| // SPDX-License-Identifier: GPL-2.0-only |
| |
| #ifndef KVM_X86_MMU_SPTE_H |
| #define KVM_X86_MMU_SPTE_H |
| |
| #include "mmu_internal.h" |
| |
| /* |
| * A MMU present SPTE is backed by actual memory and may or may not be present |
| * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it |
| * is ignored by all flavors of SPTEs and checking a low bit often generates |
| * better code than for a high bit, e.g. 56+. MMU present checks are pervasive |
| * enough that the improved code generation is noticeable in KVM's footprint. |
| */ |
| #define SPTE_MMU_PRESENT_MASK BIT_ULL(11) |
| |
| /* |
| * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also |
| * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. |
| * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that |
| * is must be employed for a given TDP SPTE. |
| * |
| * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE |
| * paging, including NPT PAE. This scheme works because legacy shadow paging |
| * is guaranteed to have A/D bits and write-protection is forced only for |
| * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it |
| * must be restricted to 64-bit KVM. |
| */ |
| #define SPTE_TDP_AD_SHIFT 52 |
| #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) |
| #define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT) |
| #define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT) |
| #define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT) |
| static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); |
| |
| #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK |
| #define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) |
| #else |
| #define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) |
| #endif |
| |
| #define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ |
| | shadow_x_mask | shadow_nx_mask | shadow_me_mask) |
| |
| #define ACC_EXEC_MASK 1 |
| #define ACC_WRITE_MASK PT_WRITABLE_MASK |
| #define ACC_USER_MASK PT_USER_MASK |
| #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) |
| |
| /* The mask for the R/X bits in EPT PTEs */ |
| #define SPTE_EPT_READABLE_MASK 0x1ull |
| #define SPTE_EPT_EXECUTABLE_MASK 0x4ull |
| |
| #define SPTE_LEVEL_BITS 9 |
| #define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS) |
| #define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS) |
| #define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS) |
| |
| /* |
| * The mask/shift to use for saving the original R/X bits when marking the PTE |
| * as not-present for access tracking purposes. We do not save the W bit as the |
| * PTEs being access tracked also need to be dirty tracked, so the W bit will be |
| * restored only when a write is attempted to the page. This mask obviously |
| * must not overlap the A/D type mask. |
| */ |
| #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \ |
| SPTE_EPT_EXECUTABLE_MASK) |
| #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 |
| #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) |
| static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); |
| |
| /* |
| * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given |
| * SPTE is write-protected. See is_writable_pte() for details. |
| */ |
| |
| /* Bits 9 and 10 are ignored by all non-EPT PTEs. */ |
| #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) |
| #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) |
| |
| /* |
| * Low ignored bits are at a premium for EPT, use high ignored bits, taking care |
| * to not overlap the A/D type mask or the saved access bits of access-tracked |
| * SPTEs when A/D bits are disabled. |
| */ |
| #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) |
| #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) |
| |
| static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); |
| static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); |
| static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); |
| static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); |
| |
| /* Defined only to keep the above static asserts readable. */ |
| #undef SHADOW_ACC_TRACK_SAVED_MASK |
| |
| /* |
| * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of |
| * the memslots generation and is derived as follows: |
| * |
| * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 |
| * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 |
| * |
| * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in |
| * the MMIO generation number, as doing so would require stealing a bit from |
| * the "real" generation number and thus effectively halve the maximum number |
| * of MMIO generations that can be handled before encountering a wrap (which |
| * requires a full MMU zap). The flag is instead explicitly queried when |
| * checking for MMIO spte cache hits. |
| */ |
| |
| #define MMIO_SPTE_GEN_LOW_START 3 |
| #define MMIO_SPTE_GEN_LOW_END 10 |
| |
| #define MMIO_SPTE_GEN_HIGH_START 52 |
| #define MMIO_SPTE_GEN_HIGH_END 62 |
| |
| #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ |
| MMIO_SPTE_GEN_LOW_START) |
| #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ |
| MMIO_SPTE_GEN_HIGH_START) |
| static_assert(!(SPTE_MMU_PRESENT_MASK & |
| (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); |
| |
| /* |
| * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the |
| * MMU-present bit. The generation obviously co-exists with the magic MMIO |
| * mask/value, and MMIO SPTEs are considered !MMU-present. |
| * |
| * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT |
| * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO |
| * and so they're off-limits for generation; additional checks ensure the mask |
| * doesn't overlap legal PA bits), and bit 63 (carved out for future usage). |
| */ |
| #define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0)) |
| static_assert(!(SPTE_MMIO_ALLOWED_MASK & |
| (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); |
| |
| #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) |
| #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) |
| |
| /* remember to adjust the comment above as well if you change these */ |
| static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); |
| |
| #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) |
| #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) |
| |
| #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) |
| |
| extern u64 __read_mostly shadow_host_writable_mask; |
| extern u64 __read_mostly shadow_mmu_writable_mask; |
| extern u64 __read_mostly shadow_nx_mask; |
| extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| extern u64 __read_mostly shadow_user_mask; |
| extern u64 __read_mostly shadow_accessed_mask; |
| extern u64 __read_mostly shadow_dirty_mask; |
| extern u64 __read_mostly shadow_mmio_value; |
| extern u64 __read_mostly shadow_mmio_mask; |
| extern u64 __read_mostly shadow_mmio_access_mask; |
| extern u64 __read_mostly shadow_present_mask; |
| extern u64 __read_mostly shadow_memtype_mask; |
| extern u64 __read_mostly shadow_me_value; |
| extern u64 __read_mostly shadow_me_mask; |
| |
| /* |
| * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK; |
| * shadow_acc_track_mask is the set of bits to be cleared in non-accessed |
| * pages. |
| */ |
| extern u64 __read_mostly shadow_acc_track_mask; |
| |
| /* |
| * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order |
| * to guard against L1TF attacks. |
| */ |
| extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; |
| |
| /* |
| * The number of high-order 1 bits to use in the mask above. |
| */ |
| #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 |
| |
| /* |
| * If a thread running without exclusive control of the MMU lock must perform a |
| * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a |
| * non-present intermediate value. Other threads which encounter this value |
| * should not modify the SPTE. |
| * |
| * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on |
| * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF |
| * vulnerability. Use only low bits to avoid 64-bit immediates. |
| * |
| * Only used by the TDP MMU. |
| */ |
| #define REMOVED_SPTE 0x5a0ULL |
| |
| /* Removed SPTEs must not be misconstrued as shadow present PTEs. */ |
| static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK)); |
| |
| static inline bool is_removed_spte(u64 spte) |
| { |
| return spte == REMOVED_SPTE; |
| } |
| |
| /* Get an SPTE's index into its parent's page table (and the spt array). */ |
| static inline int spte_index(u64 *sptep) |
| { |
| return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1); |
| } |
| |
| /* |
| * In some cases, we need to preserve the GFN of a non-present or reserved |
| * SPTE when we usurp the upper five bits of the physical address space to |
| * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll |
| * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask |
| * left into the reserved bits, i.e. the GFN in the SPTE will be split into |
| * high and low parts. This mask covers the lower bits of the GFN. |
| */ |
| extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| |
| static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page) |
| { |
| struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT); |
| |
| return (struct kvm_mmu_page *)page_private(page); |
| } |
| |
| static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte) |
| { |
| return to_shadow_page(spte & SPTE_BASE_ADDR_MASK); |
| } |
| |
| static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep) |
| { |
| return to_shadow_page(__pa(sptep)); |
| } |
| |
| static inline bool is_mmio_spte(u64 spte) |
| { |
| return (spte & shadow_mmio_mask) == shadow_mmio_value && |
| likely(enable_mmio_caching); |
| } |
| |
| static inline bool is_shadow_present_pte(u64 pte) |
| { |
| return !!(pte & SPTE_MMU_PRESENT_MASK); |
| } |
| |
| /* |
| * Returns true if A/D bits are supported in hardware and are enabled by KVM. |
| * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can |
| * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the |
| * scenario where KVM is using A/D bits for L1, but not L2. |
| */ |
| static inline bool kvm_ad_enabled(void) |
| { |
| return !!shadow_accessed_mask; |
| } |
| |
| static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) |
| { |
| return sp->role.ad_disabled; |
| } |
| |
| static inline bool spte_ad_enabled(u64 spte) |
| { |
| MMU_WARN_ON(!is_shadow_present_pte(spte)); |
| return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK; |
| } |
| |
| static inline bool spte_ad_need_write_protect(u64 spte) |
| { |
| MMU_WARN_ON(!is_shadow_present_pte(spte)); |
| /* |
| * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0', |
| * and non-TDP SPTEs will never set these bits. Optimize for 64-bit |
| * TDP and do the A/D type check unconditionally. |
| */ |
| return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK; |
| } |
| |
| static inline u64 spte_shadow_accessed_mask(u64 spte) |
| { |
| MMU_WARN_ON(!is_shadow_present_pte(spte)); |
| return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; |
| } |
| |
| static inline u64 spte_shadow_dirty_mask(u64 spte) |
| { |
| MMU_WARN_ON(!is_shadow_present_pte(spte)); |
| return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; |
| } |
| |
| static inline bool is_access_track_spte(u64 spte) |
| { |
| return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; |
| } |
| |
| static inline bool is_large_pte(u64 pte) |
| { |
| return pte & PT_PAGE_SIZE_MASK; |
| } |
| |
| static inline bool is_last_spte(u64 pte, int level) |
| { |
| return (level == PG_LEVEL_4K) || is_large_pte(pte); |
| } |
| |
| static inline bool is_executable_pte(u64 spte) |
| { |
| return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; |
| } |
| |
| static inline kvm_pfn_t spte_to_pfn(u64 pte) |
| { |
| return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| } |
| |
| static inline bool is_accessed_spte(u64 spte) |
| { |
| u64 accessed_mask = spte_shadow_accessed_mask(spte); |
| |
| return accessed_mask ? spte & accessed_mask |
| : !is_access_track_spte(spte); |
| } |
| |
| static inline bool is_dirty_spte(u64 spte) |
| { |
| u64 dirty_mask = spte_shadow_dirty_mask(spte); |
| |
| return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; |
| } |
| |
| static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, |
| int level) |
| { |
| int bit7 = (pte >> 7) & 1; |
| |
| return rsvd_check->rsvd_bits_mask[bit7][level-1]; |
| } |
| |
| static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, |
| u64 pte, int level) |
| { |
| return pte & get_rsvd_bits(rsvd_check, pte, level); |
| } |
| |
| static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, |
| u64 pte) |
| { |
| return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); |
| } |
| |
| static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, |
| u64 spte, int level) |
| { |
| return __is_bad_mt_xwr(rsvd_check, spte) || |
| __is_rsvd_bits_set(rsvd_check, spte, level); |
| } |
| |
| /* |
| * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: |
| * |
| * 1. To intercept writes for dirty logging. KVM write-protects huge pages |
| * so that they can be split down into the dirty logging |
| * granularity (4KiB) whenever the guest writes to them. KVM also |
| * write-protects 4KiB pages so that writes can be recorded in the dirty log |
| * (e.g. if not using PML). SPTEs are write-protected for dirty logging |
| * during the VM-iotcls that enable dirty logging. |
| * |
| * 2. To intercept writes to guest page tables that KVM is shadowing. When a |
| * guest writes to its page table the corresponding shadow page table will |
| * be marked "unsync". That way KVM knows which shadow page tables need to |
| * be updated on the next TLB flush, INVLPG, etc. and which do not. |
| * |
| * 3. To prevent guest writes to read-only memory, such as for memory in a |
| * read-only memslot or guest memory backed by a read-only VMA. Writes to |
| * such pages are disallowed entirely. |
| * |
| * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this |
| * case, the SPTE is access-protected, not just write-protected! |
| * |
| * For cases #1 and #4, KVM can safely make such SPTEs writable without taking |
| * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. |
| * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits |
| * in the SPTE: |
| * |
| * shadow_mmu_writable_mask, aka MMU-writable - |
| * Cleared on SPTEs that KVM is currently write-protecting for shadow paging |
| * purposes (case 2 above). |
| * |
| * shadow_host_writable_mask, aka Host-writable - |
| * Cleared on SPTEs that are not host-writable (case 3 above) |
| * |
| * Note, not all possible combinations of PT_WRITABLE_MASK, |
| * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given |
| * SPTE can be in only one of the following states, which map to the |
| * aforementioned 3 cases: |
| * |
| * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK |
| * ------------------------- | ------------------------ | ---------------- |
| * 1 | 1 | 1 (writable) |
| * 1 | 1 | 0 (case 1) |
| * 1 | 0 | 0 (case 2) |
| * 0 | 0 | 0 (case 3) |
| * |
| * The valid combinations of these bits are checked by |
| * check_spte_writable_invariants() whenever an SPTE is modified. |
| * |
| * Clearing the MMU-writable bit is always done under the MMU lock and always |
| * accompanied by a TLB flush before dropping the lock to avoid corrupting the |
| * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging |
| * (which does not clear the MMU-writable bit), does not flush TLBs before |
| * dropping the lock, as it only needs to synchronize guest writes with the |
| * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for |
| * access-tracking via the clear_young() MMU notifier also does not flush TLBs. |
| * |
| * So, there is the problem: clearing the MMU-writable bit can encounter a |
| * write-protected SPTE while CPUs still have writable mappings for that SPTE |
| * cached in their TLB. To address this, KVM always flushes TLBs when |
| * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. |
| * |
| * The Host-writable bit is not modified on present SPTEs, it is only set or |
| * cleared when an SPTE is first faulted in from non-present and then remains |
| * immutable. |
| */ |
| static inline bool is_writable_pte(unsigned long pte) |
| { |
| return pte & PT_WRITABLE_MASK; |
| } |
| |
| /* Note: spte must be a shadow-present leaf SPTE. */ |
| static inline void check_spte_writable_invariants(u64 spte) |
| { |
| if (spte & shadow_mmu_writable_mask) |
| WARN_ONCE(!(spte & shadow_host_writable_mask), |
| "kvm: MMU-writable SPTE is not Host-writable: %llx", |
| spte); |
| else |
| WARN_ONCE(is_writable_pte(spte), |
| "kvm: Writable SPTE is not MMU-writable: %llx", spte); |
| } |
| |
| static inline bool is_mmu_writable_spte(u64 spte) |
| { |
| return spte & shadow_mmu_writable_mask; |
| } |
| |
| static inline u64 get_mmio_spte_generation(u64 spte) |
| { |
| u64 gen; |
| |
| gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; |
| gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; |
| return gen; |
| } |
| |
| bool spte_has_volatile_bits(u64 spte); |
| |
| bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| const struct kvm_memory_slot *slot, |
| unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, |
| u64 old_spte, bool prefetch, bool can_unsync, |
| bool host_writable, u64 *new_spte); |
| u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, |
| union kvm_mmu_page_role role, int index); |
| u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); |
| u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); |
| u64 mark_spte_for_access_track(u64 spte); |
| |
| /* Restore an acc-track PTE back to a regular PTE */ |
| static inline u64 restore_acc_track_spte(u64 spte) |
| { |
| u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) |
| & SHADOW_ACC_TRACK_SAVED_BITS_MASK; |
| |
| spte &= ~shadow_acc_track_mask; |
| spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); |
| spte |= saved_bits; |
| |
| return spte; |
| } |
| |
| u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); |
| |
| void __init kvm_mmu_spte_module_init(void); |
| void kvm_mmu_reset_all_pte_masks(void); |
| |
| #endif |