Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/Documentation/uml/UserModeLinux-HOWTO.txt b/Documentation/uml/UserModeLinux-HOWTO.txt
new file mode 100644
index 0000000..0c7b654
--- /dev/null
+++ b/Documentation/uml/UserModeLinux-HOWTO.txt
@@ -0,0 +1,4686 @@
+  User Mode Linux HOWTO
+  User Mode Linux Core Team
+  Mon Nov 18 14:16:16 EST 2002
+
+  This document describes the use and abuse of Jeff Dike's User Mode
+  Linux: a port of the Linux kernel as a normal Intel Linux process.
+  ______________________________________________________________________
+
+  Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+  1. Introduction
+
+     1.1 How is User Mode Linux Different?
+     1.2 Why Would I Want User Mode Linux?
+
+  2. Compiling the kernel and modules
+
+     2.1 Compiling the kernel
+     2.2 Compiling and installing kernel modules
+     2.3 Compiling and installing uml_utilities
+
+  3. Running UML and logging in
+
+     3.1 Running UML
+     3.2 Logging in
+     3.3 Examples
+
+  4. UML on 2G/2G hosts
+
+     4.1 Introduction
+     4.2 The problem
+     4.3 The solution
+
+  5. Setting up serial lines and consoles
+
+     5.1 Specifying the device
+     5.2 Specifying the channel
+     5.3 Examples
+
+  6. Setting up the network
+
+     6.1 General setup
+     6.2 Userspace daemons
+     6.3 Specifying ethernet addresses
+     6.4 UML interface setup
+     6.5 Multicast
+     6.6 TUN/TAP with the uml_net helper
+     6.7 TUN/TAP with a preconfigured tap device
+     6.8 Ethertap
+     6.9 The switch daemon
+     6.10 Slip
+     6.11 Slirp
+     6.12 pcap
+     6.13 Setting up the host yourself
+
+  7. Sharing Filesystems between Virtual Machines
+
+     7.1 A warning
+     7.2 Using layered block devices
+     7.3 Note!
+     7.4 Another warning
+     7.5 uml_moo : Merging a COW file with its backing file
+
+  8. Creating filesystems
+
+     8.1 Create the filesystem file
+     8.2 Assign the file to a UML device
+     8.3 Creating and mounting the filesystem
+
+  9. Host file access
+
+     9.1 Using hostfs
+     9.2 hostfs as the root filesystem
+     9.3 Building hostfs
+
+  10. The Management Console
+     10.1 version
+     10.2 halt and reboot
+     10.3 config
+     10.4 remove
+     10.5 sysrq
+     10.6 help
+     10.7 cad
+     10.8 stop
+     10.9 go
+
+  11. Kernel debugging
+
+     11.1 Starting the kernel under gdb
+     11.2 Examining sleeping processes
+     11.3 Running ddd on UML
+     11.4 Debugging modules
+     11.5 Attaching gdb to the kernel
+     11.6 Using alternate debuggers
+
+  12. Kernel debugging examples
+
+     12.1 The case of the hung fsck
+     12.2 Episode 2: The case of the hung fsck
+
+  13. What to do when UML doesn't work
+
+     13.1 Strange compilation errors when you build from source
+     13.2 UML hangs on boot after mounting devfs
+     13.3 A variety of panics and hangs with /tmp on a reiserfs  filesystem
+     13.4 The compile fails with errors about conflicting types for 'open', 'dup', and 'waitpid'
+     13.5 UML doesn't work when /tmp is an NFS filesystem
+     13.6 UML hangs on boot when compiled with gprof support
+     13.7 syslogd dies with a SIGTERM on startup
+     13.8 TUN/TAP networking doesn't work on a 2.4 host
+     13.9 You can network to the host but not to other machines on the net
+     13.10 I have no root and I want to scream
+     13.11 UML build conflict between ptrace.h and ucontext.h
+     13.12 The UML BogoMips is exactly half the host's BogoMips
+     13.13 When you run UML, it immediately segfaults
+     13.14 xterms appear, then immediately disappear
+     13.15 Any other panic, hang, or strange behavior
+
+  14. Diagnosing Problems
+
+     14.1 Case 1 : Normal kernel panics
+     14.2 Case 2 : Tracing thread panics
+     14.3 Case 3 : Tracing thread panics caused by other threads
+     14.4 Case 4 : Hangs
+
+  15. Thanks
+
+     15.1 Code and Documentation
+     15.2 Flushing out bugs
+     15.3 Buglets and clean-ups
+     15.4 Case Studies
+     15.5 Other contributions
+
+
+  ______________________________________________________________________
+
+  11..  IInnttrroodduuccttiioonn
+
+  Welcome to User Mode Linux.  It's going to be fun.
+
+
+
+  11..11..  HHooww iiss UUsseerr MMooddee LLiinnuuxx DDiiffffeerreenntt??
+
+  Normally, the Linux Kernel talks straight to your hardware (video
+  card, keyboard, hard drives, etc), and any programs which run ask the
+  kernel to operate the hardware, like so:
+
+
+
+         +-----------+-----------+----+
+         | Process 1 | Process 2 | ...|
+         +-----------+-----------+----+
+         |       Linux Kernel         |
+         +----------------------------+
+         |         Hardware           |
+         +----------------------------+
+
+
+
+
+  The User Mode Linux Kernel is different; instead of talking to the
+  hardware, it talks to a `real' Linux kernel (called the `host kernel'
+  from now on), like any other program.  Programs can then run inside
+  User-Mode Linux as if they were running under a normal kernel, like
+  so:
+
+
+
+                     +----------------+
+                     | Process 2 | ...|
+         +-----------+----------------+
+         | Process 1 | User-Mode Linux|
+         +----------------------------+
+         |       Linux Kernel         |
+         +----------------------------+
+         |         Hardware           |
+         +----------------------------+
+
+
+
+
+
+  11..22..  WWhhyy WWoouulldd II WWaanntt UUsseerr MMooddee LLiinnuuxx??
+
+
+  1. If User Mode Linux crashes, your host kernel is still fine.
+
+  2. You can run a usermode kernel as a non-root user.
+
+  3. You can debug the User Mode Linux like any normal process.
+
+  4. You can run gprof (profiling) and gcov (coverage testing).
+
+  5. You can play with your kernel without breaking things.
+
+  6. You can use it as a sandbox for testing new apps.
+
+  7. You can try new development kernels safely.
+
+  8. You can run different distributions simultaneously.
+
+  9. It's extremely fun.
+
+
+
+
+
+  22..  CCoommppiilliinngg tthhee kkeerrnneell aanndd mmoodduulleess
+
+
+
+
+  22..11..  CCoommppiilliinngg tthhee kkeerrnneell
+
+
+  Compiling the user mode kernel is just like compiling any other
+  kernel.  Let's go through the steps, using 2.4.0-prerelease (current
+  as of this writing) as an example:
+
+
+  1. Download the latest UML patch from
+
+     the download page <http://user-mode-linux.sourceforge.net/dl-
+     sf.html>
+
+     In this example, the file is uml-patch-2.4.0-prerelease.bz2.
+
+
+  2. Download the matching kernel from your favourite kernel mirror,
+     such as:
+
+     ftp://ftp.ca.kernel.org/pub/kernel/v2.4/linux-2.4.0-prerelease.tar.bz2
+     <ftp://ftp.ca.kernel.org/pub/kernel/v2.4/linux-2.4.0-prerelease.tar.bz2>
+     .
+
+
+  3. Make a directory and unpack the kernel into it.
+
+
+
+       host%
+       mkdir ~/uml
+
+
+
+
+
+
+       host%
+       cd ~/uml
+
+
+
+
+
+
+       host%
+       tar -xzvf linux-2.4.0-prerelease.tar.bz2
+
+
+
+
+
+
+  4. Apply the patch using
+
+
+
+       host%
+       cd ~/uml/linux
+
+
+
+       host%
+       bzcat uml-patch-2.4.0-prerelease.bz2 | patch -p1
+
+
+
+
+
+
+  5. Run your favorite config; `make xconfig ARCH=um' is the most
+     convenient.  `make config ARCH=um' and 'make menuconfig ARCH=um'
+     will work as well.  The defaults will give you a useful kernel.  If
+     you want to change something, go ahead, it probably won't hurt
+     anything.
+
+
+     Note:  If the host is configured with a 2G/2G address space split
+     rather than the usual 3G/1G split, then the packaged UML binaries
+     will not run.  They will immediately segfault.  See ``UML on 2G/2G
+     hosts''  for the scoop on running UML on your system.
+
+
+
+  6. Finish with `make linux ARCH=um': the result is a file called
+     `linux' in the top directory of your source tree.
+
+  Make sure that you don't build this kernel in /usr/src/linux.  On some
+  distributions, /usr/include/asm is a link into this pool.  The user-
+  mode build changes the other end of that link, and things that include
+  <asm/anything.h> stop compiling.
+
+  The sources are also available from cvs at the project's cvs page,
+  which has directions on getting the sources. You can also browse the
+  CVS pool from there.
+
+  If you get the CVS sources, you will have to check them out into an
+  empty directory. You will then have to copy each file into the
+  corresponding directory in the appropriate kernel pool.
+
+  If you don't have the latest kernel pool, you can get the
+  corresponding user-mode sources with
+
+
+       host% cvs co -r v_2_3_x linux
+
+
+
+
+  where 'x' is the version in your pool. Note that you will not get the
+  bug fixes and enhancements that have gone into subsequent releases.
+
+
+  If you build your own kernel, and want to boot it from one of the
+  filesystems distributed from this site, then, in nearly all cases,
+  devfs must be compiled into the kernel and mounted at boot time.  The
+  exception is the SuSE filesystem.  For this, devfs must either not be
+  in the kernel at all, or "devfs=nomount" must be on the kernel command
+  line.  Any disagreement between the kernel and the filesystem being
+  booted about whether devfs is being used will result in the boot
+  getting no further than single-user mode.
+
+
+  If you don't want to use devfs, you can remove the need for it from a
+  filesystem by copying /dev from someplace, making a bunch of /dev/ubd
+  devices:
+
+
+  UML# for i in 0 1 2 3 4 5 6 7; do mknod ubd$i b 98 $i; done
+
+
+
+
+  and changing /etc/fstab and /etc/inittab to refer to the non-devfs
+  devices.
+
+
+
+  22..22..  CCoommppiilliinngg aanndd iinnssttaalllliinngg kkeerrnneell mmoodduulleess
+
+  UML modules are built in the same way as the native kernel (with the
+  exception of the 'ARCH=um' that you always need for UML):
+
+
+       host% make modules ARCH=um
+
+
+
+
+  Any modules that you want to load into this kernel need to be built in
+  the user-mode pool.  Modules from the native kernel won't work.
+
+  You can install them by using ftp or something to copy them into the
+  virtual machine and dropping them into /lib/modules/`uname -r`.
+
+  You can also get the kernel build process to install them as follows:
+
+  1. with the kernel not booted, mount the root filesystem in the top
+     level of the kernel pool:
+
+
+       host% mount root_fs mnt -o loop
+
+
+
+
+
+
+  2. run
+
+
+       host%
+       make modules_install INSTALL_MOD_PATH=`pwd`/mnt ARCH=um
+
+
+
+
+
+
+  3. unmount the filesystem
+
+
+       host% umount mnt
+
+
+
+
+
+
+  4. boot the kernel on it
+
+
+  When the system is booted, you can use insmod as usual to get the
+  modules into the kernel.  A number of things have been loaded into UML
+  as modules, especially filesystems and network protocols and filters,
+  so most symbols which need to be exported probably already are.
+  However, if you do find symbols that need exporting, let  us
+  <http://user-mode-linux.sourceforge.net/contacts.html>  know, and
+  they'll be "taken care of".
+
+
+
+  22..33..  CCoommppiilliinngg aanndd iinnssttaalllliinngg uummll__uuttiilliittiieess
+
+  Many features of the UML kernel require a user-space helper program,
+  so a uml_utilities package is distributed separately from the kernel
+  patch which provides these helpers. Included within this is:
+
+  +o  port-helper - Used by consoles which connect to xterms or ports
+
+  +o  tunctl - Configuration tool to create and delete tap devices
+
+  +o  uml_net - Setuid binary for automatic tap device configuration
+
+  +o  uml_switch - User-space virtual switch required for daemon
+     transport
+
+     The uml_utilities tree is compiled with:
+
+
+       host#
+       make && make install
+
+
+
+
+  Note that UML kernel patches may require a specific version of the
+  uml_utilities distribution. If you don't keep up with the mailing
+  lists, ensure that you have the latest release of uml_utilities if you
+  are experiencing problems with your UML kernel, particularly when
+  dealing with consoles or command-line switches to the helper programs
+
+
+
+
+
+
+
+
+  33..  RRuunnnniinngg UUMMLL aanndd llooggggiinngg iinn
+
+
+
+  33..11..  RRuunnnniinngg UUMMLL
+
+  It runs on 2.2.15 or later, and all 2.4 kernels.
+
+
+  Booting UML is straightforward.  Simply run 'linux': it will try to
+  mount the file `root_fs' in the current directory.  You do not need to
+  run it as root.  If your root filesystem is not named `root_fs', then
+  you need to put a `ubd0=root_fs_whatever' switch on the linux command
+  line.
+
+
+  You will need a filesystem to boot UML from.  There are a number
+  available for download from  here  <http://user-mode-
+  linux.sourceforge.net/dl-sf.html> .  There are also  several tools
+  <http://user-mode-linux.sourceforge.net/fs_making.html>  which can be
+  used to generate UML-compatible filesystem images from media.
+  The kernel will boot up and present you with a login prompt.
+
+
+  Note:  If the host is configured with a 2G/2G address space split
+  rather than the usual 3G/1G split, then the packaged UML binaries will
+  not run.  They will immediately segfault.  See ``UML on 2G/2G hosts''
+  for the scoop on running UML on your system.
+
+
+
+  33..22..  LLooggggiinngg iinn
+
+
+
+  The prepackaged filesystems have a root account with password 'root'
+  and a user account with password 'user'.  The login banner will
+  generally tell you how to log in.  So, you log in and you will find
+  yourself inside a little virtual machine. Our filesystems have a
+  variety of commands and utilities installed (and it is fairly easy to
+  add more), so you will have a lot of tools with which to poke around
+  the system.
+
+  There are a couple of other ways to log in:
+
+  +o  On a virtual console
+
+
+
+     Each virtual console that is configured (i.e. the device exists in
+     /dev and /etc/inittab runs a getty on it) will come up in its own
+     xterm.  If you get tired of the xterms, read ``Setting up serial
+     lines and consoles''  to see how to attach the consoles to
+     something else, like host ptys.
+
+
+
+  +o  Over the serial line
+
+
+     In the boot output, find a line that looks like:
+
+
+
+       serial line 0 assigned pty /dev/ptyp1
+
+
+
+
+  Attach your favorite terminal program to the corresponding tty.  I.e.
+  for minicom, the command would be
+
+
+       host% minicom -o -p /dev/ttyp1
+
+
+
+
+
+
+  +o  Over the net
+
+
+     If the network is running, then you can telnet to the virtual
+     machine and log in to it.  See ``Setting up the network''  to learn
+     about setting up a virtual network.
+
+  When you're done using it, run halt, and the kernel will bring itself
+  down and the process will exit.
+
+
+  33..33..  EExxaammpplleess
+
+  Here are some examples of UML in action:
+
+  +o  A login session <http://user-mode-linux.sourceforge.net/login.html>
+
+  +o  A virtual network <http://user-mode-linux.sourceforge.net/net.html>
+
+
+
+
+
+
+
+  44..  UUMMLL oonn 22GG//22GG hhoossttss
+
+
+
+
+  44..11..  IInnttrroodduuccttiioonn
+
+
+  Most Linux machines are configured so that the kernel occupies the
+  upper 1G (0xc0000000 - 0xffffffff) of the 4G address space and
+  processes use the lower 3G (0x00000000 - 0xbfffffff).  However, some
+  machine are configured with a 2G/2G split, with the kernel occupying
+  the upper 2G (0x80000000 - 0xffffffff) and processes using the lower
+  2G (0x00000000 - 0x7fffffff).
+
+
+
+
+  44..22..  TThhee pprroobblleemm
+
+
+  The prebuilt UML binaries on this site will not run on 2G/2G hosts
+  because UML occupies the upper .5G of the 3G process address space
+  (0xa0000000 - 0xbfffffff).  Obviously, on 2G/2G hosts, this is right
+  in the middle of the kernel address space, so UML won't even load - it
+  will immediately segfault.
+
+
+
+
+  44..33..  TThhee ssoolluuttiioonn
+
+
+  The fix for this is to rebuild UML from source after enabling
+  CONFIG_HOST_2G_2G (under 'General Setup').  This will cause UML to
+  load itself in the top .5G of that smaller process address space,
+  where it will run fine.  See ``Compiling the kernel and modules''  if
+  you need help building UML from source.
+
+
+
+
+
+
+
+
+
+
+  55..  SSeettttiinngg uupp sseerriiaall lliinneess aanndd ccoonnssoolleess
+
+
+  It is possible to attach UML serial lines and consoles to many types
+  of host I/O channels by specifying them on the command line.
+
+
+  You can attach them to host ptys, ttys, file descriptors, and ports.
+  This allows you to do things like
+
+  +o  have a UML console appear on an unused host console,
+
+  +o  hook two virtual machines together by having one attach to a pty
+     and having the other attach to the corresponding tty
+
+  +o  make a virtual machine accessible from the net by attaching a
+     console to a port on the host.
+
+
+  The general format of the command line option is device=channel.
+
+
+
+  55..11..  SSppeecciiffyyiinngg tthhee ddeevviiccee
+
+  Devices are specified with "con" or "ssl" (console or serial line,
+  respectively), optionally with a device number if you are talking
+  about a specific device.
+
+
+  Using just "con" or "ssl" describes all of the consoles or serial
+  lines.  If you want to talk about console #3 or serial line #10, they
+  would be "con3" and "ssl10", respectively.
+
+
+  A specific device name will override a less general "con=" or "ssl=".
+  So, for example, you can assign a pty to each of the serial lines
+  except for the first two like this:
+
+
+        ssl=pty ssl0=tty:/dev/tty0 ssl1=tty:/dev/tty1
+
+
+
+
+  The specificity of the device name is all that matters; order on the
+  command line is irrelevant.
+
+
+
+  55..22..  SSppeecciiffyyiinngg tthhee cchhaannnneell
+
+  There are a number of different types of channels to attach a UML
+  device to, each with a different way of specifying exactly what to
+  attach to.
+
+  +o  pseudo-terminals - device=pty pts terminals - device=pts
+
+
+     This will cause UML to allocate a free host pseudo-terminal for the
+     device.  The terminal that it got will be announced in the boot
+     log.  You access it by attaching a terminal program to the
+     corresponding tty:
+
+  +o  screen /dev/pts/n
+
+  +o  screen /dev/ttyxx
+
+  +o  minicom -o -p /dev/ttyxx - minicom seems not able to handle pts
+     devices
+
+  +o  kermit - start it up, 'open' the device, then 'connect'
+
+
+
+
+
+  +o  terminals - device=tty:tty device file
+
+
+     This will make UML attach the device to the specified tty (i.e
+
+
+        con1=tty:/dev/tty3
+
+
+
+
+  will attach UML's console 1 to the host's /dev/tty3).  If the tty that
+  you specify is the slave end of a tty/pty pair, something else must
+  have already opened the corresponding pty in order for this to work.
+
+
+
+
+
+  +o  xterms - device=xterm
+
+
+     UML will run an xterm and the device will be attached to it.
+
+
+
+
+
+  +o  Port - device=port:port number
+
+
+     This will attach the UML devices to the specified host port.
+     Attaching console 1 to the host's port 9000 would be done like
+     this:
+
+
+        con1=port:9000
+
+
+
+
+  Attaching all the serial lines to that port would be done similarly:
+
+
+        ssl=port:9000
+
+
+
+
+  You access these devices by telnetting to that port.  Each active tel-
+  net session gets a different device.  If there are more telnets to a
+  port than UML devices attached to it, then the extra telnet sessions
+  will block until an existing telnet detaches, or until another device
+  becomes active (i.e. by being activated in /etc/inittab).
+
+  This channel has the advantage that you can both attach multiple UML
+  devices to it and know how to access them without reading the UML boot
+  log.  It is also unique in allowing access to a UML from remote
+  machines without requiring that the UML be networked.  This could be
+  useful in allowing public access to UMLs because they would be
+  accessible from the net, but wouldn't need any kind of network
+  filtering or access control because they would have no network access.
+
+
+  If you attach the main console to a portal, then the UML boot will
+  appear to hang.  In reality, it's waiting for a telnet to connect, at
+  which point the boot will proceed.
+
+
+
+
+
+  +o  already-existing file descriptors - device=file descriptor
+
+
+     If you set up a file descriptor on the UML command line, you can
+     attach a UML device to it.  This is most commonly used to put the
+     main console back on stdin and stdout after assigning all the other
+     consoles to something else:
+
+
+        con0=fd:0,fd:1 con=pts
+
+
+
+
+
+
+
+
+  +o  Nothing - device=null
+
+
+     This allows the device to be opened, in contrast to 'none', but
+     reads will block, and writes will succeed and the data will be
+     thrown out.
+
+
+
+
+
+  +o  None - device=none
+
+
+     This causes the device to disappear.  If you are using devfs, the
+     device will not appear in /dev.  If not, then attempts to open it
+     will return -ENODEV.
+
+
+
+  You can also specify different input and output channels for a device
+  by putting a comma between them:
+
+
+        ssl3=tty:/dev/tty2,xterm
+
+
+
+
+  will cause serial line 3 to accept input on the host's /dev/tty3 and
+  display output on an xterm.  That's a silly example - the most common
+  use of this syntax is to reattach the main console to stdin and stdout
+  as shown above.
+
+
+  If you decide to move the main console away from stdin/stdout, the
+  initial boot output will appear in the terminal that you're running
+  UML in.  However, once the console driver has been officially
+  initialized, then the boot output will start appearing wherever you
+  specified that console 0 should be.  That device will receive all
+  subsequent output.
+
+
+
+  55..33..  EExxaammpplleess
+
+  There are a number of interesting things you can do with this
+  capability.
+
+
+  First, this is how you get rid of those bleeding console xterms by
+  attaching them to host ptys:
+
+
+        con=pty con0=fd:0,fd:1
+
+
+
+
+  This will make a UML console take over an unused host virtual console,
+  so that when you switch to it, you will see the UML login prompt
+  rather than the host login prompt:
+
+
+        con1=tty:/dev/tty6
+
+
+
+
+  You can attach two virtual machines together with what amounts to a
+  serial line as follows:
+
+  Run one UML with a serial line attached to a pty -
+
+
+        ssl1=pty
+
+
+
+
+  Look at the boot log to see what pty it got (this example will assume
+  that it got /dev/ptyp1).
+
+  Boot the other UML with a serial line attached to the corresponding
+  tty -
+
+
+        ssl1=tty:/dev/ttyp1
+
+
+
+
+  Log in, make sure that it has no getty on that serial line, attach a
+  terminal program like minicom to it, and you should see the login
+  prompt of the other virtual machine.
+
+
+  66..  SSeettttiinngg uupp tthhee nneettwwoorrkk
+
+
+
+  This page describes how to set up the various transports and to
+  provide a UML instance with network access to the host, other machines
+  on the local net, and the rest of the net.
+
+
+  As of 2.4.5, UML networking has been completely redone to make it much
+  easier to set up, fix bugs, and add new features.
+
+
+  There is a new helper, uml_net, which does the host setup that
+  requires root privileges.
+
+
+  There are currently five transport types available for a UML virtual
+  machine to exchange packets with other hosts:
+
+  +o  ethertap
+
+  +o  TUN/TAP
+
+  +o  Multicast
+
+  +o  a switch daemon
+
+  +o  slip
+
+  +o  slirp
+
+  +o  pcap
+
+     The TUN/TAP, ethertap, slip, and slirp transports allow a UML
+     instance to exchange packets with the host.  They may be directed
+     to the host or the host may just act as a router to provide access
+     to other physical or virtual machines.
+
+
+  The pcap transport is a synthetic read-only interface, using the
+  libpcap binary to collect packets from interfaces on the host and
+  filter them.  This is useful for building preconfigured traffic
+  monitors or sniffers.
+
+
+  The daemon and multicast transports provide a completely virtual
+  network to other virtual machines.  This network is completely
+  disconnected from the physical network unless one of the virtual
+  machines on it is acting as a gateway.
+
+
+  With so many host transports, which one should you use?  Here's when
+  you should use each one:
+
+  +o  ethertap - if you want access to the host networking and it is
+     running 2.2
+
+  +o  TUN/TAP - if you want access to the host networking and it is
+     running 2.4.  Also, the TUN/TAP transport is able to use a
+     preconfigured device, allowing it to avoid using the setuid uml_net
+     helper, which is a security advantage.
+
+  +o  Multicast - if you want a purely virtual network and you don't want
+     to set up anything but the UML
+
+  +o  a switch daemon - if you want a purely virtual network and you
+     don't mind running the daemon in order to get somewhat better
+     performance
+
+  +o  slip - there is no particular reason to run the slip backend unless
+     ethertap and TUN/TAP are just not available for some reason
+
+  +o  slirp - if you don't have root access on the host to setup
+     networking, or if you don't want to allocate an IP to your UML
+
+  +o  pcap - not much use for actual network connectivity, but great for
+     monitoring traffic on the host
+
+     Ethertap is available on 2.4 and works fine.  TUN/TAP is preferred
+     to it because it has better performance and ethertap is officially
+     considered obsolete in 2.4.  Also, the root helper only needs to
+     run occasionally for TUN/TAP, rather than handling every packet, as
+     it does with ethertap.  This is a slight security advantage since
+     it provides fewer opportunities for a nasty UML user to somehow
+     exploit the helper's root privileges.
+
+
+  66..11..  GGeenneerraall sseettuupp
+
+  First, you must have the virtual network enabled in your UML.  If are
+  running a prebuilt kernel from this site, everything is already
+  enabled.  If you build the kernel yourself, under the "Network device
+  support" menu, enable "Network device support", and then the three
+  transports.
+
+
+  The next step is to provide a network device to the virtual machine.
+  This is done by describing it on the kernel command line.
+
+  The general format is
+
+
+       eth <n> = <transport> , <transport args>
+
+
+
+
+  For example, a virtual ethernet device may be attached to a host
+  ethertap device as follows:
+
+
+       eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254
+
+
+
+
+  This sets up eth0 inside the virtual machine to attach itself to the
+  host /dev/tap0, assigns it an ethernet address, and assigns the host
+  tap0 interface an IP address.
+
+
+
+  Note that the IP address you assign to the host end of the tap device
+  must be different than the IP you assign to the eth device inside UML.
+  If you are short on IPs and don't want to comsume two per UML, then
+  you can reuse the host's eth IP address for the host ends of the tap
+  devices.  Internally, the UMLs must still get unique IPs for their eth
+  devices.  You can also give the UMLs non-routable IPs (192.168.x.x or
+  10.x.x.x) and have the host masquerade them.  This will let outgoing
+  connections work, but incoming connections won't without more work,
+  such as port forwarding from the host.
+  Also note that when you configure the host side of an interface, it is
+  only acting as a gateway.  It will respond to pings sent to it
+  locally, but is not useful to do that since it's a host interface.
+  You are not talking to the UML when you ping that interface and get a
+  response.
+
+
+  You can also add devices to a UML and remove them at runtime.  See the
+  ``The Management Console''  page for details.
+
+
+  The sections below describe this in more detail.
+
+
+  Once you've decided how you're going to set up the devices, you boot
+  UML, log in, configure the UML side of the devices, and set up routes
+  to the outside world.  At that point, you will be able to talk to any
+  other machines, physical or virtual, on the net.
+
+
+  If ifconfig inside UML fails and the network refuses to come up, run
+  tell you what went wrong.
+
+
+
+  66..22..  UUsseerrssppaaccee ddaaeemmoonnss
+
+  You will likely need the setuid helper, or the switch daemon, or both.
+  They are both installed with the RPM and deb, so if you've installed
+  either, you can skip the rest of this section.
+
+
+  If not, then you need to check them out of CVS, build them, and
+  install them.  The helper is uml_net, in CVS /tools/uml_net, and the
+  daemon is uml_switch, in CVS /tools/uml_router.  They are both built
+  with a plain 'make'.  Both need to be installed in a directory that's
+  in your path - /usr/bin is recommend.  On top of that, uml_net needs
+  to be setuid root.
+
+
+
+  66..33..  SSppeecciiffyyiinngg eetthheerrnneett aaddddrreesssseess
+
+  Below, you will see that the TUN/TAP, ethertap, and daemon interfaces
+  allow you to specify hardware addresses for the virtual ethernet
+  devices.  This is generally not necessary.  If you don't have a
+  specific reason to do it, you probably shouldn't.  If one is not
+  specified on the command line, the driver will assign one based on the
+  device IP address.  It will provide the address fe:fd:nn:nn:nn:nn
+  where nn.nn.nn.nn is the device IP address.  This is nearly always
+  sufficient to guarantee a unique hardware address for the device.  A
+  couple of exceptions are:
+
+  +o  Another set of virtual ethernet devices are on the same network and
+     they are assigned hardware addresses using a different scheme which
+     may conflict with the UML IP address-based scheme
+
+  +o  You aren't going to use the device for IP networking, so you don't
+     assign the device an IP address
+
+     If you let the driver provide the hardware address, you should make
+     sure that the device IP address is known before the interface is
+     brought up.  So, inside UML, this will guarantee that:
+
+
+
+  UML#
+  ifconfig eth0 192.168.0.250 up
+
+
+
+
+  If you decide to assign the hardware address yourself, make sure that
+  the first byte of the address is even.  Addresses with an odd first
+  byte are broadcast addresses, which you don't want assigned to a
+  device.
+
+
+
+  66..44..  UUMMLL iinntteerrffaaccee sseettuupp
+
+  Once the network devices have been described on the command line, you
+  should boot UML and log in.
+
+
+  The first thing to do is bring the interface up:
+
+
+       UML# ifconfig ethn ip-address up
+
+
+
+
+  You should be able to ping the host at this point.
+
+
+  To reach the rest of the world, you should set a default route to the
+  host:
+
+
+       UML# route add default gw host ip
+
+
+
+
+  Again, with host ip of 192.168.0.4:
+
+
+       UML# route add default gw 192.168.0.4
+
+
+
+
+  This page used to recommend setting a network route to your local net.
+  This is wrong, because it will cause UML to try to figure out hardware
+  addresses of the local machines by arping on the interface to the
+  host.  Since that interface is basically a single strand of ethernet
+  with two nodes on it (UML and the host) and arp requests don't cross
+  networks, they will fail to elicit any responses.  So, what you want
+  is for UML to just blindly throw all packets at the host and let it
+  figure out what to do with them, which is what leaving out the network
+  route and adding the default route does.
+
+
+  Note: If you can't communicate with other hosts on your physical
+  ethernet, it's probably because of a network route that's
+  automatically set up.  If you run 'route -n' and see a route that
+  looks like this:
+
+
+
+
+  Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
+  192.168.0.0     0.0.0.0         255.255.255.0   U     0      0      0   eth0
+
+
+
+
+  with a mask that's not 255.255.255.255, then replace it with a route
+  to your host:
+
+
+       UML#
+       route del -net 192.168.0.0 dev eth0 netmask 255.255.255.0
+
+
+
+
+
+
+       UML#
+       route add -host 192.168.0.4 dev eth0
+
+
+
+
+  This, plus the default route to the host, will allow UML to exchange
+  packets with any machine on your ethernet.
+
+
+
+  66..55..  MMuullttiiccaasstt
+
+  The simplest way to set up a virtual network between multiple UMLs is
+  to use the mcast transport.  This was written by Harald Welte and is
+  present in UML version 2.4.5-5um and later.  Your system must have
+  multicast enabled in the kernel and there must be a multicast-capable
+  network device on the host.  Normally, this is eth0, but if there is
+  no ethernet card on the host, then you will likely get strange error
+  messages when you bring the device up inside UML.
+
+
+  To use it, run two UMLs with
+
+
+        eth0=mcast
+
+
+
+
+  on their command lines.  Log in, configure the ethernet device in each
+  machine with different IP addresses:
+
+
+       UML1# ifconfig eth0 192.168.0.254
+
+
+
+
+
+
+       UML2# ifconfig eth0 192.168.0.253
+
+
+
+
+  and they should be able to talk to each other.
+
+  The full set of command line options for this transport are
+
+
+
+       ethn=mcast,ethernet address,multicast
+       address,multicast port,ttl
+
+
+
+
+  Harald's original README is here <http://user-mode-linux.source-
+  forge.net/text/mcast.txt>  and explains these in detail, as well as
+  some other issues.
+
+
+
+  66..66..  TTUUNN//TTAAPP wwiitthh tthhee uummll__nneett hheellppeerr
+
+  TUN/TAP is the preferred mechanism on 2.4 to exchange packets with the
+  host.  The TUN/TAP backend has been in UML since 2.4.9-3um.
+
+
+  The easiest way to get up and running is to let the setuid uml_net
+  helper do the host setup for you.  This involves insmod-ing the tun.o
+  module if necessary, configuring the device, and setting up IP
+  forwarding, routing, and proxy arp.  If you are new to UML networking,
+  do this first.  If you're concerned about the security implications of
+  the setuid helper, use it to get up and running, then read the next
+  section to see how to have UML use a preconfigured tap device, which
+  avoids the use of uml_net.
+
+
+  If you specify an IP address for the host side of the device, the
+  uml_net helper will do all necessary setup on the host - the only
+  requirement is that TUN/TAP be available, either built in to the host
+  kernel or as the tun.o module.
+
+  The format of the command line switch to attach a device to a TUN/TAP
+  device is
+
+
+       eth <n> =tuntap,,, <IP address>
+
+
+
+
+  For example, this argument will attach the UML's eth0 to the next
+  available tap device and assign an ethernet address to it based on its
+  IP address
+
+
+       eth0=tuntap,,,192.168.0.254
+
+
+
+
+
+
+  Note that the IP address that must be used for the eth device inside
+  UML is fixed by the routing and proxy arp that is set up on the
+  TUN/TAP device on the host.  You can use a different one, but it won't
+  work because reply packets won't reach the UML.  This is a feature.
+  It prevents a nasty UML user from doing things like setting the UML IP
+  to the same as the network's nameserver or mail server.
+
+
+  There are a couple potential problems with running the TUN/TAP
+  transport on a 2.4 host kernel
+
+  +o  TUN/TAP seems not to work on 2.4.3 and earlier.  Upgrade the host
+     kernel or use the ethertap transport.
+
+  +o  With an upgraded kernel, TUN/TAP may fail with
+
+
+       File descriptor in bad state
+
+
+
+
+  This is due to a header mismatch between the upgraded kernel and the
+  kernel that was originally installed on the machine.  The fix is to
+  make sure that /usr/src/linux points to the headers for the running
+  kernel.
+
+  These were pointed out by Tim Robinson <timro at trkr dot net> in
+  <http://www.geocrawler.com/lists/3/SourceForge/597/0/> name="this uml-
+  user post"> .
+
+
+
+  66..77..  TTUUNN//TTAAPP wwiitthh aa pprreeccoonnffiigguurreedd ttaapp ddeevviiccee
+
+  If you prefer not to have UML use uml_net (which is somewhat
+  insecure), with UML 2.4.17-11, you can set up a TUN/TAP device
+  beforehand.  The setup needs to be done as root, but once that's done,
+  there is no need for root assistance.  Setting up the device is done
+  as follows:
+
+  +o  Create the device with tunctl (available from the UML utilities
+     tarball)
+
+
+
+
+       host#  tunctl -u uid
+
+
+
+
+  where uid is the user id or username that UML will be run as.  This
+  will tell you what device was created.
+
+  +o  Configure the device IP (change IP addresses and device name to
+     suit)
+
+
+
+
+       host#  ifconfig tap0 192.168.0.254 up
+
+
+
+
+
+  +o  Set up routing and arping if desired - this is my recipe, there are
+     other ways of doing the same thing
+
+
+       host#
+       bash -c 'echo 1 > /proc/sys/net/ipv4/ip_forward'
+
+       host#
+       route add -host 192.168.0.253 dev tap0
+
+
+
+
+
+
+       host#
+       bash -c 'echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp'
+
+
+
+
+
+
+       host#
+       arp -Ds 192.168.0.253 eth0 pub
+
+
+
+
+  Note that this must be done every time the host boots - this configu-
+  ration is not stored across host reboots.  So, it's probably a good
+  idea to stick it in an rc file.  An even better idea would be a little
+  utility which reads the information from a config file and sets up
+  devices at boot time.
+
+  +o  Rather than using up two IPs and ARPing for one of them, you can
+     also provide direct access to your LAN by the UML by using a
+     bridge.
+
+
+       host#
+       brctl addbr br0
+
+
+
+
+
+
+       host#
+       ifconfig eth0 0.0.0.0 promisc up
+
+
+
+
+
+
+       host#
+       ifconfig tap0 0.0.0.0 promisc up
+
+
+
+
+
+
+       host#
+       ifconfig br0 192.168.0.1 netmask 255.255.255.0 up
+
+
+
+
+
+
+
+  host#
+  brctl stp br0 off
+
+
+
+
+
+
+       host#
+       brctl setfd br0 1
+
+
+
+
+
+
+       host#
+       brctl sethello br0 1
+
+
+
+
+
+
+       host#
+       brctl addif br0 eth0
+
+
+
+
+
+
+       host#
+       brctl addif br0 tap0
+
+
+
+
+  Note that 'br0' should be setup using ifconfig with the existing IP
+  address of eth0, as eth0 no longer has its own IP.
+
+  +o
+
+
+     Also, the /dev/net/tun device must be writable by the user running
+     UML in order for the UML to use the device that's been configured
+     for it.  The simplest thing to do is
+
+
+       host#  chmod 666 /dev/net/tun
+
+
+
+
+  Making it world-writeable looks bad, but it seems not to be
+  exploitable as a security hole.  However, it does allow anyone to cre-
+  ate useless tap devices (useless because they can't configure them),
+  which is a DOS attack.  A somewhat more secure alternative would to be
+  to create a group containing all the users who have preconfigured tap
+  devices and chgrp /dev/net/tun to that group with mode 664 or 660.
+
+
+  +o  Once the device is set up, run UML with 'eth0=tuntap,device name'
+     (i.e. 'eth0=tuntap,tap0') on the command line (or do it with the
+     mconsole config command).
+
+  +o  Bring the eth device up in UML and you're in business.
+
+     If you don't want that tap device any more, you can make it non-
+     persistent with
+
+
+       host#  tunctl -d tap device
+
+
+
+
+  Finally, tunctl has a -b (for brief mode) switch which causes it to
+  output only the name of the tap device it created.  This makes it
+  suitable for capture by a script:
+
+
+       host#  TAP=`tunctl -u 1000 -b`
+
+
+
+
+
+
+  66..88..  EEtthheerrttaapp
+
+  Ethertap is the general mechanism on 2.2 for userspace processes to
+  exchange packets with the kernel.
+
+
+
+  To use this transport, you need to describe the virtual network device
+  on the UML command line.  The general format for this is
+
+
+       eth <n> =ethertap, <device> , <ethernet address> , <tap IP address>
+
+
+
+
+  So, the previous example
+
+
+       eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254
+
+
+
+
+  attaches the UML eth0 device to the host /dev/tap0, assigns it the
+  ethernet address fe:fd:0:0:0:1, and assigns the IP address
+  192.168.0.254 to the tap device.
+
+
+
+  The tap device is mandatory, but the others are optional.  If the
+  ethernet address is omitted, one will be assigned to it.
+
+
+  The presence of the tap IP address will cause the helper to run and do
+  whatever host setup is needed to allow the virtual machine to
+  communicate with the outside world.  If you're not sure you know what
+  you're doing, this is the way to go.
+
+
+  If it is absent, then you must configure the tap device and whatever
+  arping and routing you will need on the host.  However, even in this
+  case, the uml_net helper still needs to be in your path and it must be
+  setuid root if you're not running UML as root.  This is because the
+  tap device doesn't support SIGIO, which UML needs in order to use
+  something as a source of input.  So, the helper is used as a
+  convenient asynchronous IO thread.
+
+  If you're using the uml_net helper, you can ignore the following host
+  setup - uml_net will do it for you.  You just need to make sure you
+  have ethertap available, either built in to the host kernel or
+  available as a module.
+
+
+  If you want to set things up yourself, you need to make sure that the
+  appropriate /dev entry exists.  If it doesn't, become root and create
+  it as follows:
+
+
+       mknod /dev/tap <minor>  c 36  <minor>  + 16
+
+
+
+
+  For example, this is how to create /dev/tap0:
+
+
+       mknod /dev/tap0 c 36 0 + 16
+
+
+
+
+  You also need to make sure that the host kernel has ethertap support.
+  If ethertap is enabled as a module, you apparently need to insmod
+  ethertap once for each ethertap device you want to enable.  So,
+
+
+       host#
+       insmod ethertap
+
+
+
+
+  will give you the tap0 interface.  To get the tap1 interface, you need
+  to run
+
+
+       host#
+       insmod ethertap unit=1 -o ethertap1
+
+
+
+
+
+
+
+  66..99..  TThhee sswwiittcchh ddaaeemmoonn
+
+  NNoottee: This is the daemon formerly known as uml_router, but which was
+  renamed so the network weenies of the world would stop growling at me.
+
+
+  The switch daemon, uml_switch, provides a mechanism for creating a
+  totally virtual network.  By default, it provides no connection to the
+  host network (but see -tap, below).
+
+
+  The first thing you need to do is run the daemon.  Running it with no
+  arguments will make it listen on a default pair of unix domain
+  sockets.
+
+
+  If you want it to listen on a different pair of sockets, use
+
+
+        -unix control socket data socket
+
+
+
+
+
+  If you want it to act as a hub rather than a switch, use
+
+
+        -hub
+
+
+
+
+
+  If you want the switch to be connected to host networking (allowing
+  the umls to get access to the outside world through the host), use
+
+
+        -tap tap0
+
+
+
+
+
+  Note that the tap device must be preconfigured (see "TUN/TAP with a
+  preconfigured tap device", above).  If you're using a different tap
+  device than tap0, specify that instead of tap0.
+
+
+  uml_switch can be backgrounded as follows
+
+
+       host%
+       uml_switch [ options ] < /dev/null > /dev/null
+
+
+
+
+  The reason it doesn't background by default is that it listens to
+  stdin for EOF.  When it sees that, it exits.
+
+
+  The general format of the kernel command line switch is
+
+
+
+       ethn=daemon,ethernet address,socket
+       type,control socket,data socket
+
+
+
+
+  You can leave off everything except the 'daemon'.  You only need to
+  specify the ethernet address if the one that will be assigned to it
+  isn't acceptable for some reason.  The rest of the arguments describe
+  how to communicate with the daemon.  You should only specify them if
+  you told the daemon to use different sockets than the default.  So, if
+  you ran the daemon with no arguments, running the UML on the same
+  machine with
+       eth0=daemon
+
+
+
+
+  will cause the eth0 driver to attach itself to the daemon correctly.
+
+
+
+  66..1100..  SSlliipp
+
+  Slip is another, less general, mechanism for a process to communicate
+  with the host networking.  In contrast to the ethertap interface,
+  which exchanges ethernet frames with the host and can be used to
+  transport any higher-level protocol, it can only be used to transport
+  IP.
+
+
+  The general format of the command line switch is
+
+
+
+       ethn=slip,slip IP
+
+
+
+
+  The slip IP argument is the IP address that will be assigned to the
+  host end of the slip device.  If it is specified, the helper will run
+  and will set up the host so that the virtual machine can reach it and
+  the rest of the network.
+
+
+  There are some oddities with this interface that you should be aware
+  of.  You should only specify one slip device on a given virtual
+  machine, and its name inside UML will be 'umn', not 'eth0' or whatever
+  you specified on the command line.  These problems will be fixed at
+  some point.
+
+
+
+  66..1111..  SSlliirrpp
+
+  slirp uses an external program, usually /usr/bin/slirp, to provide IP
+  only networking connectivity through the host. This is similar to IP
+  masquerading with a firewall, although the translation is performed in
+  user-space, rather than by the kernel.  As slirp does not set up any
+  interfaces on the host, or changes routing, slirp does not require
+  root access or setuid binaries on the host.
+
+
+  The general format of the command line switch for slirp is:
+
+
+
+       ethn=slirp,ethernet address,slirp path
+
+
+
+
+  The ethernet address is optional, as UML will set up the interface
+  with an ethernet address based upon the initial IP address of the
+  interface.  The slirp path is generally /usr/bin/slirp, although it
+  will depend on distribution.
+
+
+  The slirp program can have a number of options passed to the command
+  line and we can't add them to the UML command line, as they will be
+  parsed incorrectly.  Instead, a wrapper shell script can be written or
+  the options inserted into the  /.slirprc file.  More information on
+  all of the slirp options can be found in its man pages.
+
+
+  The eth0 interface on UML should be set up with the IP 10.2.0.15,
+  although you can use anything as long as it is not used by a network
+  you will be connecting to. The default route on UML should be set to
+  use
+
+
+       UML#
+       route add default dev eth0
+
+
+
+
+  slirp provides a number of useful IP addresses which can be used by
+  UML, such as 10.0.2.3 which is an alias for the DNS server specified
+  in /etc/resolv.conf on the host or the IP given in the 'dns' option
+  for slirp.
+
+
+  Even with a baudrate setting higher than 115200, the slirp connection
+  is limited to 115200. If you need it to go faster, the slirp binary
+  needs to be compiled with FULL_BOLT defined in config.h.
+
+
+
+  66..1122..  ppccaapp
+
+  The pcap transport is attached to a UML ethernet device on the command
+  line or with uml_mconsole with the following syntax:
+
+
+
+       ethn=pcap,host interface,filter
+       expression,option1,option2
+
+
+
+
+  The expression and options are optional.
+
+
+  The interface is whatever network device on the host you want to
+  sniff.  The expression is a pcap filter expression, which is also what
+  tcpdump uses, so if you know how to specify tcpdump filters, you will
+  use the same expressions here.  The options are up to two of
+  'promisc', control whether pcap puts the host interface into
+  promiscuous mode. 'optimize' and 'nooptimize' control whether the pcap
+  expression optimizer is used.
+
+
+  Example:
+
+
+
+       eth0=pcap,eth0,tcp
+
+       eth1=pcap,eth0,!tcp
+
+
+
+  will cause the UML eth0 to emit all tcp packets on the host eth0 and
+  the UML eth1 to emit all non-tcp packets on the host eth0.
+
+
+
+  66..1133..  SSeettttiinngg uupp tthhee hhoosstt yyoouurrsseellff
+
+  If you don't specify an address for the host side of the ethertap or
+  slip device, UML won't do any setup on the host.  So this is what is
+  needed to get things working (the examples use a host-side IP of
+  192.168.0.251 and a UML-side IP of 192.168.0.250 - adjust to suit your
+  own network):
+
+  +o  The device needs to be configured with its IP address.  Tap devices
+     are also configured with an mtu of 1484.  Slip devices are
+     configured with a point-to-point address pointing at the UML ip
+     address.
+
+
+       host#  ifconfig tap0 arp mtu 1484 192.168.0.251 up
+
+
+
+
+
+
+       host#
+       ifconfig sl0 192.168.0.251 pointopoint 192.168.0.250 up
+
+
+
+
+
+  +o  If a tap device is being set up, a route is set to the UML IP.
+
+
+       UML# route add -host 192.168.0.250 gw 192.168.0.251
+
+
+
+
+
+  +o  To allow other hosts on your network to see the virtual machine,
+     proxy arp is set up for it.
+
+
+       host#  arp -Ds 192.168.0.250 eth0 pub
+
+
+
+
+
+  +o  Finally, the host is set up to route packets.
+
+
+       host#  echo 1 > /proc/sys/net/ipv4/ip_forward
+
+
+
+
+
+
+
+
+
+
+  77..  SShhaarriinngg FFiilleessyysstteemmss bbeettwweeeenn VViirrttuuaall MMaacchhiinneess
+
+
+
+
+  77..11..  AA wwaarrnniinngg
+
+  Don't attempt to share filesystems simply by booting two UMLs from the
+  same file.  That's the same thing as booting two physical machines
+  from a shared disk.  It will result in filesystem corruption.
+
+
+
+  77..22..  UUssiinngg llaayyeerreedd bblloocckk ddeevviicceess
+
+  The way to share a filesystem between two virtual machines is to use
+  the copy-on-write (COW) layering capability of the ubd block driver.
+  As of 2.4.6-2um, the driver supports layering a read-write private
+  device over a read-only shared device.  A machine's writes are stored
+  in the private device, while reads come from either device - the
+  private one if the requested block is valid in it, the shared one if
+  not.  Using this scheme, the majority of data which is unchanged is
+  shared between an arbitrary number of virtual machines, each of which
+  has a much smaller file containing the changes that it has made.  With
+  a large number of UMLs booting from a large root filesystem, this
+  leads to a huge disk space saving.  It will also help performance,
+  since the host will be able to cache the shared data using a much
+  smaller amount of memory, so UML disk requests will be served from the
+  host's memory rather than its disks.
+
+
+
+
+  To add a copy-on-write layer to an existing block device file, simply
+  add the name of the COW file to the appropriate ubd switch:
+
+
+        ubd0=root_fs_cow,root_fs_debian_22
+
+
+
+
+  where 'root_fs_cow' is the private COW file and 'root_fs_debian_22' is
+  the existing shared filesystem.  The COW file need not exist.  If it
+  doesn't, the driver will create and initialize it.  Once the COW file
+  has been initialized, it can be used on its own on the command line:
+
+
+        ubd0=root_fs_cow
+
+
+
+
+  The name of the backing file is stored in the COW file header, so it
+  would be redundant to continue specifying it on the command line.
+
+
+
+  77..33..  NNoottee!!
+
+  When checking the size of the COW file in order to see the gobs of
+  space that you're saving, make sure you use 'ls -ls' to see the actual
+  disk consumption rather than the length of the file.  The COW file is
+  sparse, so the length will be very different from the disk usage.
+  Here is a 'ls -l' of a COW file and backing file from one boot and
+  shutdown:
+       host% ls -l cow.debian debian2.2
+       -rw-r--r--    1 jdike    jdike    492504064 Aug  6 21:16 cow.debian
+       -rwxrw-rw-    1 jdike    jdike    537919488 Aug  6 20:42 debian2.2
+
+
+
+
+  Doesn't look like much saved space, does it?  Well, here's 'ls -ls':
+
+
+       host% ls -ls cow.debian debian2.2
+          880 -rw-r--r--    1 jdike    jdike    492504064 Aug  6 21:16 cow.debian
+       525832 -rwxrw-rw-    1 jdike    jdike    537919488 Aug  6 20:42 debian2.2
+
+
+
+
+  Now, you can see that the COW file has less than a meg of disk, rather
+  than 492 meg.
+
+
+
+  77..44..  AAnnootthheerr wwaarrnniinngg
+
+  Once a filesystem is being used as a readonly backing file for a COW
+  file, do not boot directly from it or modify it in any way.  Doing so
+  will invalidate any COW files that are using it.  The mtime and size
+  of the backing file are stored in the COW file header at its creation,
+  and they must continue to match.  If they don't, the driver will
+  refuse to use the COW file.
+
+
+
+
+  If you attempt to evade this restriction by changing either the
+  backing file or the COW header by hand, you will get a corrupted
+  filesystem.
+
+
+
+
+  Among other things, this means that upgrading the distribution in a
+  backing file and expecting that all of the COW files using it will see
+  the upgrade will not work.
+
+
+
+
+  77..55..  uummll__mmoooo :: MMeerrggiinngg aa CCOOWW ffiillee wwiitthh iittss bbaacckkiinngg ffiillee
+
+  Depending on how you use UML and COW devices, it may be advisable to
+  merge the changes in the COW file into the backing file every once in
+  a while.
+
+
+
+
+  The utility that does this is uml_moo.  Its usage is
+
+
+       host% uml_moo COW file new backing file
+
+
+
+
+  There's no need to specify the backing file since that information is
+  already in the COW file header.  If you're paranoid, boot the new
+  merged file, and if you're happy with it, move it over the old backing
+  file.
+
+
+
+
+  uml_moo creates a new backing file by default as a safety measure.  It
+  also has a destructive merge option which will merge the COW file
+  directly into its current backing file.  This is really only usable
+  when the backing file only has one COW file associated with it.  If
+  there are multiple COWs associated with a backing file, a -d merge of
+  one of them will invalidate all of the others.  However, it is
+  convenient if you're short of disk space, and it should also be
+  noticably faster than a non-destructive merge.
+
+
+
+
+  uml_moo is installed with the UML deb and RPM.  If you didn't install
+  UML from one of those packages, you can also get it from the UML
+  utilities <http://user-mode-linux.sourceforge.net/dl-sf.html#UML
+  utilities>  tar file in tools/moo.
+
+
+
+
+
+
+
+
+  88..  CCrreeaattiinngg ffiilleessyysstteemmss
+
+
+  You may want to create and mount new UML filesystems, either because
+  your root filesystem isn't large enough or because you want to use a
+  filesystem other than ext2.
+
+
+  This was written on the occasion of reiserfs being included in the
+  2.4.1 kernel pool, and therefore the 2.4.1 UML, so the examples will
+  talk about reiserfs.  This information is generic, and the examples
+  should be easy to translate to the filesystem of your choice.
+
+
+  88..11..  CCrreeaattee tthhee ffiilleessyysstteemm ffiillee
+
+  dd is your friend.  All you need to do is tell dd to create an empty
+  file of the appropriate size.  I usually make it sparse to save time
+  and to avoid allocating disk space until it's actually used.  For
+  example, the following command will create a sparse 100 meg file full
+  of zeroes.
+
+
+       host%
+       dd if=/dev/zero of=new_filesystem seek=100 count=1 bs=1M
+
+
+
+
+
+
+  88..22..  AAssssiiggnn tthhee ffiillee ttoo aa UUMMLL ddeevviiccee
+
+  Add an argument like the following to the UML command line:
+
+  ubd4=new_filesystem
+
+
+
+
+  making sure that you use an unassigned ubd device number.
+
+
+
+  88..33..  CCrreeaattiinngg aanndd mmoouunnttiinngg tthhee ffiilleessyysstteemm
+
+  Make sure that the filesystem is available, either by being built into
+  the kernel, or available as a module, then boot up UML and log in.  If
+  the root filesystem doesn't have the filesystem utilities (mkfs, fsck,
+  etc), then get them into UML by way of the net or hostfs.
+
+
+  Make the new filesystem on the device assigned to the new file:
+
+
+       host#  mkreiserfs /dev/ubd/4
+
+
+       <----------- MKREISERFSv2 ----------->
+
+       ReiserFS version 3.6.25
+       Block size 4096 bytes
+       Block count 25856
+       Used blocks 8212
+               Journal - 8192 blocks (18-8209), journal header is in block 8210
+               Bitmaps: 17
+               Root block 8211
+       Hash function "r5"
+       ATTENTION: ALL DATA WILL BE LOST ON '/dev/ubd/4'! (y/n)y
+       journal size 8192 (from 18)
+       Initializing journal - 0%....20%....40%....60%....80%....100%
+       Syncing..done.
+
+
+
+
+  Now, mount it:
+
+
+       UML#
+       mount /dev/ubd/4 /mnt
+
+
+
+
+  and you're in business.
+
+
+
+
+
+
+
+
+
+  99..  HHoosstt ffiillee aacccceessss
+
+
+  If you want to access files on the host machine from inside UML, you
+  can treat it as a separate machine and either nfs mount directories
+  from the host or copy files into the virtual machine with scp or rcp.
+  However, since UML is running on the the host, it can access those
+  files just like any other process and make them available inside the
+  virtual machine without needing to use the network.
+
+
+  This is now possible with the hostfs virtual filesystem.  With it, you
+  can mount a host directory into the UML filesystem and access the
+  files contained in it just as you would on the host.
+
+
+  99..11..  UUssiinngg hhoossttffss
+
+  To begin with, make sure that hostfs is available inside the virtual
+  machine with
+
+
+       UML# cat /proc/filesystems
+
+
+
+  .  hostfs should be listed.  If it's not, either rebuild the kernel
+  with hostfs configured into it or make sure that hostfs is built as a
+  module and available inside the virtual machine, and insmod it.
+
+
+  Now all you need to do is run mount:
+
+
+       UML# mount none /mnt/host -t hostfs
+
+
+
+
+  will mount the host's / on the virtual machine's /mnt/host.
+
+
+  If you don't want to mount the host root directory, then you can
+  specify a subdirectory to mount with the -o switch to mount:
+
+
+       UML# mount none /mnt/home -t hostfs -o /home
+
+
+
+
+  will mount the hosts's /home on the virtual machine's /mnt/home.
+
+
+
+  99..22..  hhoossttffss aass tthhee rroooott ffiilleessyysstteemm
+
+  It's possible to boot from a directory hierarchy on the host using
+  hostfs rather than using the standard filesystem in a file.
+
+  To start, you need that hierarchy.  The easiest way is to loop mount
+  an existing root_fs file:
+
+
+       host#  mount root_fs uml_root_dir -o loop
+
+
+
+
+  You need to change the filesystem type of / in etc/fstab to be
+  'hostfs', so that line looks like this:
+
+  /dev/ubd/0       /        hostfs      defaults          1   1
+
+
+
+
+  Then you need to chown to yourself all the files in that directory
+  that are owned by root.  This worked for me:
+
+
+       host#  find . -uid 0 -exec chown jdike {} \;
+
+
+
+
+  Next, make sure that your UML kernel has hostfs compiled in, not as a
+  module.  Then run UML with the boot device pointing at that directory:
+
+
+        ubd0=/path/to/uml/root/directory
+
+
+
+
+  UML should then boot as it does normally.
+
+
+  99..33..  BBuuiillddiinngg hhoossttffss
+
+  If you need to build hostfs because it's not in your kernel, you have
+  two choices:
+
+
+
+  +o  Compiling hostfs into the kernel:
+
+
+     Reconfigure the kernel and set the 'Host filesystem' option under
+
+
+  +o  Compiling hostfs as a module:
+
+
+     Reconfigure the kernel and set the 'Host filesystem' option under
+     be in arch/um/fs/hostfs/hostfs.o.  Install that in
+     /lib/modules/`uname -r`/fs in the virtual machine, boot it up, and
+
+
+       UML# insmod hostfs
+
+
+
+
+
+
+
+
+
+
+
+
+  1100..  TThhee MMaannaaggeemmeenntt CCoonnssoollee
+
+
+
+  The UML management console is a low-level interface to the kernel,
+  somewhat like the i386 SysRq interface.  Since there is a full-blown
+  operating system under UML, there is much greater flexibility possible
+  than with the SysRq mechanism.
+
+
+  There are a number of things you can do with the mconsole interface:
+
+  +o  get the kernel version
+
+  +o  add and remove devices
+
+  +o  halt or reboot the machine
+
+  +o  Send SysRq commands
+
+  +o  Pause and resume the UML
+
+
+  You need the mconsole client (uml_mconsole) which is present in CVS
+  (/tools/mconsole) in 2.4.5-9um and later, and will be in the RPM in
+  2.4.6.
+
+
+  You also need CONFIG_MCONSOLE (under 'General Setup') enabled in UML.
+  When you boot UML, you'll see a line like:
+
+
+       mconsole initialized on /home/jdike/.uml/umlNJ32yL/mconsole
+
+
+
+
+  If you specify a unique machine id one the UML command line, i.e.
+
+
+        umid=debian
+
+
+
+
+  you'll see this
+
+
+       mconsole initialized on /home/jdike/.uml/debian/mconsole
+
+
+
+
+  That file is the socket that uml_mconsole will use to communicate with
+  UML.  Run it with either the umid or the full path as its argument:
+
+
+       host% uml_mconsole debian
+
+
+
+
+  or
+
+
+       host% uml_mconsole /home/jdike/.uml/debian/mconsole
+
+
+
+
+  You'll get a prompt, at which you can run one of these commands:
+
+  +o  version
+
+  +o  halt
+
+  +o  reboot
+
+  +o  config
+
+  +o  remove
+
+  +o  sysrq
+
+  +o  help
+
+  +o  cad
+
+  +o  stop
+
+  +o  go
+
+
+  1100..11..  vveerrssiioonn
+
+  This takes no arguments.  It prints the UML version.
+
+
+       (mconsole)  version
+       OK Linux usermode 2.4.5-9um #1 Wed Jun 20 22:47:08 EDT 2001 i686
+
+
+
+
+  There are a couple actual uses for this.  It's a simple no-op which
+  can be used to check that a UML is running.  It's also a way of
+  sending an interrupt to the UML.  This is sometimes useful on SMP
+  hosts, where there's a bug which causes signals to UML to be lost,
+  often causing it to appear to hang.  Sending such a UML the mconsole
+  version command is a good way to 'wake it up' before networking has
+  been enabled, as it does not do anything to the function of the UML.
+
+
+
+  1100..22..  hhaalltt aanndd rreebboooott
+
+  These take no arguments.  They shut the machine down immediately, with
+  no syncing of disks and no clean shutdown of userspace.  So, they are
+  pretty close to crashing the machine.
+
+
+       (mconsole)  halt
+       OK
+
+
+
+
+
+
+  1100..33..  ccoonnffiigg
+
+  "config" adds a new device to the virtual machine.  Currently the ubd
+  and network drivers support this.  It takes one argument, which is the
+  device to add, with the same syntax as the kernel command line.
+
+
+
+
+  (mconsole)
+  config ubd3=/home/jdike/incoming/roots/root_fs_debian22
+
+  OK
+  (mconsole)  config eth1=mcast
+  OK
+
+
+
+
+
+
+  1100..44..  rreemmoovvee
+
+  "remove" deletes a device from the system.  Its argument is just the
+  name of the device to be removed. The device must be idle in whatever
+  sense the driver considers necessary.  In the case of the ubd driver,
+  the removed block device must not be mounted, swapped on, or otherwise
+  open, and in the case of the network driver, the device must be down.
+
+
+       (mconsole)  remove ubd3
+       OK
+       (mconsole)  remove eth1
+       OK
+
+
+
+
+
+
+  1100..55..  ssyyssrrqq
+
+  This takes one argument, which is a single letter.  It calls the
+  generic kernel's SysRq driver, which does whatever is called for by
+  that argument.  See the SysRq documentation in Documentation/sysrq.txt
+  in your favorite kernel tree to see what letters are valid and what
+  they do.
+
+
+
+  1100..66..  hheellpp
+
+  "help" returns a string listing the valid commands and what each one
+  does.
+
+
+
+  1100..77..  ccaadd
+
+  This invokes the Ctl-Alt-Del action on init.  What exactly this ends
+  up doing is up to /etc/inittab.  Normally, it reboots the machine.
+  With UML, this is usually not desired, so if a halt would be better,
+  then find the section of inittab that looks like this
+
+
+       # What to do when CTRL-ALT-DEL is pressed.
+       ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
+
+
+
+
+  and change the command to halt.
+
+
+
+  1100..88..  ssttoopp
+
+  This puts the UML in a loop reading mconsole requests until a 'go'
+  mconsole command is received. This is very useful for making backups
+  of UML filesystems, as the UML can be stopped, then synced via 'sysrq
+  s', so that everything is written to the filesystem. You can then copy
+  the filesystem and then send the UML 'go' via mconsole.
+
+
+  Note that a UML running with more than one CPU will have problems
+  after you send the 'stop' command, as only one CPU will be held in a
+  mconsole loop and all others will continue as normal.  This is a bug,
+  and will be fixed.
+
+
+
+  1100..99..  ggoo
+
+  This resumes a UML after being paused by a 'stop' command. Note that
+  when the UML has resumed, TCP connections may have timed out and if
+  the UML is paused for a long period of time, crond might go a little
+  crazy, running all the jobs it didn't do earlier.
+
+
+
+
+
+
+
+
+  1111..  KKeerrnneell ddeebbuuggggiinngg
+
+
+  NNoottee:: The interface that makes debugging, as described here, possible
+  is present in 2.4.0-test6 kernels and later.
+
+
+  Since the user-mode kernel runs as a normal Linux process, it is
+  possible to debug it with gdb almost like any other process.  It is
+  slightly different because the kernel's threads are already being
+  ptraced for system call interception, so gdb can't ptrace them.
+  However, a mechanism has been added to work around that problem.
+
+
+  In order to debug the kernel, you need build it from source.  See
+  ``Compiling the kernel and modules''  for information on doing that.
+  Make sure that you enable CONFIG_DEBUGSYM and CONFIG_PT_PROXY during
+  the config.  These will compile the kernel with -g, and enable the
+  ptrace proxy so that gdb works with UML, respectively.
+
+
+
+
+  1111..11..  SSttaarrttiinngg tthhee kkeerrnneell uunnddeerr ggddbb
+
+  You can have the kernel running under the control of gdb from the
+  beginning by putting 'debug' on the command line.  You will get an
+  xterm with gdb running inside it.  The kernel will send some commands
+  to gdb which will leave it stopped at the beginning of start_kernel.
+  At this point, you can get things going with 'next', 'step', or
+  'cont'.
+
+
+  There is a transcript of a debugging session  here <debug-
+  session.html> , with breakpoints being set in the scheduler and in an
+  interrupt handler.
+  1111..22..  EExxaammiinniinngg sslleeeeppiinngg pprroocceesssseess
+
+  Not every bug is evident in the currently running process.  Sometimes,
+  processes hang in the kernel when they shouldn't because they've
+  deadlocked on a semaphore or something similar.  In this case, when
+  you ^C gdb and get a backtrace, you will see the idle thread, which
+  isn't very relevant.
+
+
+  What you want is the stack of whatever process is sleeping when it
+  shouldn't be.  You need to figure out which process that is, which is
+  generally fairly easy.  Then you need to get its host process id,
+  which you can do either by looking at ps on the host or at
+  task.thread.extern_pid in gdb.
+
+
+  Now what you do is this:
+
+  +o  detach from the current thread
+
+
+       (UML gdb)  det
+
+
+
+
+
+  +o  attach to the thread you are interested in
+
+
+       (UML gdb)  att <host pid>
+
+
+
+
+
+  +o  look at its stack and anything else of interest
+
+
+       (UML gdb)  bt
+
+
+
+
+  Note that you can't do anything at this point that requires that a
+  process execute, e.g. calling a function
+
+  +o  when you're done looking at that process, reattach to the current
+     thread and continue it
+
+
+       (UML gdb)
+       att 1
+
+
+
+
+
+
+       (UML gdb)
+       c
+
+
+
+
+  Here, specifying any pid which is not the process id of a UML thread
+  will cause gdb to reattach to the current thread.  I commonly use 1,
+  but any other invalid pid would work.
+
+
+
+  1111..33..  RRuunnnniinngg dddddd oonn UUMMLL
+
+  ddd works on UML, but requires a special kludge.  The process goes
+  like this:
+
+  +o  Start ddd
+
+
+       host% ddd linux
+
+
+
+
+
+  +o  With ps, get the pid of the gdb that ddd started.  You can ask the
+     gdb to tell you, but for some reason that confuses things and
+     causes a hang.
+
+  +o  run UML with 'debug=parent gdb-pid=<pid>' added to the command line
+     - it will just sit there after you hit return
+
+  +o  type 'att 1' to the ddd gdb and you will see something like
+
+
+       0xa013dc51 in __kill ()
+
+
+       (gdb)
+
+
+
+
+
+  +o  At this point, type 'c', UML will boot up, and you can use ddd just
+     as you do on any other process.
+
+
+
+  1111..44..  DDeebbuuggggiinngg mmoodduulleess
+
+  gdb has support for debugging code which is dynamically loaded into
+  the process.  This support is what is needed to debug kernel modules
+  under UML.
+
+
+  Using that support is somewhat complicated.  You have to tell gdb what
+  object file you just loaded into UML and where in memory it is.  Then,
+  it can read the symbol table, and figure out where all the symbols are
+  from the load address that you provided.  It gets more interesting
+  when you load the module again (i.e. after an rmmod).  You have to
+  tell gdb to forget about all its symbols, including the main UML ones
+  for some reason, then load then all back in again.
+
+
+  There's an easy way and a hard way to do this.  The easy way is to use
+  the umlgdb expect script written by Chandan Kudige.  It basically
+  automates the process for you.
+
+
+  First, you must tell it where your modules are.  There is a list in
+  the script that looks like this:
+       set MODULE_PATHS {
+       "fat" "/usr/src/uml/linux-2.4.18/fs/fat/fat.o"
+       "isofs" "/usr/src/uml/linux-2.4.18/fs/isofs/isofs.o"
+       "minix" "/usr/src/uml/linux-2.4.18/fs/minix/minix.o"
+       }
+
+
+
+
+  You change that to list the names and paths of the modules that you
+  are going to debug.  Then you run it from the toplevel directory of
+  your UML pool and it basically tells you what to do:
+
+
+
+
+                   ******** GDB pid is 21903 ********
+       Start UML as: ./linux <kernel switches> debug gdb-pid=21903
+
+
+
+       GNU gdb 5.0rh-5 Red Hat Linux 7.1
+       Copyright 2001 Free Software Foundation, Inc.
+       GDB is free software, covered by the GNU General Public License, and you are
+       welcome to change it and/or distribute copies of it under certain conditions.
+       Type "show copying" to see the conditions.
+       There is absolutely no warranty for GDB.  Type "show warranty" for details.
+       This GDB was configured as "i386-redhat-linux"...
+       (gdb) b sys_init_module
+       Breakpoint 1 at 0xa0011923: file module.c, line 349.
+       (gdb) att 1
+
+
+
+
+  After you run UML and it sits there doing nothing, you hit return at
+  the 'att 1' and continue it:
+
+
+       Attaching to program: /home/jdike/linux/2.4/um/./linux, process 1
+       0xa00f4221 in __kill ()
+       (UML gdb)  c
+       Continuing.
+
+
+
+
+  At this point, you debug normally.  When you insmod something, the
+  expect magic will kick in and you'll see something like:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+   *** Module hostfs loaded ***
+  Breakpoint 1, sys_init_module (name_user=0x805abb0 "hostfs",
+      mod_user=0x8070e00) at module.c:349
+  349             char *name, *n_name, *name_tmp = NULL;
+  (UML gdb)  finish
+  Run till exit from #0  sys_init_module (name_user=0x805abb0 "hostfs",
+      mod_user=0x8070e00) at module.c:349
+  0xa00e2e23 in execute_syscall (r=0xa8140284) at syscall_kern.c:411
+  411             else res = EXECUTE_SYSCALL(syscall, regs);
+  Value returned is $1 = 0
+  (UML gdb)
+  p/x (int)module_list + module_list->size_of_struct
+
+  $2 = 0xa9021054
+  (UML gdb)  symbol-file ./linux
+  Load new symbol table from "./linux"? (y or n) y
+  Reading symbols from ./linux...
+  done.
+  (UML gdb)
+  add-symbol-file /home/jdike/linux/2.4/um/arch/um/fs/hostfs/hostfs.o 0xa9021054
+
+  add symbol table from file "/home/jdike/linux/2.4/um/arch/um/fs/hostfs/hostfs.o" at
+          .text_addr = 0xa9021054
+   (y or n) y
+
+  Reading symbols from /home/jdike/linux/2.4/um/arch/um/fs/hostfs/hostfs.o...
+  done.
+  (UML gdb)  p *module_list
+  $1 = {size_of_struct = 84, next = 0xa0178720, name = 0xa9022de0 "hostfs",
+    size = 9016, uc = {usecount = {counter = 0}, pad = 0}, flags = 1,
+    nsyms = 57, ndeps = 0, syms = 0xa9023170, deps = 0x0, refs = 0x0,
+    init = 0xa90221f0 <init_hostfs>, cleanup = 0xa902222c <exit_hostfs>,
+    ex_table_start = 0x0, ex_table_end = 0x0, persist_start = 0x0,
+    persist_end = 0x0, can_unload = 0, runsize = 0, kallsyms_start = 0x0,
+    kallsyms_end = 0x0,
+    archdata_start = 0x1b855 <Address 0x1b855 out of bounds>,
+    archdata_end = 0xe5890000 <Address 0xe5890000 out of bounds>,
+    kernel_data = 0xf689c35d <Address 0xf689c35d out of bounds>}
+  >> Finished loading symbols for hostfs ...
+
+
+
+
+  That's the easy way.  It's highly recommended.  The hard way is
+  described below in case you're interested in what's going on.
+
+
+  Boot the kernel under the debugger and load the module with insmod or
+  modprobe.  With gdb, do:
+
+
+       (UML gdb)  p module_list
+
+
+
+
+  This is a list of modules that have been loaded into the kernel, with
+  the most recently loaded module first.  Normally, the module you want
+  is at module_list.  If it's not, walk down the next links, looking at
+  the name fields until find the module you want to debug.  Take the
+  address of that structure, and add module.size_of_struct (which in
+  2.4.10 kernels is 96 (0x60)) to it.  Gdb can make this hard addition
+  for you :-):
+
+
+
+  (UML gdb)
+  printf "%#x\n", (int)module_list module_list->size_of_struct
+
+
+
+
+  The offset from the module start occasionally changes (before 2.4.0,
+  it was module.size_of_struct + 4), so it's a good idea to check the
+  init and cleanup addresses once in a while, as describe below.  Now
+  do:
+
+
+       (UML gdb)
+       add-symbol-file /path/to/module/on/host that_address
+
+
+
+
+  Tell gdb you really want to do it, and you're in business.
+
+
+  If there's any doubt that you got the offset right, like breakpoints
+  appear not to work, or they're appearing in the wrong place, you can
+  check it by looking at the module structure.  The init and cleanup
+  fields should look like:
+
+
+       init = 0x588066b0 <init_hostfs>, cleanup = 0x588066c0 <exit_hostfs>
+
+
+
+
+  with no offsets on the symbol names.  If the names are right, but they
+  are offset, then the offset tells you how much you need to add to the
+  address you gave to add-symbol-file.
+
+
+  When you want to load in a new version of the module, you need to get
+  gdb to forget about the old one.  The only way I've found to do that
+  is to tell gdb to forget about all symbols that it knows about:
+
+
+       (UML gdb)  symbol-file
+
+
+
+
+  Then reload the symbols from the kernel binary:
+
+
+       (UML gdb)  symbol-file /path/to/kernel
+
+
+
+
+  and repeat the process above.  You'll also need to re-enable break-
+  points.  They were disabled when you dumped all the symbols because
+  gdb couldn't figure out where they should go.
+
+
+
+  1111..55..  AAttttaacchhiinngg ggddbb ttoo tthhee kkeerrnneell
+
+  If you don't have the kernel running under gdb, you can attach gdb to
+  it later by sending the tracing thread a SIGUSR1.  The first line of
+  the console output identifies its pid:
+       tracing thread pid = 20093
+
+
+
+
+  When you send it the signal:
+
+
+       host% kill -USR1 20093
+
+
+
+
+  you will get an xterm with gdb running in it.
+
+
+  If you have the mconsole compiled into UML, then the mconsole client
+  can be used to start gdb:
+
+
+       (mconsole)  (mconsole) config gdb=xterm
+
+
+
+
+  will fire up an xterm with gdb running in it.
+
+
+
+  1111..66..  UUssiinngg aalltteerrnnaattee ddeebbuuggggeerrss
+
+  UML has support for attaching to an already running debugger rather
+  than starting gdb itself.  This is present in CVS as of 17 Apr 2001.
+  I sent it to Alan for inclusion in the ac tree, and it will be in my
+  2.4.4 release.
+
+
+  This is useful when gdb is a subprocess of some UI, such as emacs or
+  ddd.  It can also be used to run debuggers other than gdb on UML.
+  Below is an example of using strace as an alternate debugger.
+
+
+  To do this, you need to get the pid of the debugger and pass it in
+  with the
+
+
+  If you are using gdb under some UI, then tell it to 'att 1', and
+  you'll find yourself attached to UML.
+
+
+  If you are using something other than gdb as your debugger, then
+  you'll need to get it to do the equivalent of 'att 1' if it doesn't do
+  it automatically.
+
+
+  An example of an alternate debugger is strace.  You can strace the
+  actual kernel as follows:
+
+  +o  Run the following in a shell
+
+
+       host%
+       sh -c 'echo pid=$$; echo -n hit return; read x; exec strace -p 1 -o strace.out'
+
+
+
+  +o  Run UML with 'debug' and 'gdb-pid=<pid>' with the pid printed out
+     by the previous command
+
+  +o  Hit return in the shell, and UML will start running, and strace
+     output will start accumulating in the output file.
+
+     Note that this is different from running
+
+
+       host% strace ./linux
+
+
+
+
+  That will strace only the main UML thread, the tracing thread, which
+  doesn't do any of the actual kernel work.  It just oversees the vir-
+  tual machine.  In contrast, using strace as described above will show
+  you the low-level activity of the virtual machine.
+
+
+
+
+
+  1122..  KKeerrnneell ddeebbuuggggiinngg eexxaammpplleess
+
+  1122..11..  TThhee ccaassee ooff tthhee hhuunngg ffsscckk
+
+  When booting up the kernel, fsck failed, and dropped me into a shell
+  to fix things up.  I ran fsck -y, which hung:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Setting hostname uml                    [ OK ]
+  Checking root filesystem
+  /dev/fhd0 was not cleanly unmounted, check forced.
+  Error reading block 86894 (Attempt to read block from filesystem resulted in short read) while reading indirect blocks of inode 19780.
+
+  /dev/fhd0: UNEXPECTED INCONSISTENCY; RUN fsck MANUALLY.
+          (i.e., without -a or -p options)
+  [ FAILED ]
+
+  *** An error occurred during the file system check.
+  *** Dropping you to a shell; the system will reboot
+  *** when you leave the shell.
+  Give root password for maintenance
+  (or type Control-D for normal startup):
+
+  [root@uml /root]# fsck -y /dev/fhd0
+  fsck -y /dev/fhd0
+  Parallelizing fsck version 1.14 (9-Jan-1999)
+  e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
+  /dev/fhd0 contains a file system with errors, check forced.
+  Pass 1: Checking inodes, blocks, and sizes
+  Error reading block 86894 (Attempt to read block from filesystem resulted in short read) while reading indirect blocks of inode 19780.  Ignore error? yes
+
+  Inode 19780, i_blocks is 1548, should be 540.  Fix? yes
+
+  Pass 2: Checking directory structure
+  Error reading block 49405 (Attempt to read block from filesystem resulted in short read).  Ignore error? yes
+
+  Directory inode 11858, block 0, offset 0: directory corrupted
+  Salvage? yes
+
+  Missing '.' in directory inode 11858.
+  Fix? yes
+
+  Missing '..' in directory inode 11858.
+  Fix? yes
+
+
+
+
+
+  The standard drill in this sort of situation is to fire up gdb on the
+  signal thread, which, in this case, was pid 1935.  In another window,
+  I run gdb and attach pid 1935.
+
+
+
+
+       ~/linux/2.3.26/um 1016: gdb linux
+       GNU gdb 4.17.0.11 with Linux support
+       Copyright 1998 Free Software Foundation, Inc.
+       GDB is free software, covered by the GNU General Public License, and you are
+       welcome to change it and/or distribute copies of it under certain conditions.
+       Type "show copying" to see the conditions.
+       There is absolutely no warranty for GDB.  Type "show warranty" for details.
+       This GDB was configured as "i386-redhat-linux"...
+
+       (gdb) att 1935
+       Attaching to program `/home/dike/linux/2.3.26/um/linux', Pid 1935
+       0x100756d9 in __wait4 ()
+
+
+
+
+
+
+  Let's see what's currently running:
+
+
+
+       (gdb) p current_task.pid
+       $1 = 0
+
+
+
+
+
+  It's the idle thread, which means that fsck went to sleep for some
+  reason and never woke up.
+
+
+  Let's guess that the last process in the process list is fsck:
+
+
+
+       (gdb) p current_task.prev_task.comm
+       $13 = "fsck.ext2\000\000\000\000\000\000"
+
+
+
+
+
+  It is, so let's see what it thinks it's up to:
+
+
+
+       (gdb) p current_task.prev_task.thread
+       $14 = {extern_pid = 1980, tracing = 0, want_tracing = 0, forking = 0,
+         kernel_stack_page = 0, signal_stack = 1342627840, syscall = {id = 4, args = {
+             3, 134973440, 1024, 0, 1024}, have_result = 0, result = 50590720},
+         request = {op = 2, u = {exec = {ip = 1350467584, sp = 2952789424}, fork = {
+               regs = {1350467584, 2952789424, 0 <repeats 15 times>}, sigstack = 0,
+               pid = 0}, switch_to = 0x507e8000, thread = {proc = 0x507e8000,
+               arg = 0xaffffdb0, flags = 0, new_pid = 0}, input_request = {
+               op = 1350467584, fd = -1342177872, proc = 0, pid = 0}}}}
+
+
+
+
+
+  The interesting things here are the fact that its .thread.syscall.id
+  is __NR_write (see the big switch in arch/um/kernel/syscall_kern.c or
+  the defines in include/asm-um/arch/unistd.h), and that it never
+  returned.  Also, its .request.op is OP_SWITCH (see
+  arch/um/include/user_util.h).  These mean that it went into a write,
+  and, for some reason, called schedule().
+
+
+  The fact that it never returned from write means that its stack should
+  be fairly interesting.  Its pid is 1980 (.thread.extern_pid).  That
+  process is being ptraced by the signal thread, so it must be detached
+  before gdb can attach it:
+
+
+
+
+
+
+
+
+
+
+  (gdb) call detach(1980)
+
+  Program received signal SIGSEGV, Segmentation fault.
+  <function called from gdb>
+  The program being debugged stopped while in a function called from GDB.
+  When the function (detach) is done executing, GDB will silently
+  stop (instead of continuing to evaluate the expression containing
+  the function call).
+  (gdb) call detach(1980)
+  $15 = 0
+
+
+
+
+
+  The first detach segfaults for some reason, and the second one
+  succeeds.
+
+
+  Now I detach from the signal thread, attach to the fsck thread, and
+  look at its stack:
+
+
+       (gdb) det
+       Detaching from program: /home/dike/linux/2.3.26/um/linux Pid 1935
+       (gdb) att 1980
+       Attaching to program `/home/dike/linux/2.3.26/um/linux', Pid 1980
+       0x10070451 in __kill ()
+       (gdb) bt
+       #0  0x10070451 in __kill ()
+       #1  0x10068ccd in usr1_pid (pid=1980) at process.c:30
+       #2  0x1006a03f in _switch_to (prev=0x50072000, next=0x507e8000)
+           at process_kern.c:156
+       #3  0x1006a052 in switch_to (prev=0x50072000, next=0x507e8000, last=0x50072000)
+           at process_kern.c:161
+       #4  0x10001d12 in schedule () at sched.c:777
+       #5  0x1006a744 in __down (sem=0x507d241c) at semaphore.c:71
+       #6  0x1006aa10 in __down_failed () at semaphore.c:157
+       #7  0x1006c5d8 in segv_handler (sc=0x5006e940) at trap_user.c:174
+       #8  0x1006c5ec in kern_segv_handler (sig=11) at trap_user.c:182
+       #9  <signal handler called>
+       #10 0x10155404 in errno ()
+       #11 0x1006c0aa in segv (address=1342179328, is_write=2) at trap_kern.c:50
+       #12 0x1006c5d8 in segv_handler (sc=0x5006eaf8) at trap_user.c:174
+       #13 0x1006c5ec in kern_segv_handler (sig=11) at trap_user.c:182
+       #14 <signal handler called>
+       #15 0xc0fd in ?? ()
+       #16 0x10016647 in sys_write (fd=3,
+           buf=0x80b8800 <Address 0x80b8800 out of bounds>, count=1024)
+           at read_write.c:159
+       #17 0x1006d5b3 in execute_syscall (syscall=4, args=0x5006ef08)
+           at syscall_kern.c:254
+       #18 0x1006af87 in really_do_syscall (sig=12) at syscall_user.c:35
+       #19 <signal handler called>
+       #20 0x400dc8b0 in ?? ()
+
+
+
+
+
+  The interesting things here are :
+
+  +o  There are two segfaults on this stack (frames 9 and 14)
+
+  +o  The first faulting address (frame 11) is 0x50000800
+
+  (gdb) p (void *)1342179328
+  $16 = (void *) 0x50000800
+
+
+
+
+
+  The initial faulting address is interesting because it is on the idle
+  thread's stack.  I had been seeing the idle thread segfault for no
+  apparent reason, and the cause looked like stack corruption.  In hopes
+  of catching the culprit in the act, I had turned off all protections
+  to that stack while the idle thread wasn't running.  This apparently
+  tripped that trap.
+
+
+  However, the more immediate problem is that second segfault and I'm
+  going to concentrate on that.  First, I want to see where the fault
+  happened, so I have to go look at the sigcontent struct in frame 8:
+
+
+
+       (gdb) up
+       #1  0x10068ccd in usr1_pid (pid=1980) at process.c:30
+       30        kill(pid, SIGUSR1);
+       (gdb)
+       #2  0x1006a03f in _switch_to (prev=0x50072000, next=0x507e8000)
+           at process_kern.c:156
+       156       usr1_pid(getpid());
+       (gdb)
+       #3  0x1006a052 in switch_to (prev=0x50072000, next=0x507e8000, last=0x50072000)
+           at process_kern.c:161
+       161       _switch_to(prev, next);
+       (gdb)
+       #4  0x10001d12 in schedule () at sched.c:777
+       777             switch_to(prev, next, prev);
+       (gdb)
+       #5  0x1006a744 in __down (sem=0x507d241c) at semaphore.c:71
+       71                      schedule();
+       (gdb)
+       #6  0x1006aa10 in __down_failed () at semaphore.c:157
+       157     }
+       (gdb)
+       #7  0x1006c5d8 in segv_handler (sc=0x5006e940) at trap_user.c:174
+       174       segv(sc->cr2, sc->err & 2);
+       (gdb)
+       #8  0x1006c5ec in kern_segv_handler (sig=11) at trap_user.c:182
+       182       segv_handler(sc);
+       (gdb) p *sc
+       Cannot access memory at address 0x0.
+
+
+
+
+  That's not very useful, so I'll try a more manual method:
+
+
+       (gdb) p *((struct sigcontext *) (&sig + 1))
+       $19 = {gs = 0, __gsh = 0, fs = 0, __fsh = 0, es = 43, __esh = 0, ds = 43,
+         __dsh = 0, edi = 1342179328, esi = 1350378548, ebp = 1342630440,
+         esp = 1342630420, ebx = 1348150624, edx = 1280, ecx = 0, eax = 0,
+         trapno = 14, err = 4, eip = 268480945, cs = 35, __csh = 0, eflags = 66118,
+         esp_at_signal = 1342630420, ss = 43, __ssh = 0, fpstate = 0x0, oldmask = 0,
+         cr2 = 1280}
+
+
+
+  The ip is in handle_mm_fault:
+
+
+       (gdb) p (void *)268480945
+       $20 = (void *) 0x1000b1b1
+       (gdb) i sym $20
+       handle_mm_fault + 57 in section .text
+
+
+
+
+
+  Specifically, it's in pte_alloc:
+
+
+       (gdb) i line *$20
+       Line 124 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b1b1 <handle_mm_fault+57>
+          and ends at 0x1000b1b7 <handle_mm_fault+63>.
+
+
+
+
+
+  To find where in handle_mm_fault this is, I'll jump forward in the
+  code until I see an address in that procedure:
+
+
+
+       (gdb) i line *0x1000b1c0
+       Line 126 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b1b7 <handle_mm_fault+63>
+          and ends at 0x1000b1c3 <handle_mm_fault+75>.
+       (gdb) i line *0x1000b1d0
+       Line 131 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b1d0 <handle_mm_fault+88>
+          and ends at 0x1000b1da <handle_mm_fault+98>.
+       (gdb) i line *0x1000b1e0
+       Line 61 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b1da <handle_mm_fault+98>
+          and ends at 0x1000b1e1 <handle_mm_fault+105>.
+       (gdb) i line *0x1000b1f0
+       Line 134 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b1f0 <handle_mm_fault+120>
+          and ends at 0x1000b200 <handle_mm_fault+136>.
+       (gdb) i line *0x1000b200
+       Line 135 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b200 <handle_mm_fault+136>
+          and ends at 0x1000b208 <handle_mm_fault+144>.
+       (gdb) i line *0x1000b210
+       Line 139 of "/home/dike/linux/2.3.26/um/include/asm/pgalloc.h"
+          starts at address 0x1000b210 <handle_mm_fault+152>
+          and ends at 0x1000b219 <handle_mm_fault+161>.
+       (gdb) i line *0x1000b220
+       Line 1168 of "memory.c" starts at address 0x1000b21e <handle_mm_fault+166>
+          and ends at 0x1000b222 <handle_mm_fault+170>.
+
+
+
+
+
+  Something is apparently wrong with the page tables or vma_structs, so
+  lets go back to frame 11 and have a look at them:
+
+
+
+  #11 0x1006c0aa in segv (address=1342179328, is_write=2) at trap_kern.c:50
+  50        handle_mm_fault(current, vma, address, is_write);
+  (gdb) call pgd_offset_proc(vma->vm_mm, address)
+  $22 = (pgd_t *) 0x80a548c
+
+
+
+
+
+  That's pretty bogus.  Page tables aren't supposed to be in process
+  text or data areas.  Let's see what's in the vma:
+
+
+       (gdb) p *vma
+       $23 = {vm_mm = 0x507d2434, vm_start = 0, vm_end = 134512640,
+         vm_next = 0x80a4f8c, vm_page_prot = {pgprot = 0}, vm_flags = 31200,
+         vm_avl_height = 2058, vm_avl_left = 0x80a8c94, vm_avl_right = 0x80d1000,
+         vm_next_share = 0xaffffdb0, vm_pprev_share = 0xaffffe63,
+         vm_ops = 0xaffffe7a, vm_pgoff = 2952789626, vm_file = 0xafffffec,
+         vm_private_data = 0x62}
+       (gdb) p *vma.vm_mm
+       $24 = {mmap = 0x507d2434, mmap_avl = 0x0, mmap_cache = 0x8048000,
+         pgd = 0x80a4f8c, mm_users = {counter = 0}, mm_count = {counter = 134904288},
+         map_count = 134909076, mmap_sem = {count = {counter = 135073792},
+           sleepers = -1342177872, wait = {lock = <optimized out or zero length>,
+             task_list = {next = 0xaffffe63, prev = 0xaffffe7a},
+             __magic = -1342177670, __creator = -1342177300}, __magic = 98},
+         page_table_lock = {}, context = 138, start_code = 0, end_code = 0,
+         start_data = 0, end_data = 0, start_brk = 0, brk = 0, start_stack = 0,
+         arg_start = 0, arg_end = 0, env_start = 0, env_end = 0, rss = 1350381536,
+         total_vm = 0, locked_vm = 0, def_flags = 0, cpu_vm_mask = 0, swap_cnt = 0,
+         swap_address = 0, segments = 0x0}
+
+
+
+
+
+  This also pretty bogus.  With all of the 0x80xxxxx and 0xaffffxxx
+  addresses, this is looking like a stack was plonked down on top of
+  these structures.  Maybe it's a stack overflow from the next page:
+
+
+
+       (gdb) p vma
+       $25 = (struct vm_area_struct *) 0x507d2434
+
+
+
+
+
+  That's towards the lower quarter of the page, so that would have to
+  have been pretty heavy stack overflow:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+  (gdb) x/100x $25
+  0x507d2434:     0x507d2434      0x00000000      0x08048000      0x080a4f8c
+  0x507d2444:     0x00000000      0x080a79e0      0x080a8c94      0x080d1000
+  0x507d2454:     0xaffffdb0      0xaffffe63      0xaffffe7a      0xaffffe7a
+  0x507d2464:     0xafffffec      0x00000062      0x0000008a      0x00000000
+  0x507d2474:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2484:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2494:     0x00000000      0x00000000      0x507d2fe0      0x00000000
+  0x507d24a4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d24b4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d24c4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d24d4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d24e4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d24f4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2504:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2514:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2524:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2534:     0x00000000      0x00000000      0x507d25dc      0x00000000
+  0x507d2544:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2554:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2564:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2574:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2584:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d2594:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d25a4:     0x00000000      0x00000000      0x00000000      0x00000000
+  0x507d25b4:     0x00000000      0x00000000      0x00000000      0x00000000
+
+
+
+
+
+  It's not stack overflow.  The only "stack-like" piece of this data is
+  the vma_struct itself.
+
+
+  At this point, I don't see any avenues to pursue, so I just have to
+  admit that I have no idea what's going on.  What I will do, though, is
+  stick a trap on the segfault handler which will stop if it sees any
+  writes to the idle thread's stack.  That was the thing that happened
+  first, and it may be that if I can catch it immediately, what's going
+  on will be somewhat clearer.
+
+
+  1122..22..  EEppiissooddee 22:: TThhee ccaassee ooff tthhee hhuunngg ffsscckk
+
+  After setting a trap in the SEGV handler for accesses to the signal
+  thread's stack, I reran the kernel.
+
+
+  fsck hung again, this time by hitting the trap:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Setting hostname uml                            [ OK ]
+  Checking root filesystem
+  /dev/fhd0 contains a file system with errors, check forced.
+  Error reading block 86894 (Attempt to read block from filesystem resulted in short read) while reading indirect blocks of inode 19780.
+
+  /dev/fhd0: UNEXPECTED INCONSISTENCY; RUN fsck MANUALLY.
+          (i.e., without -a or -p options)
+  [ FAILED ]
+
+  *** An error occurred during the file system check.
+  *** Dropping you to a shell; the system will reboot
+  *** when you leave the shell.
+  Give root password for maintenance
+  (or type Control-D for normal startup):
+
+  [root@uml /root]# fsck -y /dev/fhd0
+  fsck -y /dev/fhd0
+  Parallelizing fsck version 1.14 (9-Jan-1999)
+  e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
+  /dev/fhd0 contains a file system with errors, check forced.
+  Pass 1: Checking inodes, blocks, and sizes
+  Error reading block 86894 (Attempt to read block from filesystem resulted in short read) while reading indirect blocks of inode 19780.  Ignore error? yes
+
+  Pass 2: Checking directory structure
+  Error reading block 49405 (Attempt to read block from filesystem resulted in short read).  Ignore error? yes
+
+  Directory inode 11858, block 0, offset 0: directory corrupted
+  Salvage? yes
+
+  Missing '.' in directory inode 11858.
+  Fix? yes
+
+  Missing '..' in directory inode 11858.
+  Fix? yes
+
+  Untested (4127) [100fe44c]: trap_kern.c line 31
+
+
+
+
+
+  I need to get the signal thread to detach from pid 4127 so that I can
+  attach to it with gdb.  This is done by sending it a SIGUSR1, which is
+  caught by the signal thread, which detaches the process:
+
+
+       kill -USR1 4127
+
+
+
+
+
+  Now I can run gdb on it:
+
+
+
+
+
+
+
+
+
+
+
+
+
+  ~/linux/2.3.26/um 1034: gdb linux
+  GNU gdb 4.17.0.11 with Linux support
+  Copyright 1998 Free Software Foundation, Inc.
+  GDB is free software, covered by the GNU General Public License, and you are
+  welcome to change it and/or distribute copies of it under certain conditions.
+  Type "show copying" to see the conditions.
+  There is absolutely no warranty for GDB.  Type "show warranty" for details.
+  This GDB was configured as "i386-redhat-linux"...
+  (gdb) att 4127
+  Attaching to program `/home/dike/linux/2.3.26/um/linux', Pid 4127
+  0x10075891 in __libc_nanosleep ()
+
+
+
+
+
+  The backtrace shows that it was in a write and that the fault address
+  (address in frame 3) is 0x50000800, which is right in the middle of
+  the signal thread's stack page:
+
+
+       (gdb) bt
+       #0  0x10075891 in __libc_nanosleep ()
+       #1  0x1007584d in __sleep (seconds=1000000)
+           at ../sysdeps/unix/sysv/linux/sleep.c:78
+       #2  0x1006ce9a in stop () at user_util.c:191
+       #3  0x1006bf88 in segv (address=1342179328, is_write=2) at trap_kern.c:31
+       #4  0x1006c628 in segv_handler (sc=0x5006eaf8) at trap_user.c:174
+       #5  0x1006c63c in kern_segv_handler (sig=11) at trap_user.c:182
+       #6  <signal handler called>
+       #7  0xc0fd in ?? ()
+       #8  0x10016647 in sys_write (fd=3, buf=0x80b8800 "R.", count=1024)
+           at read_write.c:159
+       #9  0x1006d603 in execute_syscall (syscall=4, args=0x5006ef08)
+           at syscall_kern.c:254
+       #10 0x1006af87 in really_do_syscall (sig=12) at syscall_user.c:35
+       #11 <signal handler called>
+       #12 0x400dc8b0 in ?? ()
+       #13 <signal handler called>
+       #14 0x400dc8b0 in ?? ()
+       #15 0x80545fd in ?? ()
+       #16 0x804daae in ?? ()
+       #17 0x8054334 in ?? ()
+       #18 0x804d23e in ?? ()
+       #19 0x8049632 in ?? ()
+       #20 0x80491d2 in ?? ()
+       #21 0x80596b5 in ?? ()
+       (gdb) p (void *)1342179328
+       $3 = (void *) 0x50000800
+
+
+
+
+
+  Going up the stack to the segv_handler frame and looking at where in
+  the code the access happened shows that it happened near line 110 of
+  block_dev.c:
+
+
+
+
+
+
+
+
+
+  (gdb) up
+  #1  0x1007584d in __sleep (seconds=1000000)
+      at ../sysdeps/unix/sysv/linux/sleep.c:78
+  ../sysdeps/unix/sysv/linux/sleep.c:78: No such file or directory.
+  (gdb)
+  #2  0x1006ce9a in stop () at user_util.c:191
+  191       while(1) sleep(1000000);
+  (gdb)
+  #3  0x1006bf88 in segv (address=1342179328, is_write=2) at trap_kern.c:31
+  31          KERN_UNTESTED();
+  (gdb)
+  #4  0x1006c628 in segv_handler (sc=0x5006eaf8) at trap_user.c:174
+  174       segv(sc->cr2, sc->err & 2);
+  (gdb) p *sc
+  $1 = {gs = 0, __gsh = 0, fs = 0, __fsh = 0, es = 43, __esh = 0, ds = 43,
+    __dsh = 0, edi = 1342179328, esi = 134973440, ebp = 1342631484,
+    esp = 1342630864, ebx = 256, edx = 0, ecx = 256, eax = 1024, trapno = 14,
+    err = 6, eip = 268550834, cs = 35, __csh = 0, eflags = 66070,
+    esp_at_signal = 1342630864, ss = 43, __ssh = 0, fpstate = 0x0, oldmask = 0,
+    cr2 = 1342179328}
+  (gdb) p (void *)268550834
+  $2 = (void *) 0x1001c2b2
+  (gdb) i sym $2
+  block_write + 1090 in section .text
+  (gdb) i line *$2
+  Line 209 of "/home/dike/linux/2.3.26/um/include/asm/arch/string.h"
+     starts at address 0x1001c2a1 <block_write+1073>
+     and ends at 0x1001c2bf <block_write+1103>.
+  (gdb) i line *0x1001c2c0
+  Line 110 of "block_dev.c" starts at address 0x1001c2bf <block_write+1103>
+     and ends at 0x1001c2e3 <block_write+1139>.
+
+
+
+
+
+  Looking at the source shows that the fault happened during a call to
+  copy_to_user to copy the data into the kernel:
+
+
+       107             count -= chars;
+       108             copy_from_user(p,buf,chars);
+       109             p += chars;
+       110             buf += chars;
+
+
+
+
+
+  p is the pointer which must contain 0x50000800, since buf contains
+  0x80b8800 (frame 8 above).  It is defined as:
+
+
+                       p = offset + bh->b_data;
+
+
+
+
+
+  I need to figure out what bh is, and it just so happens that bh is
+  passed as an argument to mark_buffer_uptodate and mark_buffer_dirty a
+  few lines later, so I do a little disassembly:
+
+
+
+
+  (gdb) disas 0x1001c2bf 0x1001c2e0
+  Dump of assembler code from 0x1001c2bf to 0x1001c2d0:
+  0x1001c2bf <block_write+1103>:  addl   %eax,0xc(%ebp)
+  0x1001c2c2 <block_write+1106>:  movl   0xfffffdd4(%ebp),%edx
+  0x1001c2c8 <block_write+1112>:  btsl   $0x0,0x18(%edx)
+  0x1001c2cd <block_write+1117>:  btsl   $0x1,0x18(%edx)
+  0x1001c2d2 <block_write+1122>:  sbbl   %ecx,%ecx
+  0x1001c2d4 <block_write+1124>:  testl  %ecx,%ecx
+  0x1001c2d6 <block_write+1126>:  jne    0x1001c2e3 <block_write+1139>
+  0x1001c2d8 <block_write+1128>:  pushl  $0x0
+  0x1001c2da <block_write+1130>:  pushl  %edx
+  0x1001c2db <block_write+1131>:  call   0x1001819c <__mark_buffer_dirty>
+  End of assembler dump.
+
+
+
+
+
+  At that point, bh is in %edx (address 0x1001c2da), which is calculated
+  at 0x1001c2c2 as %ebp + 0xfffffdd4, so I figure exactly what that is,
+  taking %ebp from the sigcontext_struct above:
+
+
+       (gdb) p (void *)1342631484
+       $5 = (void *) 0x5006ee3c
+       (gdb) p 0x5006ee3c+0xfffffdd4
+       $6 = 1342630928
+       (gdb) p (void *)$6
+       $7 = (void *) 0x5006ec10
+       (gdb) p *((void **)$7)
+       $8 = (void *) 0x50100200
+
+
+
+
+
+  Now, I look at the structure to see what's in it, and particularly,
+  what its b_data field contains:
+
+
+       (gdb) p *((struct buffer_head *)0x50100200)
+       $13 = {b_next = 0x50289380, b_blocknr = 49405, b_size = 1024, b_list = 0,
+         b_dev = 15872, b_count = {counter = 1}, b_rdev = 15872, b_state = 24,
+         b_flushtime = 0, b_next_free = 0x501001a0, b_prev_free = 0x50100260,
+         b_this_page = 0x501001a0, b_reqnext = 0x0, b_pprev = 0x507fcf58,
+         b_data = 0x50000800 "", b_page = 0x50004000,
+         b_end_io = 0x10017f60 <end_buffer_io_sync>, b_dev_id = 0x0,
+         b_rsector = 98810, b_wait = {lock = <optimized out or zero length>,
+           task_list = {next = 0x50100248, prev = 0x50100248}, __magic = 1343226448,
+           __creator = 0}, b_kiobuf = 0x0}
+
+
+
+
+
+  The b_data field is indeed 0x50000800, so the question becomes how
+  that happened.  The rest of the structure looks fine, so this probably
+  is not a case of data corruption.  It happened on purpose somehow.
+
+
+  The b_page field is a pointer to the page_struct representing the
+  0x50000000 page.  Looking at it shows the kernel's idea of the state
+  of that page:
+
+
+
+  (gdb) p *$13.b_page
+  $17 = {list = {next = 0x50004a5c, prev = 0x100c5174}, mapping = 0x0,
+    index = 0, next_hash = 0x0, count = {counter = 1}, flags = 132, lru = {
+      next = 0x50008460, prev = 0x50019350}, wait = {
+      lock = <optimized out or zero length>, task_list = {next = 0x50004024,
+        prev = 0x50004024}, __magic = 1342193708, __creator = 0},
+    pprev_hash = 0x0, buffers = 0x501002c0, virtual = 1342177280,
+    zone = 0x100c5160}
+
+
+
+
+
+  Some sanity-checking: the virtual field shows the "virtual" address of
+  this page, which in this kernel is the same as its "physical" address,
+  and the page_struct itself should be mem_map[0], since it represents
+  the first page of memory:
+
+
+
+       (gdb) p (void *)1342177280
+       $18 = (void *) 0x50000000
+       (gdb) p mem_map
+       $19 = (mem_map_t *) 0x50004000
+
+
+
+
+
+  These check out fine.
+
+
+  Now to check out the page_struct itself.  In particular, the flags
+  field shows whether the page is considered free or not:
+
+
+       (gdb) p (void *)132
+       $21 = (void *) 0x84
+
+
+
+
+
+  The "reserved" bit is the high bit, which is definitely not set, so
+  the kernel considers the signal stack page to be free and available to
+  be used.
+
+
+  At this point, I jump to conclusions and start looking at my early
+  boot code, because that's where that page is supposed to be reserved.
+
+
+  In my setup_arch procedure, I have the following code which looks just
+  fine:
+
+
+
+       bootmap_size = init_bootmem(start_pfn, end_pfn - start_pfn);
+       free_bootmem(__pa(low_physmem) + bootmap_size, high_physmem - low_physmem);
+
+
+
+
+
+  Two stack pages have already been allocated, and low_physmem points to
+  the third page, which is the beginning of free memory.
+  The init_bootmem call declares the entire memory to the boot memory
+  manager, which marks it all reserved.  The free_bootmem call frees up
+  all of it, except for the first two pages.  This looks correct to me.
+
+
+  So, I decide to see init_bootmem run and make sure that it is marking
+  those first two pages as reserved.  I never get that far.
+
+
+  Stepping into init_bootmem, and looking at bootmem_map before looking
+  at what it contains shows the following:
+
+
+
+       (gdb) p bootmem_map
+       $3 = (void *) 0x50000000
+
+
+
+
+
+  Aha!  The light dawns.  That first page is doing double duty as a
+  stack and as the boot memory map.  The last thing that the boot memory
+  manager does is to free the pages used by its memory map, so this page
+  is getting freed even its marked as reserved.
+
+
+  The fix was to initialize the boot memory manager before allocating
+  those two stack pages, and then allocate them through the boot memory
+  manager.  After doing this, and fixing a couple of subsequent buglets,
+  the stack corruption problem disappeared.
+
+
+
+
+
+  1133..  WWhhaatt ttoo ddoo wwhheenn UUMMLL ddooeessnn''tt wwoorrkk
+
+
+
+
+  1133..11..  SSttrraannggee ccoommppiillaattiioonn eerrrroorrss wwhheenn yyoouu bbuuiilldd ffrroomm ssoouurrccee
+
+  As of test11, it is necessary to have "ARCH=um" in the environment or
+  on the make command line for all steps in building UML, including
+  clean, distclean, or mrproper, config, menuconfig, or xconfig, dep,
+  and linux.  If you forget for any of them, the i386 build seems to
+  contaminate the UML build.  If this happens, start from scratch with
+
+
+       host%
+       make mrproper ARCH=um
+
+
+
+
+  and repeat the build process with ARCH=um on all the steps.
+
+
+  See ``Compiling the kernel and modules''  for more details.
+
+
+  Another cause of strange compilation errors is building UML in
+  /usr/src/linux.  If you do this, the first thing you need to do is
+  clean up the mess you made.  The /usr/src/linux/asm link will now
+  point to /usr/src/linux/asm-um.  Make it point back to
+  /usr/src/linux/asm-i386.  Then, move your UML pool someplace else and
+  build it there.  Also see below, where a more specific set of symptoms
+  is described.
+
+
+
+  1133..22..  UUMMLL hhaannggss oonn bboooott aafftteerr mmoouunnttiinngg ddeevvffss
+
+  The boot looks like this:
+
+
+       VFS: Mounted root (ext2 filesystem) readonly.
+       Mounted devfs on /dev
+
+
+
+
+  You're probably running a recent distribution on an old machine.  I
+  saw this with the RH7.1 filesystem running on a Pentium.  The shared
+  library loader, ld.so, was executing an instruction (cmove) which the
+  Pentium didn't support.  That instruction was apparently added later.
+  If you run UML under the debugger, you'll see the hang caused by one
+  instruction causing an infinite SIGILL stream.
+
+
+  The fix is to boot UML on an older filesystem.
+
+
+
+  1133..33..  AA vvaarriieettyy ooff ppaanniiccss aanndd hhaannggss wwiitthh //ttmmpp oonn aa rreeiisseerrffss  ffiilleessyyss--
+  tteemm
+
+  I saw this on reiserfs 3.5.21 and it seems to be fixed in 3.5.27.
+  Panics preceded by
+
+
+       Detaching pid nnnn
+
+
+
+  are diagnostic of this problem.  This is a reiserfs bug which causes a
+  thread to occasionally read stale data from a mmapped page shared with
+  another thread.  The fix is to upgrade the filesystem or to have /tmp
+  be an ext2 filesystem.
+
+
+
+  1133..44..  TThhee ccoommppiillee ffaaiillss wwiitthh eerrrroorrss aabboouutt ccoonnfflliiccttiinngg ttyyppeess ffoorr
+  ''ooppeenn'',, ''dduupp'',, aanndd ''wwaaiittppiidd''
+
+  This happens when you build in /usr/src/linux.  The UML build makes
+  the include/asm link point to include/asm-um.  /usr/include/asm points
+  to /usr/src/linux/include/asm, so when that link gets moved, files
+  which need to include the asm-i386 versions of headers get the
+  incompatible asm-um versions.  The fix is to move the include/asm link
+  back to include/asm-i386 and to do UML builds someplace else.
+
+
+
+  1133..55..  UUMMLL ddooeessnn''tt wwoorrkk wwhheenn //ttmmpp iiss aann NNFFSS ffiilleessyysstteemm
+
+  This seems to be a similar situation with the resierfs problem above.
+  Some versions of NFS seems not to handle mmap correctly, which UML
+  depends on.  The workaround is have /tmp be non-NFS directory.
+
+
+  1133..66..  UUMMLL hhaannggss oonn bboooott wwhheenn ccoommppiilleedd wwiitthh ggpprrooff ssuuppppoorrtt
+
+  If you build UML with gprof support and, early in the boot, it does
+  this
+
+
+       kernel BUG at page_alloc.c:100!
+
+
+
+
+  you have a buggy gcc.  You can work around the problem by removing
+  UM_FASTCALL from CFLAGS in arch/um/Makefile-i386.  This will open up
+  another bug, but that one is fairly hard to reproduce.
+
+
+
+  1133..77..  ssyyssllooggdd ddiieess wwiitthh aa SSIIGGTTEERRMM oonn ssttaarrttuupp
+
+  The exact boot error depends on the distribution that you're booting,
+  but Debian produces this:
+
+
+       /etc/rc2.d/S10sysklogd: line 49:    93 Terminated
+       start-stop-daemon --start --quiet --exec /sbin/syslogd -- $SYSLOGD
+
+
+
+
+  This is a syslogd bug.  There's a race between a parent process
+  installing a signal handler and its child sending the signal.  See
+  this uml-devel post <http://www.geocrawler.com/lists/3/Source-
+  Forge/709/0/6612801>  for the details.
+
+
+
+  1133..88..  TTUUNN//TTAAPP nneettwwoorrkkiinngg ddooeessnn''tt wwoorrkk oonn aa 22..44 hhoosstt
+
+  There are a couple of problems which were
+  <http://www.geocrawler.com/lists/3/SourceForge/597/0/> name="pointed
+  out">  by Tim Robinson <timro at trkr dot net>
+
+  +o  It doesn't work on hosts running 2.4.7 (or thereabouts) or earlier.
+     The fix is to upgrade to something more recent and then read the
+     next item.
+
+  +o  If you see
+
+
+       File descriptor in bad state
+
+
+
+  when you bring up the device inside UML, you have a header mismatch
+  between the original kernel and the upgraded one.  Make /usr/src/linux
+  point at the new headers.  This will only be a problem if you build
+  uml_net yourself.
+
+
+
+  1133..99..  YYoouu ccaann nneettwwoorrkk ttoo tthhee hhoosstt bbuutt nnoott ttoo ootthheerr mmaacchhiinneess oonn tthhee
+  nneett
+
+  If you can connect to the host, and the host can connect to UML, but
+  you can not connect to any other machines, then you may need to enable
+  IP Masquerading on the host.  Usually this is only experienced when
+  using private IP addresses (192.168.x.x or 10.x.x.x) for host/UML
+  networking, rather than the public address space that your host is
+  connected to.  UML does not enable IP Masquerading, so you will need
+  to create a static rule to enable it:
+
+
+       host%
+       iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
+
+
+
+
+  Replace eth0 with the interface that you use to talk to the rest of
+  the world.
+
+
+  Documentation on IP Masquerading, and SNAT, can be found at
+  www.netfilter.org  <http://www.netfilter.org> .
+
+
+  If you can reach the local net, but not the outside Internet, then
+  that is usually a routing problem.  The UML needs a default route:
+
+
+       UML#
+       route add default gw gateway IP
+
+
+
+
+  The gateway IP can be any machine on the local net that knows how to
+  reach the outside world.  Usually, this is the host or the local net-
+  work's gateway.
+
+
+  Occasionally, we hear from someone who can reach some machines, but
+  not others on the same net, or who can reach some ports on other
+  machines, but not others.  These are usually caused by strange
+  firewalling somewhere between the UML and the other box.  You track
+  this down by running tcpdump on every interface the packets travel
+  over and see where they disappear.  When you find a machine that takes
+  the packets in, but does not send them onward, that's the culprit.
+
+
+
+  1133..1100..  II hhaavvee nnoo rroooott aanndd II wwaanntt ttoo ssccrreeaamm
+
+  Thanks to Birgit Wahlich for telling me about this strange one.  It
+  turns out that there's a limit of six environment variables on the
+  kernel command line.  When that limit is reached or exceeded, argument
+  processing stops, which means that the 'root=' argument that UML
+  usually adds is not seen.  So, the filesystem has no idea what the
+  root device is, so it panics.
+
+
+  The fix is to put less stuff on the command line.  Glomming all your
+  setup variables into one is probably the best way to go.
+
+
+
+  1133..1111..  UUMMLL bbuuiilldd ccoonnfflliicctt bbeettwweeeenn ppttrraaccee..hh aanndd uuccoonntteexxtt..hh
+
+  On some older systems, /usr/include/asm/ptrace.h and
+  /usr/include/sys/ucontext.h define the same names.  So, when they're
+  included together, the defines from one completely mess up the parsing
+  of the other, producing errors like:
+       /usr/include/sys/ucontext.h:47: parse error before
+       `10'
+
+
+
+
+  plus a pile of warnings.
+
+
+  This is a libc botch, which has since been fixed, and I don't see any
+  way around it besides upgrading.
+
+
+
+  1133..1122..  TThhee UUMMLL BBooggooMMiippss iiss eexxaaccttllyy hhaallff tthhee hhoosstt''ss BBooggooMMiippss
+
+  On i386 kernels, there are two ways of running the loop that is used
+  to calculate the BogoMips rating, using the TSC if it's there or using
+  a one-instruction loop.  The TSC produces twice the BogoMips as the
+  loop.  UML uses the loop, since it has nothing resembling a TSC, and
+  will get almost exactly the same BogoMips as a host using the loop.
+  However, on a host with a TSC, its BogoMips will be double the loop
+  BogoMips, and therefore double the UML BogoMips.
+
+
+
+  1133..1133..  WWhheenn yyoouu rruunn UUMMLL,, iitt iimmmmeeddiiaatteellyy sseeggffaauullttss
+
+  If the host is configured with the 2G/2G address space split, that's
+  why.  See ``UML on 2G/2G hosts''  for the details on getting UML to
+  run on your host.
+
+
+
+  1133..1144..  xxtteerrmmss aappppeeaarr,, tthheenn iimmmmeeddiiaatteellyy ddiissaappppeeaarr
+
+  If you're running an up to date kernel with an old release of
+  uml_utilities, the port-helper program will not work properly, so
+  xterms will exit straight after they appear. The solution is to
+  upgrade to the latest release of uml_utilities.  Usually this problem
+  occurs when you have installed a packaged release of UML then compiled
+  your own development kernel without upgrading the uml_utilities from
+  the source distribution.
+
+
+
+  1133..1155..  AAnnyy ootthheerr ppaanniicc,, hhaanngg,, oorr ssttrraannggee bbeehhaavviioorr
+
+  If you're seeing truly strange behavior, such as hangs or panics that
+  happen in random places, or you try running the debugger to see what's
+  happening and it acts strangely, then it could be a problem in the
+  host kernel.  If you're not running a stock Linus or -ac kernel, then
+  try that.  An early version of the preemption patch and a 2.4.10 SuSE
+  kernel have caused very strange problems in UML.
+
+
+  Otherwise, let me know about it.  Send a message to one of the UML
+  mailing lists - either the developer list - user-mode-linux-devel at
+  lists dot sourceforge dot net (subscription info) or the user list -
+  user-mode-linux-user at lists dot sourceforge do net (subscription
+  info), whichever you prefer.  Don't assume that everyone knows about
+  it and that a fix is imminent.
+
+
+  If you want to be super-helpful, read ``Diagnosing Problems'' and
+  follow the instructions contained therein.
+  1144..  DDiiaaggnnoossiinngg PPrroobblleemmss
+
+
+  If you get UML to crash, hang, or otherwise misbehave, you should
+  report this on one of the project mailing lists, either the developer
+  list - user-mode-linux-devel at lists dot sourceforge dot net
+  (subscription info) or the user list - user-mode-linux-user at lists
+  dot sourceforge dot net (subscription info).  When you do, it is
+  likely that I will want more information.  So, it would be helpful to
+  read the stuff below, do whatever is applicable in your case, and
+  report the results to the list.
+
+
+  For any diagnosis, you're going to need to build a debugging kernel.
+  The binaries from this site aren't debuggable.  If you haven't done
+  this before, read about ``Compiling the kernel and modules''  and
+  ``Kernel debugging''  UML first.
+
+
+  1144..11..  CCaassee 11 :: NNoorrmmaall kkeerrnneell ppaanniiccss
+
+  The most common case is for a normal thread to panic.  To debug this,
+  you will need to run it under the debugger (add 'debug' to the command
+  line).  An xterm will start up with gdb running inside it.  Continue
+  it when it stops in start_kernel and make it crash.  Now ^C gdb and
+
+
+  If the panic was a "Kernel mode fault", then there will be a segv
+  frame on the stack and I'm going to want some more information.  The
+  stack might look something like this:
+
+
+       (UML gdb)  backtrace
+       #0  0x1009bf76 in __sigprocmask (how=1, set=0x5f347940, oset=0x0)
+           at ../sysdeps/unix/sysv/linux/sigprocmask.c:49
+       #1  0x10091411 in change_sig (signal=10, on=1) at process.c:218
+       #2  0x10094785 in timer_handler (sig=26) at time_kern.c:32
+       #3  0x1009bf38 in __restore ()
+           at ../sysdeps/unix/sysv/linux/i386/sigaction.c:125
+       #4  0x1009534c in segv (address=8, ip=268849158, is_write=2, is_user=0)
+           at trap_kern.c:66
+       #5  0x10095c04 in segv_handler (sig=11) at trap_user.c:285
+       #6  0x1009bf38 in __restore ()
+
+
+
+
+  I'm going to want to see the symbol and line information for the value
+  of ip in the segv frame.  In this case, you would do the following:
+
+
+       (UML gdb)  i sym 268849158
+
+
+
+
+  and
+
+
+       (UML gdb)  i line *268849158
+
+
+
+
+  The reason for this is the __restore frame right above the segv_han-
+  dler frame is hiding the frame that actually segfaulted.  So, I have
+  to get that information from the faulting ip.
+
+
+  1144..22..  CCaassee 22 :: TTrraacciinngg tthhrreeaadd ppaanniiccss
+
+  The less common and more painful case is when the tracing thread
+  panics.  In this case, the kernel debugger will be useless because it
+  needs a healthy tracing thread in order to work.  The first thing to
+  do is get a backtrace from the tracing thread.  This is done by
+  figuring out what its pid is, firing up gdb, and attaching it to that
+  pid.  You can figure out the tracing thread pid by looking at the
+  first line of the console output, which will look like this:
+
+
+       tracing thread pid = 15851
+
+
+
+
+  or by running ps on the host and finding the line that looks like
+  this:
+
+
+       jdike 15851 4.5 0.4 132568 1104 pts/0 S 21:34 0:05 ./linux [(tracing thread)]
+
+
+
+
+  If the panic was 'segfault in signals', then follow the instructions
+  above for collecting information about the location of the seg fault.
+
+
+  If the tracing thread flaked out all by itself, then send that
+  backtrace in and wait for our crack debugging team to fix the problem.
+
+
+  1144..33..  CCaassee 33 :: TTrraacciinngg tthhrreeaadd ppaanniiccss ccaauusseedd bbyy ootthheerr tthhrreeaaddss
+
+  However, there are cases where the misbehavior of another thread
+  caused the problem.  The most common panic of this type is:
+
+
+       wait_for_stop failed to wait for  <pid>  to stop with  <signal number>
+
+
+
+
+  In this case, you'll need to get a backtrace from the process men-
+  tioned in the panic, which is complicated by the fact that the kernel
+  debugger is defunct and without some fancy footwork, another gdb can't
+  attach to it.  So, this is how the fancy footwork goes:
+
+  In a shell:
+
+
+       host% kill -STOP pid
+
+
+
+
+  Run gdb on the tracing thread as described in case 2 and do:
+
+
+       (host gdb)  call detach(pid)
+
+
+  If you get a segfault, do it again.  It always works the second time.
+
+  Detach from the tracing thread and attach to that other thread:
+
+
+       (host gdb)  detach
+
+
+
+
+
+
+       (host gdb)  attach pid
+
+
+
+
+  If gdb hangs when attaching to that process, go back to a shell and
+  do:
+
+
+       host%
+       kill -CONT pid
+
+
+
+
+  And then get the backtrace:
+
+
+       (host gdb)  backtrace
+
+
+
+
+
+  1144..44..  CCaassee 44 :: HHaannggss
+
+  Hangs seem to be fairly rare, but they sometimes happen.  When a hang
+  happens, we need a backtrace from the offending process.  Run the
+  kernel debugger as described in case 1 and get a backtrace.  If the
+  current process is not the idle thread, then send in the backtrace.
+  You can tell that it's the idle thread if the stack looks like this:
+
+
+       #0  0x100b1401 in __libc_nanosleep ()
+       #1  0x100a2885 in idle_sleep (secs=10) at time.c:122
+       #2  0x100a546f in do_idle () at process_kern.c:445
+       #3  0x100a5508 in cpu_idle () at process_kern.c:471
+       #4  0x100ec18f in start_kernel () at init/main.c:592
+       #5  0x100a3e10 in start_kernel_proc (unused=0x0) at um_arch.c:71
+       #6  0x100a383f in signal_tramp (arg=0x100a3dd8) at trap_user.c:50
+
+
+
+
+  If this is the case, then some other process is at fault, and went to
+  sleep when it shouldn't have.  Run ps on the host and figure out which
+  process should not have gone to sleep and stayed asleep.  Then attach
+  to it with gdb and get a backtrace as described in case 3.
+
+
+
+
+
+
+  1155..  TThhaannkkss
+
+
+  A number of people have helped this project in various ways, and this
+  page gives recognition where recognition is due.
+
+
+  If you're listed here and you would prefer a real link on your name,
+  or no link at all, instead of the despammed email address pseudo-link,
+  let me know.
+
+
+  If you're not listed here and you think maybe you should be, please
+  let me know that as well.  I try to get everyone, but sometimes my
+  bookkeeping lapses and I forget about contributions.
+
+
+  1155..11..  CCooddee aanndd DDooccuummeennttaattiioonn
+
+  Rusty Russell <rusty at linuxcare.com.au>  -
+
+  +o  wrote the  HOWTO <http://user-mode-
+     linux.sourceforge.net/UserModeLinux-HOWTO.html>
+
+  +o  prodded me into making this project official and putting it on
+     SourceForge
+
+  +o  came up with the way cool UML logo <http://user-mode-
+     linux.sourceforge.net/uml-small.png>
+
+  +o  redid the config process
+
+
+  Peter Moulder <reiter at netspace.net.au>  - Fixed my config and build
+  processes, and added some useful code to the block driver
+
+
+  Bill Stearns <wstearns at pobox.com>  -
+
+  +o  HOWTO updates
+
+  +o  lots of bug reports
+
+  +o  lots of testing
+
+  +o  dedicated a box (uml.ists.dartmouth.edu) to support UML development
+
+  +o  wrote the mkrootfs script, which allows bootable filesystems of
+     RPM-based distributions to be cranked out
+
+  +o  cranked out a large number of filesystems with said script
+
+
+  Jim Leu <jleu at mindspring.com>  - Wrote the virtual ethernet driver
+  and associated usermode tools
+
+  Lars Brinkhoff <http://lars.nocrew.org/>  - Contributed the ptrace
+  proxy from his own  project <http://a386.nocrew.org/> to allow easier
+  kernel debugging
+
+
+  Andrea Arcangeli <andrea at suse.de>  - Redid some of the early boot
+  code so that it would work on machines with Large File Support
+
+
+  Chris Emerson <http://www.chiark.greenend.org.uk/~cemerson/>  - Did
+  the first UML port to Linux/ppc
+
+
+  Harald Welte <laforge at gnumonks.org>  - Wrote the multicast
+  transport for the network driver
+
+
+  Jorgen Cederlof - Added special file support to hostfs
+
+
+  Greg Lonnon  <glonnon at ridgerun dot com>  - Changed the ubd driver
+  to allow it to layer a COW file on a shared read-only filesystem and
+  wrote the iomem emulation support
+
+
+  Henrik Nordstrom <http://hem.passagen.se/hno/>  - Provided a variety
+  of patches, fixes, and clues
+
+
+  Lennert Buytenhek - Contributed various patches, a rewrite of the
+  network driver, the first implementation of the mconsole driver, and
+  did the bulk of the work needed to get SMP working again.
+
+
+  Yon Uriarte - Fixed the TUN/TAP network backend while I slept.
+
+
+  Adam Heath - Made a bunch of nice cleanups to the initialization code,
+  plus various other small patches.
+
+
+  Matt Zimmerman - Matt volunteered to be the UML Debian maintainer and
+  is doing a real nice job of it.  He also noticed and fixed a number of
+  actually and potentially exploitable security holes in uml_net.  Plus
+  the occasional patch.  I like patches.
+
+
+  James McMechan - James seems to have taken over maintenance of the ubd
+  driver and is doing a nice job of it.
+
+
+  Chandan Kudige - wrote the umlgdb script which automates the reloading
+  of module symbols.
+
+
+  Steve Schmidtke - wrote the UML slirp transport and hostaudio drivers,
+  enabling UML processes to access audio devices on the host. He also
+  submitted patches for the slip transport and lots of other things.
+
+
+  David Coulson <http://davidcoulson.net>  -
+
+  +o  Set up the usermodelinux.org <http://usermodelinux.org>  site,
+     which is a great way of keeping the UML user community on top of
+     UML goings-on.
+
+  +o  Site documentation and updates
+
+  +o  Nifty little UML management daemon  UMLd
+     <http://uml.openconsultancy.com/umld/>
+
+  +o  Lots of testing and bug reports
+
+
+
+
+  1155..22..  FFlluusshhiinngg oouutt bbuuggss
+
+
+
+  +o  Yuri Pudgorodsky
+
+  +o  Gerald Britton
+
+  +o  Ian Wehrman
+
+  +o  Gord Lamb
+
+  +o  Eugene Koontz
+
+  +o  John H. Hartman
+
+  +o  Anders Karlsson
+
+  +o  Daniel Phillips
+
+  +o  John Fremlin
+
+  +o  Rainer Burgstaller
+
+  +o  James Stevenson
+
+  +o  Matt Clay
+
+  +o  Cliff Jefferies
+
+  +o  Geoff Hoff
+
+  +o  Lennert Buytenhek
+
+  +o  Al Viro
+
+  +o  Frank Klingenhoefer
+
+  +o  Livio Baldini Soares
+
+  +o  Jon Burgess
+
+  +o  Petru Paler
+
+  +o  Paul
+
+  +o  Chris Reahard
+
+  +o  Sverker Nilsson
+
+  +o  Gong Su
+
+  +o  johan verrept
+
+  +o  Bjorn Eriksson
+
+  +o  Lorenzo Allegrucci
+
+  +o  Muli Ben-Yehuda
+
+  +o  David Mansfield
+
+  +o  Howard Goff
+
+  +o  Mike Anderson
+
+  +o  John Byrne
+
+  +o  Sapan J. Batia
+
+  +o  Iris Huang
+
+  +o  Jan Hudec
+
+  +o  Voluspa
+
+
+
+
+  1155..33..  BBuugglleettss aanndd cclleeaann--uuppss
+
+
+
+  +o  Dave Zarzycki
+
+  +o  Adam Lazur
+
+  +o  Boria Feigin
+
+  +o  Brian J. Murrell
+
+  +o  JS
+
+  +o  Roman Zippel
+
+  +o  Wil Cooley
+
+  +o  Ayelet Shemesh
+
+  +o  Will Dyson
+
+  +o  Sverker Nilsson
+
+  +o  dvorak
+
+  +o  v.naga srinivas
+
+  +o  Shlomi Fish
+
+  +o  Roger Binns
+
+  +o  johan verrept
+
+  +o  MrChuoi
+
+  +o  Peter Cleve
+
+  +o  Vincent Guffens
+
+  +o  Nathan Scott
+
+  +o  Patrick Caulfield
+
+  +o  jbearce
+
+  +o  Catalin Marinas
+
+  +o  Shane Spencer
+
+  +o  Zou Min
+
+
+  +o  Ryan Boder
+
+  +o  Lorenzo Colitti
+
+  +o  Gwendal Grignou
+
+  +o  Andre' Breiler
+
+  +o  Tsutomu Yasuda
+
+
+
+  1155..44..  CCaassee SSttuuddiieess
+
+
+  +o  Jon Wright
+
+  +o  William McEwan
+
+  +o  Michael Richardson
+
+
+
+  1155..55..  OOtthheerr ccoonnttrriibbuuttiioonnss
+
+
+  Bill Carr <Bill.Carr at compaq.com>  made the Red Hat mkrootfs script
+  work with RH 6.2.
+
+  Michael Jennings <mikejen at hevanet.com>  sent in some material which
+  is now gracing the top of the  index  page <http://user-mode-
+  linux.sourceforge.net/index.html>  of this site.
+
+  SGI <http://www.sgi.com>  (and more specifically Ralf Baechle <ralf at
+  uni-koblenz.de> ) gave me an account on oss.sgi.com
+  <http://www.oss.sgi.com> .  The bandwidth there made it possible to
+  produce most of the filesystems available on the project download
+  page.
+
+  Laurent Bonnaud <Laurent.Bonnaud at inpg.fr>  took the old grotty
+  Debian filesystem that I've been distributing and updated it to 2.2.
+  It is now available by itself here.
+
+  Rik van Riel gave me some ftp space on ftp.nl.linux.org so I can make
+  releases even when Sourceforge is broken.
+
+  Rodrigo de Castro looked at my broken pte code and told me what was
+  wrong with it, letting me fix a long-standing (several weeks) and
+  serious set of bugs.
+
+  Chris Reahard built a specialized root filesystem for running a DNS
+  server jailed inside UML.  It's available from the download
+  <http://user-mode-linux.sourceforge.net/dl-sf.html>  page in the Jail
+  Filesysems section.
+
+
+
+
+
+
+
+
+
+
+
+