blob: 411138102948afa995ce6ad9937ca9cd4e2eb3e9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved.
*
* Contact Information: wlanfae <wlanfae@realtek.com>
*/
#include <linux/bitops.h>
#include "rtl_core.h"
#include "r8192E_hw.h"
#include "r8192E_phyreg.h"
#include "r8190P_rtl8256.h"
#include "r8192E_phy.h"
#include "rtl_dm.h"
#include "r8192E_hwimg.h"
static u32 RF_CHANNEL_TABLE_ZEBRA[] = {
0,
0x085c,
0x08dc,
0x095c,
0x09dc,
0x0a5c,
0x0adc,
0x0b5c,
0x0bdc,
0x0c5c,
0x0cdc,
0x0d5c,
0x0ddc,
0x0e5c,
0x0f72,
};
/*************************Define local function prototype**********************/
static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset);
static void _rtl92e_phy_rf_fw_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data);
static u32 _rtl92e_calculate_bit_shift(u32 dwBitMask)
{
if (!dwBitMask)
return 32;
return ffs(dwBitMask) - 1;
}
u8 rtl92e_is_legal_rf_path(struct net_device *dev, u32 eRFPath)
{
u8 ret = 1;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rf_type == RF_2T4R)
ret = 0;
else if (priv->rf_type == RF_1T2R) {
if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B)
ret = 1;
else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D)
ret = 0;
}
return ret;
}
void rtl92e_set_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask,
u32 dwData)
{
u32 OriginalValue, BitShift, NewValue;
if (dwBitMask != bMaskDWord) {
OriginalValue = rtl92e_readl(dev, dwRegAddr);
BitShift = _rtl92e_calculate_bit_shift(dwBitMask);
NewValue = (OriginalValue & ~dwBitMask) | (dwData << BitShift);
rtl92e_writel(dev, dwRegAddr, NewValue);
} else
rtl92e_writel(dev, dwRegAddr, dwData);
}
u32 rtl92e_get_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask)
{
u32 OriginalValue, BitShift;
OriginalValue = rtl92e_readl(dev, dwRegAddr);
BitShift = _rtl92e_calculate_bit_shift(dwBitMask);
return (OriginalValue & dwBitMask) >> BitShift;
}
static u32 _rtl92e_phy_rf_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 ret = 0;
u32 NewOffset = 0;
struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath];
Offset &= 0x3f;
if (priv->rf_chip == RF_8256) {
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31) {
priv->RfReg0Value[eRFPath] |= 0x140;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath]<<16));
NewOffset = Offset - 30;
} else if (Offset >= 16) {
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath]<<16));
NewOffset = Offset - 15;
} else
NewOffset = Offset;
} else {
RT_TRACE((COMP_PHY|COMP_ERR),
"check RF type here, need to be 8256\n");
NewOffset = Offset;
}
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress,
NewOffset);
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0);
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1);
mdelay(1);
ret = rtl92e_get_bb_reg(dev, pPhyReg->rfLSSIReadBack,
bLSSIReadBackData);
if (priv->rf_chip == RF_8256) {
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
}
return ret;
}
static void _rtl92e_phy_rf_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 DataAndAddr = 0, NewOffset = 0;
struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath];
Offset &= 0x3f;
if (priv->rf_chip == RF_8256) {
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31) {
priv->RfReg0Value[eRFPath] |= 0x140;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
NewOffset = Offset - 30;
} else if (Offset >= 16) {
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
NewOffset = Offset - 15;
} else
NewOffset = Offset;
} else {
RT_TRACE((COMP_PHY|COMP_ERR),
"check RF type here, need to be 8256\n");
NewOffset = Offset;
}
DataAndAddr = (NewOffset & 0x3f) | (Data << 16);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
if (Offset == 0x0)
priv->RfReg0Value[eRFPath] = Data;
if (priv->rf_chip == RF_8256) {
if (Offset != 0) {
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
}
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
}
}
void rtl92e_set_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath,
u32 RegAddr, u32 BitMask, u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 Original_Value, BitShift, New_Value;
if (!rtl92e_is_legal_rf_path(dev, eRFPath))
return;
if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter)
return;
RT_TRACE(COMP_PHY, "FW RF CTRL is not ready now\n");
if (priv->Rf_Mode == RF_OP_By_FW) {
if (BitMask != bMask12Bits) {
Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath,
RegAddr);
BitShift = _rtl92e_calculate_bit_shift(BitMask);
New_Value = (Original_Value & ~BitMask) | (Data << BitShift);
_rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr,
New_Value);
} else
_rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr, Data);
udelay(200);
} else {
if (BitMask != bMask12Bits) {
Original_Value = _rtl92e_phy_rf_read(dev, eRFPath,
RegAddr);
BitShift = _rtl92e_calculate_bit_shift(BitMask);
New_Value = (Original_Value & ~BitMask) | (Data << BitShift);
_rtl92e_phy_rf_write(dev, eRFPath, RegAddr, New_Value);
} else
_rtl92e_phy_rf_write(dev, eRFPath, RegAddr, Data);
}
}
u32 rtl92e_get_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath,
u32 RegAddr, u32 BitMask)
{
u32 Original_Value, Readback_Value, BitShift;
struct r8192_priv *priv = rtllib_priv(dev);
if (!rtl92e_is_legal_rf_path(dev, eRFPath))
return 0;
if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter)
return 0;
mutex_lock(&priv->rf_mutex);
if (priv->Rf_Mode == RF_OP_By_FW) {
Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath, RegAddr);
udelay(200);
} else {
Original_Value = _rtl92e_phy_rf_read(dev, eRFPath, RegAddr);
}
BitShift = _rtl92e_calculate_bit_shift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
mutex_unlock(&priv->rf_mutex);
return Readback_Value;
}
static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset)
{
u32 Data = 0;
u8 time = 0;
Data |= ((Offset & 0xFF) << 12);
Data |= ((eRFPath & 0x3) << 20);
Data |= 0x80000000;
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
break;
}
rtl92e_writel(dev, QPNR, Data);
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
return 0;
}
return rtl92e_readl(dev, RF_DATA);
}
static void _rtl92e_phy_rf_fw_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data)
{
u8 time = 0;
Data |= ((Offset & 0xFF) << 12);
Data |= ((eRFPath & 0x3) << 20);
Data |= 0x400000;
Data |= 0x80000000;
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
break;
}
rtl92e_writel(dev, QPNR, Data);
}
void rtl92e_config_mac(struct net_device *dev)
{
u32 dwArrayLen = 0, i = 0;
u32 *pdwArray = NULL;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->bTXPowerDataReadFromEEPORM) {
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n");
dwArrayLen = MACPHY_Array_PGLength;
pdwArray = Rtl819XMACPHY_Array_PG;
} else {
RT_TRACE(COMP_PHY, "Read rtl819XMACPHY_Array\n");
dwArrayLen = MACPHY_ArrayLength;
pdwArray = Rtl819XMACPHY_Array;
}
for (i = 0; i < dwArrayLen; i += 3) {
RT_TRACE(COMP_DBG,
"The Rtl8190MACPHY_Array[0] is %x Rtl8190MACPHY_Array[1] is %x Rtl8190MACPHY_Array[2] is %x\n",
pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
if (pdwArray[i] == 0x318)
pdwArray[i+2] = 0x00000800;
rtl92e_set_bb_reg(dev, pdwArray[i], pdwArray[i+1],
pdwArray[i+2]);
}
return;
}
static void _rtl92e_phy_config_bb(struct net_device *dev, u8 ConfigType)
{
int i;
u32 *Rtl819XPHY_REGArray_Table = NULL;
u32 *Rtl819XAGCTAB_Array_Table = NULL;
u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0;
struct r8192_priv *priv = rtllib_priv(dev);
AGCTAB_ArrayLen = AGCTAB_ArrayLength;
Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_Array;
if (priv->rf_type == RF_2T4R) {
PHY_REGArrayLen = PHY_REGArrayLength;
Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArray;
} else if (priv->rf_type == RF_1T2R) {
PHY_REGArrayLen = PHY_REG_1T2RArrayLength;
Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArray;
}
if (ConfigType == BaseBand_Config_PHY_REG) {
for (i = 0; i < PHY_REGArrayLen; i += 2) {
rtl92e_set_bb_reg(dev, Rtl819XPHY_REGArray_Table[i],
bMaskDWord,
Rtl819XPHY_REGArray_Table[i+1]);
RT_TRACE(COMP_DBG,
"i: %x, The Rtl819xUsbPHY_REGArray[0] is %x Rtl819xUsbPHY_REGArray[1] is %x\n",
i, Rtl819XPHY_REGArray_Table[i],
Rtl819XPHY_REGArray_Table[i+1]);
}
} else if (ConfigType == BaseBand_Config_AGC_TAB) {
for (i = 0; i < AGCTAB_ArrayLen; i += 2) {
rtl92e_set_bb_reg(dev, Rtl819XAGCTAB_Array_Table[i],
bMaskDWord,
Rtl819XAGCTAB_Array_Table[i+1]);
RT_TRACE(COMP_DBG,
"i:%x, The rtl819XAGCTAB_Array[0] is %x rtl819XAGCTAB_Array[1] is %x\n",
i, Rtl819XAGCTAB_Array_Table[i],
Rtl819XAGCTAB_Array_Table[i+1]);
}
}
}
static void _rtl92e_init_bb_rf_reg_def(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter;
priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter;
priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter;
priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
}
bool rtl92e_check_bb_and_rf(struct net_device *dev, enum hw90_block CheckBlock,
enum rf90_radio_path eRFPath)
{
bool ret = true;
u32 i, CheckTimes = 4, dwRegRead = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
RT_TRACE(COMP_PHY, "=======>%s(), CheckBlock:%d\n", __func__,
CheckBlock);
if (CheckBlock == HW90_BLOCK_MAC) {
netdev_warn(dev, "%s(): No checks available for MAC block.\n",
__func__);
return ret;
}
for (i = 0; i < CheckTimes; i++) {
switch (CheckBlock) {
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
rtl92e_writel(dev, WriteAddr[CheckBlock],
WriteData[i]);
dwRegRead = rtl92e_readl(dev, WriteAddr[CheckBlock]);
break;
case HW90_BLOCK_RF:
WriteData[i] &= 0xfff;
rtl92e_set_rf_reg(dev, eRFPath,
WriteAddr[HW90_BLOCK_RF],
bMask12Bits, WriteData[i]);
mdelay(10);
dwRegRead = rtl92e_get_rf_reg(dev, eRFPath,
WriteAddr[HW90_BLOCK_RF],
bMaskDWord);
mdelay(10);
break;
default:
ret = false;
break;
}
if (dwRegRead != WriteData[i]) {
netdev_warn(dev, "%s(): Check failed.\n", __func__);
ret = false;
break;
}
}
return ret;
}
static bool _rtl92e_bb_config_para_file(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool rtStatus = true;
u8 bRegValue = 0, eCheckItem = 0;
u32 dwRegValue = 0;
bRegValue = rtl92e_readb(dev, BB_GLOBAL_RESET);
rtl92e_writeb(dev, BB_GLOBAL_RESET, (bRegValue|BB_GLOBAL_RESET_BIT));
dwRegValue = rtl92e_readl(dev, CPU_GEN);
rtl92e_writel(dev, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST)));
for (eCheckItem = (enum hw90_block)HW90_BLOCK_PHY0;
eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) {
rtStatus = rtl92e_check_bb_and_rf(dev,
(enum hw90_block)eCheckItem,
(enum rf90_radio_path)0);
if (!rtStatus) {
RT_TRACE((COMP_ERR | COMP_PHY),
"rtl92e_config_rf():Check PHY%d Fail!!\n",
eCheckItem-1);
return rtStatus;
}
}
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0);
_rtl92e_phy_config_bb(dev, BaseBand_Config_PHY_REG);
dwRegValue = rtl92e_readl(dev, CPU_GEN);
rtl92e_writel(dev, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST));
_rtl92e_phy_config_bb(dev, BaseBand_Config_AGC_TAB);
if (priv->IC_Cut > VERSION_8190_BD) {
if (priv->rf_type == RF_2T4R)
dwRegValue = priv->AntennaTxPwDiff[2]<<8 |
priv->AntennaTxPwDiff[1]<<4 |
priv->AntennaTxPwDiff[0];
else
dwRegValue = 0x0;
rtl92e_set_bb_reg(dev, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC), dwRegValue);
dwRegValue = priv->CrystalCap;
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, bXtalCap92x,
dwRegValue);
}
return rtStatus;
}
bool rtl92e_config_bb(struct net_device *dev)
{
_rtl92e_init_bb_rf_reg_def(dev);
return _rtl92e_bb_config_para_file(dev);
}
void rtl92e_get_tx_power(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->MCSTxPowerLevelOriginalOffset[0] =
rtl92e_readl(dev, rTxAGC_Rate18_06);
priv->MCSTxPowerLevelOriginalOffset[1] =
rtl92e_readl(dev, rTxAGC_Rate54_24);
priv->MCSTxPowerLevelOriginalOffset[2] =
rtl92e_readl(dev, rTxAGC_Mcs03_Mcs00);
priv->MCSTxPowerLevelOriginalOffset[3] =
rtl92e_readl(dev, rTxAGC_Mcs07_Mcs04);
priv->MCSTxPowerLevelOriginalOffset[4] =
rtl92e_readl(dev, rTxAGC_Mcs11_Mcs08);
priv->MCSTxPowerLevelOriginalOffset[5] =
rtl92e_readl(dev, rTxAGC_Mcs15_Mcs12);
priv->DefaultInitialGain[0] = rtl92e_readb(dev, rOFDM0_XAAGCCore1);
priv->DefaultInitialGain[1] = rtl92e_readb(dev, rOFDM0_XBAGCCore1);
priv->DefaultInitialGain[2] = rtl92e_readb(dev, rOFDM0_XCAGCCore1);
priv->DefaultInitialGain[3] = rtl92e_readb(dev, rOFDM0_XDAGCCore1);
RT_TRACE(COMP_INIT,
"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n",
priv->DefaultInitialGain[0], priv->DefaultInitialGain[1],
priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]);
priv->framesync = rtl92e_readb(dev, rOFDM0_RxDetector3);
priv->framesyncC34 = rtl92e_readl(dev, rOFDM0_RxDetector2);
RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x\n",
rOFDM0_RxDetector3, priv->framesync);
priv->SifsTime = rtl92e_readw(dev, SIFS);
}
void rtl92e_set_tx_power(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = 0, powerlevelOFDM24G = 0;
s8 ant_pwr_diff;
u32 u4RegValue;
if (priv->epromtype == EEPROM_93C46) {
powerlevel = priv->TxPowerLevelCCK[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
} else if (priv->epromtype == EEPROM_93C56) {
if (priv->rf_type == RF_1T2R) {
powerlevel = priv->TxPowerLevelCCK_C[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_C[channel-1];
} else if (priv->rf_type == RF_2T4R) {
powerlevel = priv->TxPowerLevelCCK_A[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_A[channel-1];
ant_pwr_diff = priv->TxPowerLevelOFDM24G_C[channel-1]
- priv->TxPowerLevelOFDM24G_A[channel-1];
priv->RF_C_TxPwDiff = ant_pwr_diff;
ant_pwr_diff &= 0xf;
priv->AntennaTxPwDiff[2] = 0;
priv->AntennaTxPwDiff[1] = (u8)(ant_pwr_diff);
priv->AntennaTxPwDiff[0] = 0;
u4RegValue = priv->AntennaTxPwDiff[2]<<8 |
priv->AntennaTxPwDiff[1]<<4 |
priv->AntennaTxPwDiff[0];
rtl92e_set_bb_reg(dev, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC),
u4RegValue);
}
}
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
rtl92e_set_cck_tx_power(dev, powerlevel);
rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
netdev_err(dev, "Invalid RF Chip ID.\n");
break;
}
}
bool rtl92e_config_phy(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool rtStatus = true;
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
rtStatus = rtl92e_config_rf(dev);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
break;
default:
netdev_err(dev, "Invalid RF Chip ID.\n");
break;
}
return rtStatus;
}
u8 rtl92e_config_rf_path(struct net_device *dev, enum rf90_radio_path eRFPath)
{
int i;
switch (eRFPath) {
case RF90_PATH_A:
for (i = 0; i < RadioA_ArrayLength; i += 2) {
if (Rtl819XRadioA_Array[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioA_Array[i],
bMask12Bits,
Rtl819XRadioA_Array[i+1]);
}
break;
case RF90_PATH_B:
for (i = 0; i < RadioB_ArrayLength; i += 2) {
if (Rtl819XRadioB_Array[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioB_Array[i],
bMask12Bits,
Rtl819XRadioB_Array[i+1]);
}
break;
case RF90_PATH_C:
for (i = 0; i < RadioC_ArrayLength; i += 2) {
if (Rtl819XRadioC_Array[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioC_Array[i],
bMask12Bits,
Rtl819XRadioC_Array[i+1]);
}
break;
case RF90_PATH_D:
for (i = 0; i < RadioD_ArrayLength; i += 2) {
if (Rtl819XRadioD_Array[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioD_Array[i],
bMask12Bits,
Rtl819XRadioD_Array[i+1]);
}
break;
default:
break;
}
return 0;
}
static void _rtl92e_set_tx_power_level(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
rtl92e_set_cck_tx_power(dev, powerlevel);
rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
netdev_warn(dev, "%s(): Invalid RF Chip ID\n", __func__);
break;
}
}
static u8 _rtl92e_phy_set_sw_chnl_cmd_array(struct net_device *dev,
struct sw_chnl_cmd *CmdTable,
u32 CmdTableIdx, u32 CmdTableSz,
enum sw_chnl_cmd_id CmdID,
u32 Para1, u32 Para2, u32 msDelay)
{
struct sw_chnl_cmd *pCmd;
if (CmdTable == NULL) {
netdev_err(dev, "%s(): CmdTable cannot be NULL.\n", __func__);
return false;
}
if (CmdTableIdx >= CmdTableSz) {
netdev_err(dev, "%s(): Invalid index requested.\n", __func__);
return false;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return true;
}
static u8 _rtl92e_phy_switch_channel_step(struct net_device *dev, u8 channel,
u8 *stage, u8 *step, u32 *delay)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct rtllib_device *ieee = priv->rtllib;
u32 PreCommonCmdCnt;
u32 PostCommonCmdCnt;
u32 RfDependCmdCnt;
struct sw_chnl_cmd *CurrentCmd = NULL;
u8 eRFPath;
RT_TRACE(COMP_TRACE, "====>%s()====stage:%d, step:%d, channel:%d\n",
__func__, *stage, *step, channel);
if (!rtllib_legal_channel(priv->rtllib, channel)) {
netdev_err(dev, "Invalid channel requested: %d\n", channel);
return true;
}
{
PreCommonCmdCnt = 0;
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd,
PreCommonCmdCnt++,
MAX_PRECMD_CNT,
CmdID_SetTxPowerLevel,
0, 0, 0);
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd,
PreCommonCmdCnt++,
MAX_PRECMD_CNT, CmdID_End,
0, 0, 0);
PostCommonCmdCnt = 0;
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PostCommonCmd,
PostCommonCmdCnt++,
MAX_POSTCMD_CNT, CmdID_End,
0, 0, 0);
RfDependCmdCnt = 0;
switch (priv->rf_chip) {
case RF_8225:
if (!(channel >= 1 && channel <= 14)) {
netdev_err(dev,
"Invalid channel requested for 8225: %d\n",
channel);
return false;
}
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg,
rZebra1_Channel,
RF_CHANNEL_TABLE_ZEBRA[channel],
10);
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8256:
if (!(channel >= 1 && channel <= 14)) {
netdev_err(dev,
"Invalid channel requested for 8256: %d\n",
channel);
return false;
}
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg,
rZebra1_Channel,
channel, 10);
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8258:
break;
default:
netdev_warn(dev, "Unknown RF Chip ID\n");
return false;
}
do {
switch (*stage) {
case 0:
CurrentCmd = &ieee->PreCommonCmd[*step];
break;
case 1:
CurrentCmd = &ieee->RfDependCmd[*step];
break;
case 2:
CurrentCmd = &ieee->PostCommonCmd[*step];
break;
}
if (CurrentCmd && CurrentCmd->CmdID == CmdID_End) {
if ((*stage) == 2)
return true;
(*stage)++;
(*step) = 0;
continue;
}
if (!CurrentCmd)
continue;
switch (CurrentCmd->CmdID) {
case CmdID_SetTxPowerLevel:
if (priv->IC_Cut > (u8)VERSION_8190_BD)
_rtl92e_set_tx_power_level(dev,
channel);
break;
case CmdID_WritePortUlong:
rtl92e_writel(dev, CurrentCmd->Para1,
CurrentCmd->Para2);
break;
case CmdID_WritePortUshort:
rtl92e_writew(dev, CurrentCmd->Para1,
(u16)CurrentCmd->Para2);
break;
case CmdID_WritePortUchar:
rtl92e_writeb(dev, CurrentCmd->Para1,
(u8)CurrentCmd->Para2);
break;
case CmdID_RF_WriteReg:
for (eRFPath = 0; eRFPath <
priv->NumTotalRFPath; eRFPath++)
rtl92e_set_rf_reg(dev,
(enum rf90_radio_path)eRFPath,
CurrentCmd->Para1, bMask12Bits,
CurrentCmd->Para2<<7);
break;
default:
break;
}
break;
} while (true);
} /*for (Number of RF paths)*/
(*delay) = CurrentCmd->msDelay;
(*step)++;
return false;
}
static void _rtl92e_phy_switch_channel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 delay = 0;
while (!_rtl92e_phy_switch_channel_step(dev, channel,
&priv->SwChnlStage,
&priv->SwChnlStep, &delay)) {
if (delay > 0)
msleep(delay);
if (!priv->up)
break;
}
}
static void _rtl92e_phy_switch_channel_work_item(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
RT_TRACE(COMP_TRACE, "==> SwChnlCallback819xUsbWorkItem()\n");
RT_TRACE(COMP_TRACE, "=====>--%s(), set chan:%d, priv:%p\n", __func__,
priv->chan, priv);
_rtl92e_phy_switch_channel(dev, priv->chan);
RT_TRACE(COMP_TRACE, "<== SwChnlCallback819xUsbWorkItem()\n");
}
u8 rtl92e_set_channel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
RT_TRACE(COMP_PHY, "=====>%s()\n", __func__);
if (!priv->up) {
netdev_err(dev, "%s(): Driver is not initialized\n", __func__);
return false;
}
if (priv->SwChnlInProgress)
return false;
switch (priv->rtllib->mode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
if (channel <= 14) {
netdev_warn(dev,
"Channel %d not available in 802.11a.\n",
channel);
return false;
}
break;
case WIRELESS_MODE_B:
if (channel > 14) {
netdev_warn(dev,
"Channel %d not available in 802.11b.\n",
channel);
return false;
}
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
if (channel > 14) {
netdev_warn(dev,
"Channel %d not available in 802.11g.\n",
channel);
return false;
}
break;
}
priv->SwChnlInProgress = true;
if (channel == 0)
channel = 1;
priv->chan = channel;
priv->SwChnlStage = 0;
priv->SwChnlStep = 0;
if (priv->up)
_rtl92e_phy_switch_channel_work_item(dev);
priv->SwChnlInProgress = false;
return true;
}
static void _rtl92e_cck_tx_power_track_bw_switch_tssi(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
priv->CCKPresentAttentuation =
priv->CCKPresentAttentuation_20Mdefault +
priv->CCKPresentAttentuation_difference;
if (priv->CCKPresentAttentuation >
(CCKTxBBGainTableLength-1))
priv->CCKPresentAttentuation =
CCKTxBBGainTableLength-1;
if (priv->CCKPresentAttentuation < 0)
priv->CCKPresentAttentuation = 0;
RT_TRACE(COMP_POWER_TRACKING,
"20M, priv->CCKPresentAttentuation = %d\n",
priv->CCKPresentAttentuation);
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->rtllib->current_network.channel !=
14 && priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
case HT_CHANNEL_WIDTH_20_40:
priv->CCKPresentAttentuation =
priv->CCKPresentAttentuation_40Mdefault +
priv->CCKPresentAttentuation_difference;
RT_TRACE(COMP_POWER_TRACKING,
"40M, priv->CCKPresentAttentuation = %d\n",
priv->CCKPresentAttentuation);
if (priv->CCKPresentAttentuation >
(CCKTxBBGainTableLength - 1))
priv->CCKPresentAttentuation =
CCKTxBBGainTableLength-1;
if (priv->CCKPresentAttentuation < 0)
priv->CCKPresentAttentuation = 0;
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->rtllib->current_network.channel != 14
&& priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
}
}
static void _rtl92e_cck_tx_power_track_bw_switch_thermal(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14)
priv->bcck_in_ch14 = true;
else if (priv->rtllib->current_network.channel != 14 &&
priv->bcck_in_ch14)
priv->bcck_in_ch14 = false;
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
if (priv->Record_CCK_20Mindex == 0)
priv->Record_CCK_20Mindex = 6;
priv->CCK_index = priv->Record_CCK_20Mindex;
RT_TRACE(COMP_POWER_TRACKING,
"20MHz, %s,CCK_index = %d\n", __func__,
priv->CCK_index);
break;
case HT_CHANNEL_WIDTH_20_40:
priv->CCK_index = priv->Record_CCK_40Mindex;
RT_TRACE(COMP_POWER_TRACKING,
"40MHz, %s, CCK_index = %d\n", __func__,
priv->CCK_index);
break;
}
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
static void _rtl92e_cck_tx_power_track_bw_switch(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->IC_Cut >= IC_VersionCut_D)
_rtl92e_cck_tx_power_track_bw_switch_tssi(dev);
else
_rtl92e_cck_tx_power_track_bw_switch_thermal(dev);
}
static void _rtl92e_set_bw_mode_work_item(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 regBwOpMode;
RT_TRACE(COMP_SWBW,
"==>%s Switch to %s bandwidth\n", __func__,
priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20 ?
"20MHz" : "40MHz");
if (priv->rf_chip == RF_PSEUDO_11N) {
priv->SetBWModeInProgress = false;
return;
}
if (!priv->up) {
netdev_err(dev, "%s(): Driver is not initialized\n", __func__);
return;
}
regBwOpMode = rtl92e_readb(dev, BW_OPMODE);
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
rtl92e_writeb(dev, BW_OPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_20_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
rtl92e_writeb(dev, BW_OPMODE, regBwOpMode);
break;
default:
netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__,
priv->CurrentChannelBW);
break;
}
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x0);
rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x0);
if (!priv->btxpower_tracking) {
rtl92e_writel(dev, rCCK0_TxFilter1, 0x1a1b0000);
rtl92e_writel(dev, rCCK0_TxFilter2, 0x090e1317);
rtl92e_writel(dev, rCCK0_DebugPort, 0x00000204);
} else {
_rtl92e_cck_tx_power_track_bw_switch(dev);
}
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x1);
rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x1);
if (!priv->btxpower_tracking) {
rtl92e_writel(dev, rCCK0_TxFilter1, 0x35360000);
rtl92e_writel(dev, rCCK0_TxFilter2, 0x121c252e);
rtl92e_writel(dev, rCCK0_DebugPort, 0x00000409);
} else {
_rtl92e_cck_tx_power_track_bw_switch(dev);
}
rtl92e_set_bb_reg(dev, rCCK0_System, bCCKSideBand,
(priv->nCur40MhzPrimeSC>>1));
rtl92e_set_bb_reg(dev, rOFDM1_LSTF, 0xC00,
priv->nCur40MhzPrimeSC);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0);
break;
default:
netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__,
priv->CurrentChannelBW);
break;
}
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
rtl92e_set_bandwidth(dev, priv->CurrentChannelBW);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
break;
default:
netdev_info(dev, "%s(): Unknown RFChipID: %d\n", __func__,
priv->rf_chip);
break;
}
atomic_dec(&(priv->rtllib->atm_swbw));
priv->SetBWModeInProgress = false;
RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb()");
}
void rtl92e_set_bw_mode(struct net_device *dev, enum ht_channel_width Bandwidth,
enum ht_extchnl_offset Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->SetBWModeInProgress)
return;
atomic_inc(&(priv->rtllib->atm_swbw));
priv->SetBWModeInProgress = true;
priv->CurrentChannelBW = Bandwidth;
if (Offset == HT_EXTCHNL_OFFSET_LOWER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (Offset == HT_EXTCHNL_OFFSET_UPPER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
_rtl92e_set_bw_mode_work_item(dev);
}
void rtl92e_init_gain(struct net_device *dev, u8 Operation)
{
#define SCAN_RX_INITIAL_GAIN 0x17
#define POWER_DETECTION_TH 0x08
struct r8192_priv *priv = rtllib_priv(dev);
u32 BitMask;
u8 initial_gain;
if (priv->up) {
switch (Operation) {
case IG_Backup:
RT_TRACE(COMP_SCAN,
"IG_Backup, backup the initial gain.\n");
initial_gain = SCAN_RX_INITIAL_GAIN;
BitMask = bMaskByte0;
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8);
priv->initgain_backup.xaagccore1 =
(u8)rtl92e_get_bb_reg(dev, rOFDM0_XAAGCCore1,
BitMask);
priv->initgain_backup.xbagccore1 =
(u8)rtl92e_get_bb_reg(dev, rOFDM0_XBAGCCore1,
BitMask);
priv->initgain_backup.xcagccore1 =
(u8)rtl92e_get_bb_reg(dev, rOFDM0_XCAGCCore1,
BitMask);
priv->initgain_backup.xdagccore1 =
(u8)rtl92e_get_bb_reg(dev, rOFDM0_XDAGCCore1,
BitMask);
BitMask = bMaskByte2;
priv->initgain_backup.cca = (u8)rtl92e_get_bb_reg(dev,
rCCK0_CCA, BitMask);
RT_TRACE(COMP_SCAN,
"Scan InitialGainBackup 0xc50 is %x\n",
priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN,
"Scan InitialGainBackup 0xc58 is %x\n",
priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN,
"Scan InitialGainBackup 0xc60 is %x\n",
priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN,
"Scan InitialGainBackup 0xc68 is %x\n",
priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN,
"Scan InitialGainBackup 0xa0a is %x\n",
priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x\n",
initial_gain);
rtl92e_writeb(dev, rOFDM0_XAAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XBAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XCAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XDAGCCore1, initial_gain);
RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x\n",
POWER_DETECTION_TH);
rtl92e_writeb(dev, 0xa0a, POWER_DETECTION_TH);
break;
case IG_Restore:
RT_TRACE(COMP_SCAN,
"IG_Restore, restore the initial gain.\n");
BitMask = 0x7f;
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8);
rtl92e_set_bb_reg(dev, rOFDM0_XAAGCCore1, BitMask,
(u32)priv->initgain_backup.xaagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XBAGCCore1, BitMask,
(u32)priv->initgain_backup.xbagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XCAGCCore1, BitMask,
(u32)priv->initgain_backup.xcagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XDAGCCore1, BitMask,
(u32)priv->initgain_backup.xdagccore1);
BitMask = bMaskByte2;
rtl92e_set_bb_reg(dev, rCCK0_CCA, BitMask,
(u32)priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN,
"Scan BBInitialGainRestore 0xc50 is %x\n",
priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN,
"Scan BBInitialGainRestore 0xc58 is %x\n",
priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN,
"Scan BBInitialGainRestore 0xc60 is %x\n",
priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN,
"Scan BBInitialGainRestore 0xc68 is %x\n",
priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN,
"Scan BBInitialGainRestore 0xa0a is %x\n",
priv->initgain_backup.cca);
rtl92e_set_tx_power(dev,
priv->rtllib->current_network.channel);
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x1);
break;
default:
RT_TRACE(COMP_SCAN, "Unknown IG Operation.\n");
break;
}
}
}
void rtl92e_set_rf_off(struct net_device *dev)
{
rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0);
rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);
rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x4, 0x0);
rtl92e_writeb(dev, ANAPAR_FOR_8192PciE, 0x07);
}
static bool _rtl92e_set_rf_power_state(struct net_device *dev,
enum rt_rf_power_state eRFPowerState)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *)
(&(priv->rtllib->PowerSaveControl));
bool bResult = true;
u8 i = 0, QueueID = 0;
struct rtl8192_tx_ring *ring = NULL;
if (priv->SetRFPowerStateInProgress)
return false;
RT_TRACE(COMP_PS, "===========> %s!\n", __func__);
priv->SetRFPowerStateInProgress = true;
switch (priv->rf_chip) {
case RF_8256:
switch (eRFPowerState) {
case eRfOn:
RT_TRACE(COMP_PS, "%s eRfOn!\n", __func__);
if ((priv->rtllib->eRFPowerState == eRfOff) &&
RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 InitilizeCount = 3;
do {
InitilizeCount--;
priv->RegRfOff = false;
rtstatus = rtl92e_enable_nic(dev);
} while (!rtstatus && (InitilizeCount > 0));
if (!rtstatus) {
netdev_err(dev,
"%s(): Failed to initialize Adapter.\n",
__func__);
priv->SetRFPowerStateInProgress = false;
return false;
}
RT_CLEAR_PS_LEVEL(pPSC,
RT_RF_OFF_LEVL_HALT_NIC);
} else {
rtl92e_writeb(dev, ANAPAR, 0x37);
mdelay(1);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x4, 0x1);
priv->bHwRfOffAction = 0;
rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE,
BIT4, 0x1);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4,
0x300, 0x3);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x18, 0x3);
rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable,
0x3, 0x3);
rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable,
0x3, 0x3);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x60, 0x3);
}
break;
case eRfSleep:
if (priv->rtllib->eRFPowerState == eRfOff)
break;
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
} else {
RT_TRACE((COMP_POWER|COMP_RF),
"eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n",
(i+1), QueueID);
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! %s: eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n",
__func__, MAX_DOZE_WAITING_TIMES_9x, QueueID);
break;
}
}
rtl92e_set_rf_off(dev);
break;
case eRfOff:
RT_TRACE(COMP_PS, "%s eRfOff/Sleep !\n", __func__);
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
} else {
RT_TRACE(COMP_POWER,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n",
(i+1), QueueID);
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE(COMP_POWER,
"\n\n\n SetZebra: RFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n",
MAX_DOZE_WAITING_TIMES_9x,
QueueID);
break;
}
}
if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC &&
!RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) {
rtl92e_disable_nic(dev);
RT_SET_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
} else if (!(pPSC->RegRfPsLevel &
RT_RF_OFF_LEVL_HALT_NIC)) {
rtl92e_set_rf_off(dev);
}
break;
default:
bResult = false;
netdev_warn(dev,
"%s(): Unknown state requested: 0x%X.\n",
__func__, eRFPowerState);
break;
}
break;
default:
netdev_warn(dev, "%s(): Unknown RF type\n", __func__);
break;
}
if (bResult) {
priv->rtllib->eRFPowerState = eRFPowerState;
switch (priv->rf_chip) {
case RF_8256:
break;
default:
netdev_warn(dev, "%s(): Unknown RF type\n", __func__);
break;
}
}
priv->SetRFPowerStateInProgress = false;
RT_TRACE(COMP_PS, "<=========== %s bResult = %d!\n", __func__, bResult);
return bResult;
}
bool rtl92e_set_rf_power_state(struct net_device *dev,
enum rt_rf_power_state eRFPowerState)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool bResult = false;
RT_TRACE(COMP_PS,
"---------> %s: eRFPowerState(%d)\n", __func__, eRFPowerState);
if (eRFPowerState == priv->rtllib->eRFPowerState &&
priv->bHwRfOffAction == 0) {
RT_TRACE(COMP_PS, "<--------- %s: discard the request for eRFPowerState(%d) is the same.\n",
__func__, eRFPowerState);
return bResult;
}
bResult = _rtl92e_set_rf_power_state(dev, eRFPowerState);
RT_TRACE(COMP_PS, "<--------- %s: bResult(%d)\n", __func__, bResult);
return bResult;
}
void rtl92e_scan_op_backup(struct net_device *dev, u8 Operation)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->up) {
switch (Operation) {
case SCAN_OPT_BACKUP:
priv->rtllib->InitialGainHandler(dev, IG_Backup);
break;
case SCAN_OPT_RESTORE:
priv->rtllib->InitialGainHandler(dev, IG_Restore);
break;
default:
RT_TRACE(COMP_SCAN, "Unknown Scan Backup Operation.\n");
break;
}
}
}