blob: 3bd111d5e6a0998a5f225ec21661c161121867b6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021-2022 Intel Corporation */
#undef pr_fmt
#define pr_fmt(fmt) "tdx: " fmt
#include <linux/cpufeature.h>
#include <linux/export.h>
#include <linux/io.h>
#include <asm/coco.h>
#include <asm/tdx.h>
#include <asm/vmx.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/pgtable.h>
/* TDX module Call Leaf IDs */
#define TDX_GET_INFO 1
#define TDX_GET_VEINFO 3
#define TDX_GET_REPORT 4
#define TDX_ACCEPT_PAGE 6
/* TDX hypercall Leaf IDs */
#define TDVMCALL_MAP_GPA 0x10001
/* MMIO direction */
#define EPT_READ 0
#define EPT_WRITE 1
/* Port I/O direction */
#define PORT_READ 0
#define PORT_WRITE 1
/* See Exit Qualification for I/O Instructions in VMX documentation */
#define VE_IS_IO_IN(e) ((e) & BIT(3))
#define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1)
#define VE_GET_PORT_NUM(e) ((e) >> 16)
#define VE_IS_IO_STRING(e) ((e) & BIT(4))
#define ATTR_SEPT_VE_DISABLE BIT(28)
/* TDX Module call error codes */
#define TDCALL_RETURN_CODE(a) ((a) >> 32)
#define TDCALL_INVALID_OPERAND 0xc0000100
#define TDREPORT_SUBTYPE_0 0
/*
* Wrapper for standard use of __tdx_hypercall with no output aside from
* return code.
*/
static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = fn,
.r12 = r12,
.r13 = r13,
.r14 = r14,
.r15 = r15,
};
return __tdx_hypercall(&args, 0);
}
/* Called from __tdx_hypercall() for unrecoverable failure */
noinstr void __tdx_hypercall_failed(void)
{
instrumentation_begin();
panic("TDVMCALL failed. TDX module bug?");
}
/*
* The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
* independently from but are currently matched 1:1 with VMX EXIT_REASONs.
* Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
* guest sides of these calls.
*/
static __always_inline u64 hcall_func(u64 exit_reason)
{
return exit_reason;
}
#ifdef CONFIG_KVM_GUEST
long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
unsigned long p3, unsigned long p4)
{
struct tdx_hypercall_args args = {
.r10 = nr,
.r11 = p1,
.r12 = p2,
.r13 = p3,
.r14 = p4,
};
return __tdx_hypercall(&args, 0);
}
EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
#endif
/*
* Used for TDX guests to make calls directly to the TD module. This
* should only be used for calls that have no legitimate reason to fail
* or where the kernel can not survive the call failing.
*/
static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
struct tdx_module_output *out)
{
if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
}
/**
* tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
* subtype 0) using TDG.MR.REPORT TDCALL.
* @reportdata: Address of the input buffer which contains user-defined
* REPORTDATA to be included into TDREPORT.
* @tdreport: Address of the output buffer to store TDREPORT.
*
* Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
* v1.0 specification for more information on TDG.MR.REPORT TDCALL.
* It is used in the TDX guest driver module to get the TDREPORT0.
*
* Return 0 on success, -EINVAL for invalid operands, or -EIO on
* other TDCALL failures.
*/
int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
{
u64 ret;
ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport),
virt_to_phys(reportdata), TDREPORT_SUBTYPE_0,
0, NULL);
if (ret) {
if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
return -EINVAL;
return -EIO;
}
return 0;
}
EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
static void tdx_parse_tdinfo(u64 *cc_mask)
{
struct tdx_module_output out;
unsigned int gpa_width;
u64 td_attr;
/*
* TDINFO TDX module call is used to get the TD execution environment
* information like GPA width, number of available vcpus, debug mode
* information, etc. More details about the ABI can be found in TDX
* Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
* [TDG.VP.INFO].
*/
tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
/*
* The highest bit of a guest physical address is the "sharing" bit.
* Set it for shared pages and clear it for private pages.
*
* The GPA width that comes out of this call is critical. TDX guests
* can not meaningfully run without it.
*/
gpa_width = out.rcx & GENMASK(5, 0);
*cc_mask = BIT_ULL(gpa_width - 1);
/*
* The kernel can not handle #VE's when accessing normal kernel
* memory. Ensure that no #VE will be delivered for accesses to
* TD-private memory. Only VMM-shared memory (MMIO) will #VE.
*/
td_attr = out.rdx;
if (!(td_attr & ATTR_SEPT_VE_DISABLE))
panic("TD misconfiguration: SEPT_VE_DISABLE attibute must be set.\n");
}
/*
* The TDX module spec states that #VE may be injected for a limited set of
* reasons:
*
* - Emulation of the architectural #VE injection on EPT violation;
*
* - As a result of guest TD execution of a disallowed instruction,
* a disallowed MSR access, or CPUID virtualization;
*
* - A notification to the guest TD about anomalous behavior;
*
* The last one is opt-in and is not used by the kernel.
*
* The Intel Software Developer's Manual describes cases when instruction
* length field can be used in section "Information for VM Exits Due to
* Instruction Execution".
*
* For TDX, it ultimately means GET_VEINFO provides reliable instruction length
* information if #VE occurred due to instruction execution, but not for EPT
* violations.
*/
static int ve_instr_len(struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_HLT:
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
case EXIT_REASON_CPUID:
case EXIT_REASON_IO_INSTRUCTION:
/* It is safe to use ve->instr_len for #VE due instructions */
return ve->instr_len;
case EXIT_REASON_EPT_VIOLATION:
/*
* For EPT violations, ve->insn_len is not defined. For those,
* the kernel must decode instructions manually and should not
* be using this function.
*/
WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
return 0;
default:
WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
return ve->instr_len;
}
}
static u64 __cpuidle __halt(const bool irq_disabled)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_HLT),
.r12 = irq_disabled,
};
/*
* Emulate HLT operation via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
*
* The VMM uses the "IRQ disabled" param to understand IRQ
* enabled status (RFLAGS.IF) of the TD guest and to determine
* whether or not it should schedule the halted vCPU if an
* IRQ becomes pending. E.g. if IRQs are disabled, the VMM
* can keep the vCPU in virtual HLT, even if an IRQ is
* pending, without hanging/breaking the guest.
*/
return __tdx_hypercall(&args, 0);
}
static int handle_halt(struct ve_info *ve)
{
const bool irq_disabled = irqs_disabled();
if (__halt(irq_disabled))
return -EIO;
return ve_instr_len(ve);
}
void __cpuidle tdx_safe_halt(void)
{
const bool irq_disabled = false;
/*
* Use WARN_ONCE() to report the failure.
*/
if (__halt(irq_disabled))
WARN_ONCE(1, "HLT instruction emulation failed\n");
}
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_READ),
.r12 = regs->cx,
};
/*
* Emulate the MSR read via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
*/
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return -EIO;
regs->ax = lower_32_bits(args.r11);
regs->dx = upper_32_bits(args.r11);
return ve_instr_len(ve);
}
static int write_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
.r12 = regs->cx,
.r13 = (u64)regs->dx << 32 | regs->ax,
};
/*
* Emulate the MSR write via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
*/
if (__tdx_hypercall(&args, 0))
return -EIO;
return ve_instr_len(ve);
}
static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_CPUID),
.r12 = regs->ax,
.r13 = regs->cx,
};
/*
* Only allow VMM to control range reserved for hypervisor
* communication.
*
* Return all-zeros for any CPUID outside the range. It matches CPU
* behaviour for non-supported leaf.
*/
if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
regs->ax = regs->bx = regs->cx = regs->dx = 0;
return ve_instr_len(ve);
}
/*
* Emulate the CPUID instruction via a hypercall. More info about
* ABI can be found in TDX Guest-Host-Communication Interface
* (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
*/
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return -EIO;
/*
* As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
* EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
* So copy the register contents back to pt_regs.
*/
regs->ax = args.r12;
regs->bx = args.r13;
regs->cx = args.r14;
regs->dx = args.r15;
return ve_instr_len(ve);
}
static bool mmio_read(int size, unsigned long addr, unsigned long *val)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
.r12 = size,
.r13 = EPT_READ,
.r14 = addr,
.r15 = *val,
};
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return false;
*val = args.r11;
return true;
}
static bool mmio_write(int size, unsigned long addr, unsigned long val)
{
return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
EPT_WRITE, addr, val);
}
static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
{
unsigned long *reg, val, vaddr;
char buffer[MAX_INSN_SIZE];
enum insn_mmio_type mmio;
struct insn insn = {};
int size, extend_size;
u8 extend_val = 0;
/* Only in-kernel MMIO is supported */
if (WARN_ON_ONCE(user_mode(regs)))
return -EFAULT;
if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
return -EFAULT;
if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
return -EINVAL;
mmio = insn_decode_mmio(&insn, &size);
if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
return -EINVAL;
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
reg = insn_get_modrm_reg_ptr(&insn, regs);
if (!reg)
return -EINVAL;
}
/*
* Reject EPT violation #VEs that split pages.
*
* MMIO accesses are supposed to be naturally aligned and therefore
* never cross page boundaries. Seeing split page accesses indicates
* a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
*
* load_unaligned_zeropad() will recover using exception fixups.
*/
vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
return -EFAULT;
/* Handle writes first */
switch (mmio) {
case INSN_MMIO_WRITE:
memcpy(&val, reg, size);
if (!mmio_write(size, ve->gpa, val))
return -EIO;
return insn.length;
case INSN_MMIO_WRITE_IMM:
val = insn.immediate.value;
if (!mmio_write(size, ve->gpa, val))
return -EIO;
return insn.length;
case INSN_MMIO_READ:
case INSN_MMIO_READ_ZERO_EXTEND:
case INSN_MMIO_READ_SIGN_EXTEND:
/* Reads are handled below */
break;
case INSN_MMIO_MOVS:
case INSN_MMIO_DECODE_FAILED:
/*
* MMIO was accessed with an instruction that could not be
* decoded or handled properly. It was likely not using io.h
* helpers or accessed MMIO accidentally.
*/
return -EINVAL;
default:
WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
return -EINVAL;
}
/* Handle reads */
if (!mmio_read(size, ve->gpa, &val))
return -EIO;
switch (mmio) {
case INSN_MMIO_READ:
/* Zero-extend for 32-bit operation */
extend_size = size == 4 ? sizeof(*reg) : 0;
break;
case INSN_MMIO_READ_ZERO_EXTEND:
/* Zero extend based on operand size */
extend_size = insn.opnd_bytes;
break;
case INSN_MMIO_READ_SIGN_EXTEND:
/* Sign extend based on operand size */
extend_size = insn.opnd_bytes;
if (size == 1 && val & BIT(7))
extend_val = 0xFF;
else if (size > 1 && val & BIT(15))
extend_val = 0xFF;
break;
default:
/* All other cases has to be covered with the first switch() */
WARN_ON_ONCE(1);
return -EINVAL;
}
if (extend_size)
memset(reg, extend_val, extend_size);
memcpy(reg, &val, size);
return insn.length;
}
static bool handle_in(struct pt_regs *regs, int size, int port)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
.r12 = size,
.r13 = PORT_READ,
.r14 = port,
};
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
bool success;
/*
* Emulate the I/O read via hypercall. More info about ABI can be found
* in TDX Guest-Host-Communication Interface (GHCI) section titled
* "TDG.VP.VMCALL<Instruction.IO>".
*/
success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT);
/* Update part of the register affected by the emulated instruction */
regs->ax &= ~mask;
if (success)
regs->ax |= args.r11 & mask;
return success;
}
static bool handle_out(struct pt_regs *regs, int size, int port)
{
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
/*
* Emulate the I/O write via hypercall. More info about ABI can be found
* in TDX Guest-Host-Communication Interface (GHCI) section titled
* "TDG.VP.VMCALL<Instruction.IO>".
*/
return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
PORT_WRITE, port, regs->ax & mask);
}
/*
* Emulate I/O using hypercall.
*
* Assumes the IO instruction was using ax, which is enforced
* by the standard io.h macros.
*
* Return True on success or False on failure.
*/
static int handle_io(struct pt_regs *regs, struct ve_info *ve)
{
u32 exit_qual = ve->exit_qual;
int size, port;
bool in, ret;
if (VE_IS_IO_STRING(exit_qual))
return -EIO;
in = VE_IS_IO_IN(exit_qual);
size = VE_GET_IO_SIZE(exit_qual);
port = VE_GET_PORT_NUM(exit_qual);
if (in)
ret = handle_in(regs, size, port);
else
ret = handle_out(regs, size, port);
if (!ret)
return -EIO;
return ve_instr_len(ve);
}
/*
* Early #VE exception handler. Only handles a subset of port I/O.
* Intended only for earlyprintk. If failed, return false.
*/
__init bool tdx_early_handle_ve(struct pt_regs *regs)
{
struct ve_info ve;
int insn_len;
tdx_get_ve_info(&ve);
if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
return false;
insn_len = handle_io(regs, &ve);
if (insn_len < 0)
return false;
regs->ip += insn_len;
return true;
}
void tdx_get_ve_info(struct ve_info *ve)
{
struct tdx_module_output out;
/*
* Called during #VE handling to retrieve the #VE info from the
* TDX module.
*
* This has to be called early in #VE handling. A "nested" #VE which
* occurs before this will raise a #DF and is not recoverable.
*
* The call retrieves the #VE info from the TDX module, which also
* clears the "#VE valid" flag. This must be done before anything else
* because any #VE that occurs while the valid flag is set will lead to
* #DF.
*
* Note, the TDX module treats virtual NMIs as inhibited if the #VE
* valid flag is set. It means that NMI=>#VE will not result in a #DF.
*/
tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
/* Transfer the output parameters */
ve->exit_reason = out.rcx;
ve->exit_qual = out.rdx;
ve->gla = out.r8;
ve->gpa = out.r9;
ve->instr_len = lower_32_bits(out.r10);
ve->instr_info = upper_32_bits(out.r10);
}
/*
* Handle the user initiated #VE.
*
* On success, returns the number of bytes RIP should be incremented (>=0)
* or -errno on error.
*/
static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_CPUID:
return handle_cpuid(regs, ve);
default:
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
return -EIO;
}
}
/*
* Handle the kernel #VE.
*
* On success, returns the number of bytes RIP should be incremented (>=0)
* or -errno on error.
*/
static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_HLT:
return handle_halt(ve);
case EXIT_REASON_MSR_READ:
return read_msr(regs, ve);
case EXIT_REASON_MSR_WRITE:
return write_msr(regs, ve);
case EXIT_REASON_CPUID:
return handle_cpuid(regs, ve);
case EXIT_REASON_EPT_VIOLATION:
return handle_mmio(regs, ve);
case EXIT_REASON_IO_INSTRUCTION:
return handle_io(regs, ve);
default:
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
return -EIO;
}
}
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
{
int insn_len;
if (user_mode(regs))
insn_len = virt_exception_user(regs, ve);
else
insn_len = virt_exception_kernel(regs, ve);
if (insn_len < 0)
return false;
/* After successful #VE handling, move the IP */
regs->ip += insn_len;
return true;
}
static bool tdx_tlb_flush_required(bool private)
{
/*
* TDX guest is responsible for flushing TLB on private->shared
* transition. VMM is responsible for flushing on shared->private.
*
* The VMM _can't_ flush private addresses as it can't generate PAs
* with the guest's HKID. Shared memory isn't subject to integrity
* checking, i.e. the VMM doesn't need to flush for its own protection.
*
* There's no need to flush when converting from shared to private,
* as flushing is the VMM's responsibility in this case, e.g. it must
* flush to avoid integrity failures in the face of a buggy or
* malicious guest.
*/
return !private;
}
static bool tdx_cache_flush_required(void)
{
/*
* AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
* TDX doesn't have such capability.
*
* Flush cache unconditionally.
*/
return true;
}
static bool try_accept_one(phys_addr_t *start, unsigned long len,
enum pg_level pg_level)
{
unsigned long accept_size = page_level_size(pg_level);
u64 tdcall_rcx;
u8 page_size;
if (!IS_ALIGNED(*start, accept_size))
return false;
if (len < accept_size)
return false;
/*
* Pass the page physical address to the TDX module to accept the
* pending, private page.
*
* Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G.
*/
switch (pg_level) {
case PG_LEVEL_4K:
page_size = 0;
break;
case PG_LEVEL_2M:
page_size = 1;
break;
case PG_LEVEL_1G:
page_size = 2;
break;
default:
return false;
}
tdcall_rcx = *start | page_size;
if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL))
return false;
*start += accept_size;
return true;
}
/*
* Inform the VMM of the guest's intent for this physical page: shared with
* the VMM or private to the guest. The VMM is expected to change its mapping
* of the page in response.
*/
static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
{
phys_addr_t start = __pa(vaddr);
phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE);
if (!enc) {
/* Set the shared (decrypted) bits: */
start |= cc_mkdec(0);
end |= cc_mkdec(0);
}
/*
* Notify the VMM about page mapping conversion. More info about ABI
* can be found in TDX Guest-Host-Communication Interface (GHCI),
* section "TDG.VP.VMCALL<MapGPA>"
*/
if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
return false;
/* private->shared conversion requires only MapGPA call */
if (!enc)
return true;
/*
* For shared->private conversion, accept the page using
* TDX_ACCEPT_PAGE TDX module call.
*/
while (start < end) {
unsigned long len = end - start;
/*
* Try larger accepts first. It gives chance to VMM to keep
* 1G/2M SEPT entries where possible and speeds up process by
* cutting number of hypercalls (if successful).
*/
if (try_accept_one(&start, len, PG_LEVEL_1G))
continue;
if (try_accept_one(&start, len, PG_LEVEL_2M))
continue;
if (!try_accept_one(&start, len, PG_LEVEL_4K))
return false;
}
return true;
}
void __init tdx_early_init(void)
{
u64 cc_mask;
u32 eax, sig[3];
cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
if (memcmp(TDX_IDENT, sig, sizeof(sig)))
return;
setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
cc_set_vendor(CC_VENDOR_INTEL);
tdx_parse_tdinfo(&cc_mask);
cc_set_mask(cc_mask);
/*
* All bits above GPA width are reserved and kernel treats shared bit
* as flag, not as part of physical address.
*
* Adjust physical mask to only cover valid GPA bits.
*/
physical_mask &= cc_mask - 1;
x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required;
x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed;
pr_info("Guest detected\n");
}