Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/video/kyro/STG4000InitDevice.c b/drivers/video/kyro/STG4000InitDevice.c
new file mode 100644
index 0000000..7e33cd30
--- /dev/null
+++ b/drivers/video/kyro/STG4000InitDevice.c
@@ -0,0 +1,326 @@
+/*
+ *  linux/drivers/video/kyro/STG4000InitDevice.c
+ *
+ *  Copyright (C) 2000 Imagination Technologies Ltd
+ *  Copyright (C) 2002 STMicroelectronics
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License.  See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+
+#include "STG4000Reg.h"
+
+/* SDRAM fixed settings */
+#define SDRAM_CFG_0   0x49A1
+#define SDRAM_CFG_1   0xA732
+#define SDRAM_CFG_2   0x31
+#define SDRAM_ARB_CFG 0xA0
+#define SDRAM_REFRESH 0x20
+
+/* Reset values */
+#define PMX2_SOFTRESET_DAC_RST		0x0001
+#define PMX2_SOFTRESET_C1_RST		0x0004
+#define PMX2_SOFTRESET_C2_RST		0x0008
+#define PMX2_SOFTRESET_3D_RST		0x0010
+#define PMX2_SOFTRESET_VIDIN_RST	0x0020
+#define PMX2_SOFTRESET_TLB_RST		0x0040
+#define PMX2_SOFTRESET_SD_RST		0x0080
+#define PMX2_SOFTRESET_VGA_RST		0x0100
+#define PMX2_SOFTRESET_ROM_RST		0x0200	/* reserved bit, do not reset */
+#define PMX2_SOFTRESET_TA_RST		0x0400
+#define PMX2_SOFTRESET_REG_RST		0x4000
+#define PMX2_SOFTRESET_ALL		0x7fff
+
+/* Core clock freq */
+#define CORE_PLL_FREQ 1000000
+
+/* Reference Clock freq */
+#define REF_FREQ 14318
+
+/* PCI Registers */
+static u16 CorePllControl = 0x70;
+
+#define	PCI_CONFIG_SUBSYS_ID	0x2e
+
+/* Misc */
+#define CORE_PLL_MODE_REG_0_7      3
+#define CORE_PLL_MODE_REG_8_15     2
+#define CORE_PLL_MODE_CONFIG_REG   1
+#define DAC_PLL_CONFIG_REG         0
+
+#define STG_MAX_VCO 500000
+#define STG_MIN_VCO 100000
+
+/* PLL Clock */
+#define    STG4K3_PLL_SCALER      8	/* scale numbers by 2^8 for fixed point calc */
+#define    STG4K3_PLL_MIN_R       2	/* Minimum multiplier */
+#define    STG4K3_PLL_MAX_R       33	/* Max */
+#define    STG4K3_PLL_MIN_F       2	/* Minimum divisor */
+#define    STG4K3_PLL_MAX_F       513	/* Max */
+#define    STG4K3_PLL_MIN_OD      0	/* Min output divider (shift) */
+#define    STG4K3_PLL_MAX_OD      2	/* Max */
+#define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate */
+#define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate */
+#define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate (restricted) */
+#define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate (restricted) */
+#define    STG4K3_PLL_MINR_VCO    100000000	/* Min VCO rate (restricted) */
+#define    STG4K3_PLL_MAX_VCO     500000000	/* Max VCO rate */
+#define    STG4K3_PLL_MAXR_VCO    500000000	/* Max VCO rate (restricted) */
+
+#define OS_DELAY(X) \
+{ \
+volatile u32 i,count=0; \
+    for(i=0;i<X;i++) count++; \
+}
+
+static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
+			      u32 dwSubSysID, u32 dwRevID)
+{
+	u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
+	u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
+	u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
+	u32 adwSDRAMRsh[] = { 36, 39, 40 };
+	u32 adwChipSpeed[] = { 110, 120, 125 };
+	u32 dwMemTypeIdx;
+	u32 dwChipSpeedIdx;
+
+	/* Get memory tpye and chip speed indexs from the SubSysDevID */
+	dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
+	dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
+
+	if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
+		return 0;
+
+	/* Program SD-RAM interface */
+	STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
+	if (dwRevID < 5) {
+		STG_WRITE_REG(SDRAMConf0, 0x49A1);
+		STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
+	} else {
+		STG_WRITE_REG(SDRAMConf0, 0x4DF1);
+		STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
+	}
+
+	STG_WRITE_REG(SDRAMConf2, 0x31);
+	STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
+
+	return adwChipSpeed[dwChipSpeedIdx] * 10000;
+}
+
+u32 ProgramClock(u32 refClock,
+		   u32 coreClock,
+		   u32 * FOut, u32 * ROut, u32 * POut)
+{
+	u32 R = 0, F = 0, OD = 0, ODIndex = 0;
+	u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
+	u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
+	u32 ulScore, ulPhaseScore, ulVcoScore;
+	u32 ulTmp = 0, ulVCO;
+	u32 ulScaleClockReq, ulMinClock, ulMaxClock;
+	u32 ODValues[] = { 1, 2, 0 };
+
+	/* Translate clock in Hz */
+	coreClock *= 100;	/* in Hz */
+	refClock *= 1000;	/* in Hz */
+
+	/* Work out acceptable clock
+	 * The method calculates ~ +- 0.4% (1/256)
+	 */
+	ulMinClock = coreClock - (coreClock >> 8);
+	ulMaxClock = coreClock + (coreClock >> 8);
+
+	/* Scale clock required for use in calculations */
+	ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
+
+	/* Iterate through post divider values */
+	for (ODIndex = 0; ODIndex < 3; ODIndex++) {
+		OD = ODValues[ODIndex];
+		R = STG4K3_PLL_MIN_R;
+
+		/* loop for pre-divider from min to max  */
+		while (R <= STG4K3_PLL_MAX_R) {
+			/* estimate required feedback multiplier */
+			ulTmp = R * (ulScaleClockReq << OD);
+
+			/* F = ClkRequired * R * (2^OD) / Fref */
+			F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
+
+			/* compensate for accuracy */
+			if (F > STG4K3_PLL_MIN_F)
+				F--;
+
+
+			/*
+			 * We should be close to our target frequency (if it's
+			 * achievable with current OD & R) let's iterate
+			 * through F for best fit
+			 */
+			while ((F >= STG4K3_PLL_MIN_F) &&
+			       (F <= STG4K3_PLL_MAX_F)) {
+				/* Calc VCO at full accuracy */
+				ulVCO = refClock / R;
+				ulVCO = F * ulVCO;
+
+				/*
+				 * Check it's within restricted VCO range
+				 * unless of course the desired frequency is
+				 * above the restricted range, then test
+				 * against VCO limit
+				 */
+				if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
+				    ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
+				     ((coreClock > STG4K3_PLL_MAXR_VCO)
+				      && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
+					ulTmp = (ulVCO >> OD);	/* Clock = VCO / (2^OD) */
+
+					/* Is this clock good enough? */
+					if ((ulTmp >= ulMinClock)
+					    && (ulTmp <= ulMaxClock)) {
+						ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
+
+						ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
+						ulScore = ulPhaseScore + ulVcoScore;
+
+						if (!ulBestScore) {
+							ulBestVCO = ulVCO;
+							ulBestOD = OD;
+							ulBestF = F;
+							ulBestR = R;
+							ulBestClk = ulTmp;
+							ulBestScore =
+							    ulScore;
+						}
+						/* is this better, ( aim for highest Score) */
+			/*--------------------------------------------------------------------------
+                             Here we want to use a scoring system which will take account of both the
+                            value at the phase comparater and the VCO output
+                             to do this we will use a cumulative score between the two
+                          The way this ends up is that we choose the first value in the loop anyway
+                          but we shall keep this code in case new restrictions come into play
+                          --------------------------------------------------------------------------*/
+						if ((ulScore >= ulBestScore) && (OD > 0)) {
+							ulBestVCO = ulVCO;
+							ulBestOD = OD;
+							ulBestF = F;
+							ulBestR = R;
+							ulBestClk = ulTmp;
+							ulBestScore =
+							    ulScore;
+						}
+					}
+				}
+				F++;
+			}
+			R++;
+		}
+	}
+
+	/*
+	   did we find anything?
+	   Then return RFOD
+	 */
+	if (ulBestScore) {
+		*ROut = ulBestR;
+		*FOut = ulBestF;
+
+		if ((ulBestOD == 2) || (ulBestOD == 3)) {
+			*POut = 3;
+		} else
+			*POut = ulBestOD;
+
+	}
+
+	return (ulBestClk);
+}
+
+int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
+{
+	u32 F, R, P;
+	u16 core_pll = 0, sub;
+	u32 ulCoreClock;
+	u32 tmp;
+	u32 ulChipSpeed;
+	u8 rev;
+
+	STG_WRITE_REG(IntMask, 0xFFFF);
+
+	/* Disable Primary Core Thread0 */
+	tmp = STG_READ_REG(Thread0Enable);
+	CLEAR_BIT(0);
+	STG_WRITE_REG(Thread0Enable, tmp);
+
+	/* Disable Primary Core Thread1 */
+	tmp = STG_READ_REG(Thread1Enable);
+	CLEAR_BIT(0);
+	STG_WRITE_REG(Thread1Enable, tmp);
+
+	STG_WRITE_REG(SoftwareReset,
+		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
+	STG_WRITE_REG(SoftwareReset,
+		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
+		      PMX2_SOFTRESET_ROM_RST);
+
+	/* Need to play around to reset TA */
+	STG_WRITE_REG(TAConfiguration, 0);
+	STG_WRITE_REG(SoftwareReset,
+		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
+	STG_WRITE_REG(SoftwareReset,
+		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
+		      PMX2_SOFTRESET_ROM_RST);
+
+	pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
+	pci_read_config_byte(pDev, PCI_REVISION_ID, &rev);
+
+	ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)rev);
+
+	if (ulChipSpeed == 0)
+		return -EINVAL;
+
+	ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
+
+	core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
+
+	/* Set Core PLL Control to Core PLL Mode  */
+
+	/* Send bits 0:7 of the Core PLL Mode register */
+	tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
+	pci_write_config_word(pDev, CorePllControl, tmp);
+	/* Without some delay between the PCI config writes the clock does
+	   not reliably set when the code is compiled -O3
+	 */
+	OS_DELAY(1000000);
+
+	tmp |= SET_BIT(14);
+	pci_write_config_word(pDev, CorePllControl, tmp);
+	OS_DELAY(1000000);
+
+	/* Send bits 8:15 of the Core PLL Mode register */
+	tmp =
+	    ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
+	pci_write_config_word(pDev, CorePllControl, tmp);
+	OS_DELAY(1000000);
+
+	tmp |= SET_BIT(14);
+	pci_write_config_word(pDev, CorePllControl, tmp);
+	OS_DELAY(1000000);
+
+	STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
+
+#if 0
+	/* Enable Primary Core Thread0 */
+	tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
+	STG_WRITE_REG(Thread0Enable, tmp);
+
+	/* Enable Primary Core Thread1 */
+	tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
+	STG_WRITE_REG(Thread1Enable, tmp);
+#endif
+
+	return 0;
+}