| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Buffer/page management specific to NILFS |
| * |
| * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. |
| * |
| * Written by Ryusuke Konishi and Seiji Kihara. |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/swap.h> |
| #include <linux/bitops.h> |
| #include <linux/page-flags.h> |
| #include <linux/list.h> |
| #include <linux/highmem.h> |
| #include <linux/pagevec.h> |
| #include <linux/gfp.h> |
| #include "nilfs.h" |
| #include "page.h" |
| #include "mdt.h" |
| |
| |
| #define NILFS_BUFFER_INHERENT_BITS \ |
| (BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \ |
| BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked)) |
| |
| static struct buffer_head * |
| __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, |
| int blkbits, unsigned long b_state) |
| |
| { |
| unsigned long first_block; |
| struct buffer_head *bh; |
| |
| if (!page_has_buffers(page)) |
| create_empty_buffers(page, 1 << blkbits, b_state); |
| |
| first_block = (unsigned long)index << (PAGE_SHIFT - blkbits); |
| bh = nilfs_page_get_nth_block(page, block - first_block); |
| |
| touch_buffer(bh); |
| wait_on_buffer(bh); |
| return bh; |
| } |
| |
| struct buffer_head *nilfs_grab_buffer(struct inode *inode, |
| struct address_space *mapping, |
| unsigned long blkoff, |
| unsigned long b_state) |
| { |
| int blkbits = inode->i_blkbits; |
| pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits); |
| struct page *page; |
| struct buffer_head *bh; |
| |
| page = grab_cache_page(mapping, index); |
| if (unlikely(!page)) |
| return NULL; |
| |
| bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); |
| if (unlikely(!bh)) { |
| unlock_page(page); |
| put_page(page); |
| return NULL; |
| } |
| return bh; |
| } |
| |
| /** |
| * nilfs_forget_buffer - discard dirty state |
| * @bh: buffer head of the buffer to be discarded |
| */ |
| void nilfs_forget_buffer(struct buffer_head *bh) |
| { |
| struct page *page = bh->b_page; |
| const unsigned long clear_bits = |
| (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | |
| BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | |
| BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected)); |
| |
| lock_buffer(bh); |
| set_mask_bits(&bh->b_state, clear_bits, 0); |
| if (nilfs_page_buffers_clean(page)) |
| __nilfs_clear_page_dirty(page); |
| |
| bh->b_blocknr = -1; |
| ClearPageUptodate(page); |
| ClearPageMappedToDisk(page); |
| unlock_buffer(bh); |
| brelse(bh); |
| } |
| |
| /** |
| * nilfs_copy_buffer -- copy buffer data and flags |
| * @dbh: destination buffer |
| * @sbh: source buffer |
| */ |
| void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) |
| { |
| void *kaddr0, *kaddr1; |
| unsigned long bits; |
| struct page *spage = sbh->b_page, *dpage = dbh->b_page; |
| struct buffer_head *bh; |
| |
| kaddr0 = kmap_atomic(spage); |
| kaddr1 = kmap_atomic(dpage); |
| memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); |
| kunmap_atomic(kaddr1); |
| kunmap_atomic(kaddr0); |
| |
| dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; |
| dbh->b_blocknr = sbh->b_blocknr; |
| dbh->b_bdev = sbh->b_bdev; |
| |
| bh = dbh; |
| bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped)); |
| while ((bh = bh->b_this_page) != dbh) { |
| lock_buffer(bh); |
| bits &= bh->b_state; |
| unlock_buffer(bh); |
| } |
| if (bits & BIT(BH_Uptodate)) |
| SetPageUptodate(dpage); |
| else |
| ClearPageUptodate(dpage); |
| if (bits & BIT(BH_Mapped)) |
| SetPageMappedToDisk(dpage); |
| else |
| ClearPageMappedToDisk(dpage); |
| } |
| |
| /** |
| * nilfs_page_buffers_clean - check if a page has dirty buffers or not. |
| * @page: page to be checked |
| * |
| * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. |
| * Otherwise, it returns non-zero value. |
| */ |
| int nilfs_page_buffers_clean(struct page *page) |
| { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_dirty(bh)) |
| return 0; |
| bh = bh->b_this_page; |
| } while (bh != head); |
| return 1; |
| } |
| |
| void nilfs_page_bug(struct page *page) |
| { |
| struct address_space *m; |
| unsigned long ino; |
| |
| if (unlikely(!page)) { |
| printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); |
| return; |
| } |
| |
| m = page->mapping; |
| ino = m ? m->host->i_ino : 0; |
| |
| printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " |
| "mapping=%p ino=%lu\n", |
| page, page_ref_count(page), |
| (unsigned long long)page->index, page->flags, m, ino); |
| |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| int i = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| printk(KERN_CRIT |
| " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", |
| i++, bh, atomic_read(&bh->b_count), |
| (unsigned long long)bh->b_blocknr, bh->b_state); |
| bh = bh->b_this_page; |
| } while (bh != head); |
| } |
| } |
| |
| /** |
| * nilfs_copy_page -- copy the page with buffers |
| * @dst: destination page |
| * @src: source page |
| * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. |
| * |
| * This function is for both data pages and btnode pages. The dirty flag |
| * should be treated by caller. The page must not be under i/o. |
| * Both src and dst page must be locked |
| */ |
| static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) |
| { |
| struct buffer_head *dbh, *dbufs, *sbh; |
| unsigned long mask = NILFS_BUFFER_INHERENT_BITS; |
| |
| BUG_ON(PageWriteback(dst)); |
| |
| sbh = page_buffers(src); |
| if (!page_has_buffers(dst)) |
| create_empty_buffers(dst, sbh->b_size, 0); |
| |
| if (copy_dirty) |
| mask |= BIT(BH_Dirty); |
| |
| dbh = dbufs = page_buffers(dst); |
| do { |
| lock_buffer(sbh); |
| lock_buffer(dbh); |
| dbh->b_state = sbh->b_state & mask; |
| dbh->b_blocknr = sbh->b_blocknr; |
| dbh->b_bdev = sbh->b_bdev; |
| sbh = sbh->b_this_page; |
| dbh = dbh->b_this_page; |
| } while (dbh != dbufs); |
| |
| copy_highpage(dst, src); |
| |
| if (PageUptodate(src) && !PageUptodate(dst)) |
| SetPageUptodate(dst); |
| else if (!PageUptodate(src) && PageUptodate(dst)) |
| ClearPageUptodate(dst); |
| if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) |
| SetPageMappedToDisk(dst); |
| else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) |
| ClearPageMappedToDisk(dst); |
| |
| do { |
| unlock_buffer(sbh); |
| unlock_buffer(dbh); |
| sbh = sbh->b_this_page; |
| dbh = dbh->b_this_page; |
| } while (dbh != dbufs); |
| } |
| |
| int nilfs_copy_dirty_pages(struct address_space *dmap, |
| struct address_space *smap) |
| { |
| struct pagevec pvec; |
| unsigned int i; |
| pgoff_t index = 0; |
| int err = 0; |
| |
| pagevec_init(&pvec); |
| repeat: |
| if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY)) |
| return 0; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i], *dpage; |
| |
| lock_page(page); |
| if (unlikely(!PageDirty(page))) |
| NILFS_PAGE_BUG(page, "inconsistent dirty state"); |
| |
| dpage = grab_cache_page(dmap, page->index); |
| if (unlikely(!dpage)) { |
| /* No empty page is added to the page cache */ |
| err = -ENOMEM; |
| unlock_page(page); |
| break; |
| } |
| if (unlikely(!page_has_buffers(page))) |
| NILFS_PAGE_BUG(page, |
| "found empty page in dat page cache"); |
| |
| nilfs_copy_page(dpage, page, 1); |
| __set_page_dirty_nobuffers(dpage); |
| |
| unlock_page(dpage); |
| put_page(dpage); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| |
| if (likely(!err)) |
| goto repeat; |
| return err; |
| } |
| |
| /** |
| * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache |
| * @dmap: destination page cache |
| * @smap: source page cache |
| * |
| * No pages must be added to the cache during this process. |
| * This must be ensured by the caller. |
| */ |
| void nilfs_copy_back_pages(struct address_space *dmap, |
| struct address_space *smap) |
| { |
| struct folio_batch fbatch; |
| unsigned int i, n; |
| pgoff_t start = 0; |
| |
| folio_batch_init(&fbatch); |
| repeat: |
| n = filemap_get_folios(smap, &start, ~0UL, &fbatch); |
| if (!n) |
| return; |
| |
| for (i = 0; i < folio_batch_count(&fbatch); i++) { |
| struct folio *folio = fbatch.folios[i], *dfolio; |
| pgoff_t index = folio->index; |
| |
| folio_lock(folio); |
| dfolio = filemap_lock_folio(dmap, index); |
| if (dfolio) { |
| /* overwrite existing folio in the destination cache */ |
| WARN_ON(folio_test_dirty(dfolio)); |
| nilfs_copy_page(&dfolio->page, &folio->page, 0); |
| folio_unlock(dfolio); |
| folio_put(dfolio); |
| /* Do we not need to remove folio from smap here? */ |
| } else { |
| struct folio *f; |
| |
| /* move the folio to the destination cache */ |
| xa_lock_irq(&smap->i_pages); |
| f = __xa_erase(&smap->i_pages, index); |
| WARN_ON(folio != f); |
| smap->nrpages--; |
| xa_unlock_irq(&smap->i_pages); |
| |
| xa_lock_irq(&dmap->i_pages); |
| f = __xa_store(&dmap->i_pages, index, folio, GFP_NOFS); |
| if (unlikely(f)) { |
| /* Probably -ENOMEM */ |
| folio->mapping = NULL; |
| folio_put(folio); |
| } else { |
| folio->mapping = dmap; |
| dmap->nrpages++; |
| if (folio_test_dirty(folio)) |
| __xa_set_mark(&dmap->i_pages, index, |
| PAGECACHE_TAG_DIRTY); |
| } |
| xa_unlock_irq(&dmap->i_pages); |
| } |
| folio_unlock(folio); |
| } |
| folio_batch_release(&fbatch); |
| cond_resched(); |
| |
| goto repeat; |
| } |
| |
| /** |
| * nilfs_clear_dirty_pages - discard dirty pages in address space |
| * @mapping: address space with dirty pages for discarding |
| * @silent: suppress [true] or print [false] warning messages |
| */ |
| void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent) |
| { |
| struct pagevec pvec; |
| unsigned int i; |
| pgoff_t index = 0; |
| |
| pagevec_init(&pvec); |
| |
| while (pagevec_lookup_tag(&pvec, mapping, &index, |
| PAGECACHE_TAG_DIRTY)) { |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| |
| lock_page(page); |
| nilfs_clear_dirty_page(page, silent); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| } |
| |
| /** |
| * nilfs_clear_dirty_page - discard dirty page |
| * @page: dirty page that will be discarded |
| * @silent: suppress [true] or print [false] warning messages |
| */ |
| void nilfs_clear_dirty_page(struct page *page, bool silent) |
| { |
| struct inode *inode = page->mapping->host; |
| struct super_block *sb = inode->i_sb; |
| |
| BUG_ON(!PageLocked(page)); |
| |
| if (!silent) |
| nilfs_warn(sb, "discard dirty page: offset=%lld, ino=%lu", |
| page_offset(page), inode->i_ino); |
| |
| ClearPageUptodate(page); |
| ClearPageMappedToDisk(page); |
| |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| const unsigned long clear_bits = |
| (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | |
| BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | |
| BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected)); |
| |
| bh = head = page_buffers(page); |
| do { |
| lock_buffer(bh); |
| if (!silent) |
| nilfs_warn(sb, |
| "discard dirty block: blocknr=%llu, size=%zu", |
| (u64)bh->b_blocknr, bh->b_size); |
| |
| set_mask_bits(&bh->b_state, clear_bits, 0); |
| unlock_buffer(bh); |
| } while (bh = bh->b_this_page, bh != head); |
| } |
| |
| __nilfs_clear_page_dirty(page); |
| } |
| |
| unsigned int nilfs_page_count_clean_buffers(struct page *page, |
| unsigned int from, unsigned int to) |
| { |
| unsigned int block_start, block_end; |
| struct buffer_head *bh, *head; |
| unsigned int nc = 0; |
| |
| for (bh = head = page_buffers(page), block_start = 0; |
| bh != head || !block_start; |
| block_start = block_end, bh = bh->b_this_page) { |
| block_end = block_start + bh->b_size; |
| if (block_end > from && block_start < to && !buffer_dirty(bh)) |
| nc++; |
| } |
| return nc; |
| } |
| |
| /* |
| * NILFS2 needs clear_page_dirty() in the following two cases: |
| * |
| * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty |
| * flag of pages when it copies back pages from shadow cache to the |
| * original cache. |
| * |
| * 2) Some B-tree operations like insertion or deletion may dispose buffers |
| * in dirty state, and this needs to cancel the dirty state of their pages. |
| */ |
| int __nilfs_clear_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| |
| if (mapping) { |
| xa_lock_irq(&mapping->i_pages); |
| if (test_bit(PG_dirty, &page->flags)) { |
| __xa_clear_mark(&mapping->i_pages, page_index(page), |
| PAGECACHE_TAG_DIRTY); |
| xa_unlock_irq(&mapping->i_pages); |
| return clear_page_dirty_for_io(page); |
| } |
| xa_unlock_irq(&mapping->i_pages); |
| return 0; |
| } |
| return TestClearPageDirty(page); |
| } |
| |
| /** |
| * nilfs_find_uncommitted_extent - find extent of uncommitted data |
| * @inode: inode |
| * @start_blk: start block offset (in) |
| * @blkoff: start offset of the found extent (out) |
| * |
| * This function searches an extent of buffers marked "delayed" which |
| * starts from a block offset equal to or larger than @start_blk. If |
| * such an extent was found, this will store the start offset in |
| * @blkoff and return its length in blocks. Otherwise, zero is |
| * returned. |
| */ |
| unsigned long nilfs_find_uncommitted_extent(struct inode *inode, |
| sector_t start_blk, |
| sector_t *blkoff) |
| { |
| unsigned int i; |
| pgoff_t index; |
| unsigned int nblocks_in_page; |
| unsigned long length = 0; |
| sector_t b; |
| struct pagevec pvec; |
| struct page *page; |
| |
| if (inode->i_mapping->nrpages == 0) |
| return 0; |
| |
| index = start_blk >> (PAGE_SHIFT - inode->i_blkbits); |
| nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits); |
| |
| pagevec_init(&pvec); |
| |
| repeat: |
| pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE, |
| pvec.pages); |
| if (pvec.nr == 0) |
| return length; |
| |
| if (length > 0 && pvec.pages[0]->index > index) |
| goto out; |
| |
| b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits); |
| i = 0; |
| do { |
| page = pvec.pages[i]; |
| |
| lock_page(page); |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (b < start_blk) |
| continue; |
| if (buffer_delay(bh)) { |
| if (length == 0) |
| *blkoff = b; |
| length++; |
| } else if (length > 0) { |
| goto out_locked; |
| } |
| } while (++b, bh = bh->b_this_page, bh != head); |
| } else { |
| if (length > 0) |
| goto out_locked; |
| |
| b += nblocks_in_page; |
| } |
| unlock_page(page); |
| |
| } while (++i < pagevec_count(&pvec)); |
| |
| index = page->index + 1; |
| pagevec_release(&pvec); |
| cond_resched(); |
| goto repeat; |
| |
| out_locked: |
| unlock_page(page); |
| out: |
| pagevec_release(&pvec); |
| return length; |
| } |