blob: 513de1f54e2d7371ceca11b9427a265394aeadc9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* platform_device probing code for ARM performance counters.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
*/
#define pr_fmt(fmt) "hw perfevents: " fmt
#define dev_fmt pr_fmt
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <linux/kconfig.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/percpu.h>
#include <linux/perf/arm_pmu.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/smp.h>
static int probe_current_pmu(struct arm_pmu *pmu,
const struct pmu_probe_info *info)
{
int cpu = get_cpu();
unsigned int cpuid = read_cpuid_id();
int ret = -ENODEV;
pr_info("probing PMU on CPU %d\n", cpu);
for (; info->init != NULL; info++) {
if ((cpuid & info->mask) != info->cpuid)
continue;
ret = info->init(pmu);
break;
}
put_cpu();
return ret;
}
static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
{
int cpu, ret;
struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
if (ret)
return ret;
for_each_cpu(cpu, &pmu->supported_cpus)
per_cpu(hw_events->irq, cpu) = irq;
return 0;
}
static bool pmu_has_irq_affinity(struct device_node *node)
{
return !!of_find_property(node, "interrupt-affinity", NULL);
}
static int pmu_parse_irq_affinity(struct device *dev, int i)
{
struct device_node *dn;
int cpu;
/*
* If we don't have an interrupt-affinity property, we guess irq
* affinity matches our logical CPU order, as we used to assume.
* This is fragile, so we'll warn in pmu_parse_irqs().
*/
if (!pmu_has_irq_affinity(dev->of_node))
return i;
dn = of_parse_phandle(dev->of_node, "interrupt-affinity", i);
if (!dn) {
dev_warn(dev, "failed to parse interrupt-affinity[%d]\n", i);
return -EINVAL;
}
cpu = of_cpu_node_to_id(dn);
if (cpu < 0) {
dev_warn(dev, "failed to find logical CPU for %pOFn\n", dn);
cpu = nr_cpu_ids;
}
of_node_put(dn);
return cpu;
}
static int pmu_parse_irqs(struct arm_pmu *pmu)
{
int i = 0, num_irqs;
struct platform_device *pdev = pmu->plat_device;
struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
struct device *dev = &pdev->dev;
num_irqs = platform_irq_count(pdev);
if (num_irqs < 0)
return dev_err_probe(dev, num_irqs, "unable to count PMU IRQs\n");
/*
* In this case we have no idea which CPUs are covered by the PMU.
* To match our prior behaviour, we assume all CPUs in this case.
*/
if (num_irqs == 0) {
dev_warn(dev, "no irqs for PMU, sampling events not supported\n");
pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
cpumask_setall(&pmu->supported_cpus);
return 0;
}
if (num_irqs == 1) {
int irq = platform_get_irq(pdev, 0);
if (irq && irq_is_percpu_devid(irq))
return pmu_parse_percpu_irq(pmu, irq);
}
if (nr_cpu_ids != 1 && !pmu_has_irq_affinity(dev->of_node))
dev_warn(dev, "no interrupt-affinity property, guessing.\n");
for (i = 0; i < num_irqs; i++) {
int cpu, irq;
irq = platform_get_irq(pdev, i);
if (WARN_ON(irq <= 0))
continue;
if (irq_is_percpu_devid(irq)) {
dev_warn(dev, "multiple PPIs or mismatched SPI/PPI detected\n");
return -EINVAL;
}
cpu = pmu_parse_irq_affinity(dev, i);
if (cpu < 0)
return cpu;
if (cpu >= nr_cpu_ids)
continue;
if (per_cpu(hw_events->irq, cpu)) {
dev_warn(dev, "multiple PMU IRQs for the same CPU detected\n");
return -EINVAL;
}
per_cpu(hw_events->irq, cpu) = irq;
cpumask_set_cpu(cpu, &pmu->supported_cpus);
}
return 0;
}
static int armpmu_request_irqs(struct arm_pmu *armpmu)
{
struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
int cpu, err = 0;
for_each_cpu(cpu, &armpmu->supported_cpus) {
int irq = per_cpu(hw_events->irq, cpu);
if (!irq)
continue;
err = armpmu_request_irq(irq, cpu);
if (err)
break;
}
return err;
}
static void armpmu_free_irqs(struct arm_pmu *armpmu)
{
int cpu;
struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
for_each_cpu(cpu, &armpmu->supported_cpus) {
int irq = per_cpu(hw_events->irq, cpu);
armpmu_free_irq(irq, cpu);
}
}
int arm_pmu_device_probe(struct platform_device *pdev,
const struct of_device_id *of_table,
const struct pmu_probe_info *probe_table)
{
armpmu_init_fn init_fn;
struct device *dev = &pdev->dev;
struct arm_pmu *pmu;
int ret = -ENODEV;
pmu = armpmu_alloc();
if (!pmu)
return -ENOMEM;
pmu->plat_device = pdev;
ret = pmu_parse_irqs(pmu);
if (ret)
goto out_free;
init_fn = of_device_get_match_data(dev);
if (init_fn) {
pmu->secure_access = of_property_read_bool(dev->of_node,
"secure-reg-access");
/* arm64 systems boot only as non-secure */
if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
dev_warn(dev, "ignoring \"secure-reg-access\" property for arm64\n");
pmu->secure_access = false;
}
ret = init_fn(pmu);
} else if (probe_table) {
cpumask_setall(&pmu->supported_cpus);
ret = probe_current_pmu(pmu, probe_table);
}
if (ret) {
dev_err(dev, "failed to probe PMU!\n");
goto out_free;
}
ret = armpmu_request_irqs(pmu);
if (ret)
goto out_free_irqs;
ret = armpmu_register(pmu);
if (ret) {
dev_err(dev, "failed to register PMU devices!\n");
goto out_free_irqs;
}
return 0;
out_free_irqs:
armpmu_free_irqs(pmu);
out_free:
armpmu_free(pmu);
return ret;
}