some different PM4 packet types
* but the basics of cmdstream submission are the same)
*
* Which means that the eventual complete "class" hierarchy, once
* support for all past and present hw is in place, becomes:
* + msm_gpu
* + adreno_gpu
* + a3xx_gpu
* + a2xx_gpu
* + z180_gpu
*/
struct msm_gpu_funcs {
int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
int (*hw_init)(struct msm_gpu *gpu);
int (*pm_suspend)(struct msm_gpu *gpu);
int (*pm_resume)(struct msm_gpu *gpu);
void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
irqreturn_t (*irq)(struct msm_gpu *irq);
struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
void (*recover)(struct msm_gpu *gpu);
void (*destroy)(struct msm_gpu *gpu);
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
/* show GPU status in debugfs: */
void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p);
/* for generation specific debugfs: */
void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
#endif
unsigned long (*gpu_busy)(struct msm_gpu *gpu);
struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
int (*gpu_state_put)(struct msm_gpu_state *state);
unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
struct msm_gem_address_space *(*create_address_space)
(struct msm_gpu *gpu, struct platform_device *pdev);
struct msm_gem_address_space *(*create_private_address_space)
(struct msm_gpu *gpu);
uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
};
/* Additional state for iommu faults: */
struct msm_gpu_fault_info {
u64 ttbr0;
unsigned long iova;
int flags;
const char *type;
const char *block;
};
/**
* struct msm_gpu_devfreq - devfreq related state
*/
struct msm_gpu_devfreq {
/** devfreq: devfreq instance */
struct devfreq *devfreq;
/**
* busy_cycles:
*
* Used by implementation of gpu->gpu_busy() to track the last
* busy counter value, for calculating elapsed busy cycles since
* last sampling period.
*/
u64 busy_cycles;
/** time: Time of last sampling period. */
ktime_t time;
/** idle_time: Time of last transition to idle: */
ktime_t idle_time;
/**
* idle_freq:
*
* Shadow frequency used while the GPU is idle. From the PoV of
* the devfreq governor, we are continuing to sample busyness and
* adjust frequency while the GPU is idle, but we use this shadow
* value as the GPU is actually clamped to minimum frequency while
* it is inactive.
*/
unsigned long idle_freq;
/**
* idle_work:
*
* Used to delay clamping to idle freq on active->idle transition.
*/
struct msm_hrtimer_work idle_work;
};
struct msm_gpu {
const char *name;
struct drm_device *dev;
struct platform_device *pdev;
const struct msm_gpu_funcs *funcs;
struct adreno_smmu_priv adreno_smmu;
/* performance counters (hw & sw): */
spinlock_t perf_lock;
bool perfcntr_active;
struct {
bool active;
ktime_t time;
} last_sample;
uint32_t totaltime, activetime; /* sw counters */
uint32_t last_cntrs[5]; /* hw counters */
const struct msm_gpu_perfcntr *perfcntrs;
uint32_t num_perfcntrs;
struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
int nr_rings;
/*
* List of GEM active objects on this gpu. Protected by
* msm_drm_private::mm_lock
*/
struct list_head active_list;
/**
* active_submits:
*
* The number of submitted but not yet retired submits, used to
* determine transitions between active and idle.
*
* Protected by lock
*/
int active_submits;
/** lock: protects active_submits and idle/active transitions */
struct mutex active_lock;
/* does gpu need hw_init? */
bool needs_hw_init;
/* number of GPU hangs (for all contexts) */
int global_faults;
void __iomem *mmio;
int irq;
struct msm_gem_address_space *aspace;
/* Power Control: */
struct regulator *gpu_reg, *gpu_cx;
struct clk_bulk_data *grp_clks;
int nr_clocks;
struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
uint32_t fast_rate;
/* Hang and Inactivity Detection:
*/
#define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
struct timer_list hangcheck_timer;
/* Fault info for most recent iova fault: */
struct msm_gpu_fault_info fault_info;
/* work for handling GPU ioval faults: */
struct kthread_work fault_work;
/* work for handling GPU recovery: */
struct kthread_work recover_work;
/* work for handling active-list retiring: */
struct kthread_work retire_work;
/* worker for retire/recover: */
struct kthread_worker *worker;
struct drm_gem_object *memptrs_bo;
struct msm_gpu_devfreq devfreq;
uint32_t suspend_count;
struct msm_gpu_state *crashstate;
/* Enable clamping to idle freq when inactive: */
bool clamp_to_idle;
/* True if the hardware supports expanded apriv (a650 and newer) */
bool hw_apriv;
struct thermal_cooling_device *cooling;
};
static inline struct msm_gpu *dev_to_gpu(struct device *dev)
{
struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
}
/* It turns out that all targets use the same ringbuffer size */
#define MSM_GPU_RINGBUFFER_SZ SZ_32K
#define MSM_GPU_RINGBUFFER_BLKSIZE 32
#define MSM_GPU_RB_CNTL_DEFAULT \
(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
static inline bool msm_gpu_active(struct msm_gpu *gpu)
{
int i;
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
if (ring->seqno > ring->memptrs->fence)
return true;
}
return false;
}
/* Perf-Counters:
* The select_reg and select_val are just there for the benefit of the child
* class that actually enables the perf counter.. but msm_gpu base class
* will handle sampling/displaying the counters.
*/
struct msm_gpu_perfcntr {
uint32_t select_reg;
uint32_t sample_reg;
uint32_t select_val;
const char *name;
};
/*
* The number of priority levels provided by drm gpu scheduler. The
* DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
* cases, so we don't use it (no need for kernel generated jobs).
*/
#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
/**
* struct msm_file_private - per-drm_file context
*
* @queuelock: synchronizes access to submitqueues list
* @submitqueues: list of &msm_gpu_submitqueue created by userspace
* @queueid: counter incremented each time a submitqueue is created,
* used to assign &msm_gpu_submitqueue.id
* @aspace: the per-process GPU address-space
* @ref: reference count
* @seqno: unique per process seqno
*/
struct msm_file_private {
rwlock_t queuelock;
struct list_head submitqueues;
int queueid;
struct msm_gem_address_space *aspace;
struct kref ref;
int seqno;
/**
* entities:
*
* Table of per-priority-level sched entities used by submitqueues
* associated with this &drm_file. Because some userspace apps
* make assumptions about rendering from multiple gl contexts
* (of the same priority) within the process happening in FIFO
* order without requiring any fencing beyond MakeCurrent(), we
* create at most one &drm_sched_entity per-process per-priority-
* level.
*/
struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
};
/**
* msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
*
* @gpu: the gpu instance
* @prio: the userspace priority level
* @ring_nr: [out] the ringbuffer the userspace priority maps to
* @sched_prio: [out] the gpu scheduler priority level which the userspace
* priority maps to
*
* With drm/scheduler providing it's own level of prioritization, our total
* number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
* Each ring is associated with it's own scheduler instance. However, our
* UABI is that lower numerical values are higher priority. So mapping the
* single userspace priority level into ring_nr and sched_prio takes some
* care. The userspace provided priority (when a submitqueue is created)
* is mapped to ring nr and scheduler priority as such:
*
* ring_nr = userspace_prio / NR_SCHED_PRIORITIES
* sched_prio = NR_SCHED_PRIORITIES -
* (userspace_prio % NR_SCHED_PRIORITIES) - 1
*
* This allows generations without preemption (nr_rings==1) to have some
* amount of prioritization, and provides more priority levels for gens
* that do have preemption.
*/
static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
unsigned *ring_nr, enum drm_sched_priority *sched_prio)
{
unsigned rn, sp;
rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
/* invert sched priority to map to higher-numeric-is-higher-
* priority convention
*/
sp = NR_SCHED_PRIORITIES - sp - 1;
if (rn >= gpu->nr_rings)
return -EINVAL;
*ring_nr = rn;
*sched_prio = sp;
return 0;
}
/**
* struct msm_gpu_submitqueues - Userspace created context.
*
* A submitqueue is associated with a gl context or vk queue (or equiv)
* in userspace.
*
* @id: userspace id for the submitqueue, unique within the drm_file
* @flags: userspace flags for the submitqueue, specified at creation
* (currently unusued)
* @ring_nr: the ringbuffer used by this submitqueue, which is determined
* by the submitqueue's priority
* @faults: the number of GPU hangs associated with this submitqueue
* @last_fence: the sequence number of the last allocated fence (for error
* checking)
* @ctx: the per-drm_file context associated with the submitqueue (ie.
* which set of pgtables do submits jobs associated with the
* submitqueue use)
* @node: node in the context's list of submitqueues
* @fence_idr: maps fence-id to dma_fence for userspace visible fence
* seqno, protected by submitqueue lock
* @lock: submitqueue lock
* @ref: reference count
* @entity: the submit job-queue
*/
struct msm_gpu_submitqueue {
int id;
u32 flags;
u32 ring_nr;
int faults;
uint32_t last_fence;
struct msm_file_private *ctx;
struct list_head node;
struct idr fence_idr;
struct mutex lock;
struct kref ref;
struct drm_sched_entity *entity;
};
struct msm_gpu_state_bo {
u64 iova;
size_t size;
void *data;
bool encoded;
};
struct msm_gpu_state {
struct kref ref;
struct timespec64 time;
struct {
u64 iova;
u32 fence;
u32 seqno;
u32 rptr;
u32 wptr;
void *data;
int data_size;
bool encoded;
} ring[MSM_GPU_MAX_RINGS];
int nr_registers;
u32 *registers;
u32 rbbm_status;
char *comm;
char *cmd;
struct msm_gpu_fault_info fault_info;
int nr_bos;
struct msm_gpu_state_bo *bos;
};
static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
{
msm_writel(data, gpu->mmio + (reg << 2));
}
static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
{
return msm_readl(gpu->mmio + (reg << 2));
}
static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
{
msm_rmw(gpu->mmio + (reg << 2), mask, or);
}
static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
{
u64 val;
/*
* Why not a readq here? Two reasons: 1) many of the LO registers are
* not quad word aligned and 2) the GPU hardware designers have a bit
* of a history of putting registers where they fit, especially in
* spins. The longer a GPU family goes the higher the chance that
* we'll get burned. We could do a series of validity checks if we
* wanted to, but really is a readq() that much better? Nah.
*/
/*
* For some lo/hi registers (like perfcounters), the hi value is latched
* when the lo is read, so make sure to read the lo first to trigger
* that
*/
val = (u64) msm_readl(gpu->mmio + (lo << 2));
val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
return val;
}
static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
{
/* Why not a writeq here? Read the screed above */
msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
}
int msm_gpu_pm_suspend(struct msm_gpu *gpu);
int msm_gpu_pm_resume(struct msm_gpu *gpu);
int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
u32 id);
int msm_submitqueue_create(struct drm_device *drm,
struct msm_file_private *ctx,
u32 prio, u32 flags, u32 *id);
int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
struct drm_msm_submitqueue_query *args);
int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
void msm_submitqueue_close(struct msm_file_private *ctx);
void msm_submitqueue_destroy(struct kref *kref);
void __msm_file_private_destroy(struct kref *kref);
static inline void msm_file_private_put(struct msm_file_private *ctx)
{
kref_put(&ctx->ref, __msm_file_private_destroy);
}
static inline struct msm_file_private *msm_file_private_get(
struct msm_file_private *ctx)
{
kref_get(&ctx->ref);
return ctx;
}
void msm_devfreq_init(struct msm_gpu *gpu);
void msm_devfreq_cleanup(struct msm_gpu *gpu);
void msm_devfreq_resume(struct msm_gpu *gpu);
void msm_devfreq_suspend(struct msm_gpu *gpu);
void msm_devfreq_active(struct msm_gpu *gpu);
void msm_devfreq_idle(struct msm_gpu *gpu);
int msm_gpu_hw_init(struct msm_gpu *gpu);
void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
void msm_gpu_retire(struct msm_gpu *gpu);
void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
const char *name, struct msm_gpu_config *config);
struct msm_gem_address_space *
msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
void msm_gpu_cleanup(struct msm_gpu *gpu);
struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
void __init adreno_register(void);
void __exit adreno_unregister(void);
static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
{
if (queue)
kref_put(&queue->ref, msm_submitqueue_destroy);
}
static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
{
struct msm_gpu_state *state = NULL;
mutex_lock(&gpu->dev->struct_mutex);
if (gpu->crashstate) {
kref_get(&gpu->crashstate->ref);
state = gpu->crashstate;
}
mutex_unlock(&gpu->dev->struct_mutex);
return state;
}
static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
{
mutex_lock(&gpu->dev->struct_mutex);
if (gpu->crashstate) {
if (gpu->funcs->gpu_state_put(gpu->crashstate))
gpu->crashstate = NULL;
}
mutex_unlock(&gpu->dev->struct_mutex);
}
/*
* Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
* support expanded privileges
*/
#define check_apriv(gpu, flags) \
(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
#endif /* __MSM_GPU_H__ */