| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * cpuidle-pseries - idle state cpuidle driver. |
| * Adapted from drivers/idle/intel_idle.c and |
| * drivers/acpi/processor_idle.c |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/moduleparam.h> |
| #include <linux/cpuidle.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| |
| #include <asm/paca.h> |
| #include <asm/reg.h> |
| #include <asm/machdep.h> |
| #include <asm/firmware.h> |
| #include <asm/runlatch.h> |
| #include <asm/idle.h> |
| #include <asm/plpar_wrappers.h> |
| #include <asm/rtas.h> |
| |
| static struct cpuidle_driver pseries_idle_driver = { |
| .name = "pseries_idle", |
| .owner = THIS_MODULE, |
| }; |
| |
| static int max_idle_state __read_mostly; |
| static struct cpuidle_state *cpuidle_state_table __read_mostly; |
| static u64 snooze_timeout __read_mostly; |
| static bool snooze_timeout_en __read_mostly; |
| |
| static int snooze_loop(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, |
| int index) |
| { |
| u64 snooze_exit_time; |
| |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| |
| pseries_idle_prolog(); |
| local_irq_enable(); |
| snooze_exit_time = get_tb() + snooze_timeout; |
| dev->poll_time_limit = false; |
| |
| while (!need_resched()) { |
| HMT_low(); |
| HMT_very_low(); |
| if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) { |
| /* |
| * Task has not woken up but we are exiting the polling |
| * loop anyway. Require a barrier after polling is |
| * cleared to order subsequent test of need_resched(). |
| */ |
| dev->poll_time_limit = true; |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| smp_mb(); |
| break; |
| } |
| } |
| |
| HMT_medium(); |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| |
| local_irq_disable(); |
| |
| pseries_idle_epilog(); |
| |
| return index; |
| } |
| |
| static void check_and_cede_processor(void) |
| { |
| /* |
| * Ensure our interrupt state is properly tracked, |
| * also checks if no interrupt has occurred while we |
| * were soft-disabled |
| */ |
| if (prep_irq_for_idle()) { |
| cede_processor(); |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| /* Ensure that H_CEDE returns with IRQs on */ |
| if (WARN_ON(!(mfmsr() & MSR_EE))) |
| __hard_irq_enable(); |
| #endif |
| } |
| } |
| |
| /* |
| * XCEDE: Extended CEDE states discovered through the |
| * "ibm,get-systems-parameter" RTAS call with the token |
| * CEDE_LATENCY_TOKEN |
| */ |
| |
| /* |
| * Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a |
| * table with all the parameters to ibm,get-system-parameters. |
| * CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency |
| * Settings Information. |
| */ |
| #define CEDE_LATENCY_TOKEN 45 |
| |
| /* |
| * If the platform supports the cede latency settings information system |
| * parameter it must provide the following information in the NULL terminated |
| * parameter string: |
| * |
| * a. The first byte is the length āNā of each cede latency setting record minus |
| * one (zero indicates a length of 1 byte). |
| * |
| * b. For each supported cede latency setting a cede latency setting record |
| * consisting of the first āNā bytes as per the following table. |
| * |
| * ----------------------------- |
| * | Field | Field | |
| * | Name | Length | |
| * ----------------------------- |
| * | Cede Latency | 1 Byte | |
| * | Specifier Value | | |
| * ----------------------------- |
| * | Maximum wakeup | | |
| * | latency in | 8 Bytes | |
| * | tb-ticks | | |
| * ----------------------------- |
| * | Responsive to | | |
| * | external | 1 Byte | |
| * | interrupts | | |
| * ----------------------------- |
| * |
| * This version has cede latency record size = 10. |
| * |
| * The structure xcede_latency_payload represents a) and b) with |
| * xcede_latency_record representing the table in b). |
| * |
| * xcede_latency_parameter is what gets returned by |
| * ibm,get-systems-parameter RTAS call when made with |
| * CEDE_LATENCY_TOKEN. |
| * |
| * These structures are only used to represent the data obtained by the RTAS |
| * call. The data is in big-endian. |
| */ |
| struct xcede_latency_record { |
| u8 hint; |
| __be64 latency_ticks; |
| u8 wake_on_irqs; |
| } __packed; |
| |
| // Make space for 16 records, which "should be enough". |
| struct xcede_latency_payload { |
| u8 record_size; |
| struct xcede_latency_record records[16]; |
| } __packed; |
| |
| struct xcede_latency_parameter { |
| __be16 payload_size; |
| struct xcede_latency_payload payload; |
| u8 null_char; |
| } __packed; |
| |
| static unsigned int nr_xcede_records; |
| static struct xcede_latency_parameter xcede_latency_parameter __initdata; |
| |
| static int __init parse_cede_parameters(void) |
| { |
| struct xcede_latency_payload *payload; |
| u32 total_xcede_records_size; |
| u8 xcede_record_size; |
| u16 payload_size; |
| int ret, i; |
| |
| ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, |
| NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter), |
| sizeof(xcede_latency_parameter)); |
| if (ret) { |
| pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n"); |
| return ret; |
| } |
| |
| payload_size = be16_to_cpu(xcede_latency_parameter.payload_size); |
| payload = &xcede_latency_parameter.payload; |
| |
| xcede_record_size = payload->record_size + 1; |
| |
| if (xcede_record_size != sizeof(struct xcede_latency_record)) { |
| pr_err("xcede: Expected record-size %lu. Observed size %u.\n", |
| sizeof(struct xcede_latency_record), xcede_record_size); |
| return -EINVAL; |
| } |
| |
| pr_info("xcede: xcede_record_size = %d\n", xcede_record_size); |
| |
| /* |
| * Since the payload_size includes the last NULL byte and the |
| * xcede_record_size, the remaining bytes correspond to array of all |
| * cede_latency settings. |
| */ |
| total_xcede_records_size = payload_size - 2; |
| nr_xcede_records = total_xcede_records_size / xcede_record_size; |
| |
| for (i = 0; i < nr_xcede_records; i++) { |
| struct xcede_latency_record *record = &payload->records[i]; |
| u64 latency_ticks = be64_to_cpu(record->latency_ticks); |
| u8 wake_on_irqs = record->wake_on_irqs; |
| u8 hint = record->hint; |
| |
| pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n", |
| i, hint, latency_ticks, wake_on_irqs); |
| } |
| |
| return 0; |
| } |
| |
| #define NR_DEDICATED_STATES 2 /* snooze, CEDE */ |
| static u8 cede_latency_hint[NR_DEDICATED_STATES]; |
| |
| static int dedicated_cede_loop(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, |
| int index) |
| { |
| u8 old_latency_hint; |
| |
| pseries_idle_prolog(); |
| get_lppaca()->donate_dedicated_cpu = 1; |
| old_latency_hint = get_lppaca()->cede_latency_hint; |
| get_lppaca()->cede_latency_hint = cede_latency_hint[index]; |
| |
| HMT_medium(); |
| check_and_cede_processor(); |
| |
| local_irq_disable(); |
| get_lppaca()->donate_dedicated_cpu = 0; |
| get_lppaca()->cede_latency_hint = old_latency_hint; |
| |
| pseries_idle_epilog(); |
| |
| return index; |
| } |
| |
| static int shared_cede_loop(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, |
| int index) |
| { |
| |
| pseries_idle_prolog(); |
| |
| /* |
| * Yield the processor to the hypervisor. We return if |
| * an external interrupt occurs (which are driven prior |
| * to returning here) or if a prod occurs from another |
| * processor. When returning here, external interrupts |
| * are enabled. |
| */ |
| check_and_cede_processor(); |
| |
| local_irq_disable(); |
| pseries_idle_epilog(); |
| |
| return index; |
| } |
| |
| /* |
| * States for dedicated partition case. |
| */ |
| static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = { |
| { /* Snooze */ |
| .name = "snooze", |
| .desc = "snooze", |
| .exit_latency = 0, |
| .target_residency = 0, |
| .enter = &snooze_loop, |
| .flags = CPUIDLE_FLAG_POLLING }, |
| { /* CEDE */ |
| .name = "CEDE", |
| .desc = "CEDE", |
| .exit_latency = 10, |
| .target_residency = 100, |
| .enter = &dedicated_cede_loop }, |
| }; |
| |
| /* |
| * States for shared partition case. |
| */ |
| static struct cpuidle_state shared_states[] = { |
| { /* Snooze */ |
| .name = "snooze", |
| .desc = "snooze", |
| .exit_latency = 0, |
| .target_residency = 0, |
| .enter = &snooze_loop, |
| .flags = CPUIDLE_FLAG_POLLING }, |
| { /* Shared Cede */ |
| .name = "Shared Cede", |
| .desc = "Shared Cede", |
| .exit_latency = 10, |
| .target_residency = 100, |
| .enter = &shared_cede_loop }, |
| }; |
| |
| static int pseries_cpuidle_cpu_online(unsigned int cpu) |
| { |
| struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); |
| |
| if (dev && cpuidle_get_driver()) { |
| cpuidle_pause_and_lock(); |
| cpuidle_enable_device(dev); |
| cpuidle_resume_and_unlock(); |
| } |
| return 0; |
| } |
| |
| static int pseries_cpuidle_cpu_dead(unsigned int cpu) |
| { |
| struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); |
| |
| if (dev && cpuidle_get_driver()) { |
| cpuidle_pause_and_lock(); |
| cpuidle_disable_device(dev); |
| cpuidle_resume_and_unlock(); |
| } |
| return 0; |
| } |
| |
| /* |
| * pseries_cpuidle_driver_init() |
| */ |
| static int pseries_cpuidle_driver_init(void) |
| { |
| int idle_state; |
| struct cpuidle_driver *drv = &pseries_idle_driver; |
| |
| drv->state_count = 0; |
| |
| for (idle_state = 0; idle_state < max_idle_state; ++idle_state) { |
| /* Is the state not enabled? */ |
| if (cpuidle_state_table[idle_state].enter == NULL) |
| continue; |
| |
| drv->states[drv->state_count] = /* structure copy */ |
| cpuidle_state_table[idle_state]; |
| |
| drv->state_count += 1; |
| } |
| |
| return 0; |
| } |
| |
| static void __init fixup_cede0_latency(void) |
| { |
| struct xcede_latency_payload *payload; |
| u64 min_xcede_latency_us = UINT_MAX; |
| int i; |
| |
| if (parse_cede_parameters()) |
| return; |
| |
| pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n", |
| nr_xcede_records); |
| |
| payload = &xcede_latency_parameter.payload; |
| |
| /* |
| * The CEDE idle state maps to CEDE(0). While the hypervisor |
| * does not advertise CEDE(0) exit latency values, it does |
| * advertise the latency values of the extended CEDE states. |
| * We use the lowest advertised exit latency value as a proxy |
| * for the exit latency of CEDE(0). |
| */ |
| for (i = 0; i < nr_xcede_records; i++) { |
| struct xcede_latency_record *record = &payload->records[i]; |
| u8 hint = record->hint; |
| u64 latency_tb = be64_to_cpu(record->latency_ticks); |
| u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC); |
| |
| /* |
| * We expect the exit latency of an extended CEDE |
| * state to be non-zero, it to since it takes at least |
| * a few nanoseconds to wakeup the idle CPU and |
| * dispatch the virtual processor into the Linux |
| * Guest. |
| * |
| * So we consider only non-zero value for performing |
| * the fixup of CEDE(0) latency. |
| */ |
| if (latency_us == 0) { |
| pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n", |
| i, hint); |
| continue; |
| } |
| |
| if (latency_us < min_xcede_latency_us) |
| min_xcede_latency_us = latency_us; |
| } |
| |
| if (min_xcede_latency_us != UINT_MAX) { |
| dedicated_states[1].exit_latency = min_xcede_latency_us; |
| dedicated_states[1].target_residency = 10 * (min_xcede_latency_us); |
| pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n", |
| min_xcede_latency_us); |
| } |
| |
| } |
| |
| /* |
| * pseries_idle_probe() |
| * Choose state table for shared versus dedicated partition |
| */ |
| static int __init pseries_idle_probe(void) |
| { |
| |
| if (cpuidle_disable != IDLE_NO_OVERRIDE) |
| return -ENODEV; |
| |
| if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| /* |
| * Use local_paca instead of get_lppaca() since |
| * preemption is not disabled, and it is not required in |
| * fact, since lppaca_ptr does not need to be the value |
| * associated to the current CPU, it can be from any CPU. |
| */ |
| if (lppaca_shared_proc(local_paca->lppaca_ptr)) { |
| cpuidle_state_table = shared_states; |
| max_idle_state = ARRAY_SIZE(shared_states); |
| } else { |
| /* |
| * Use firmware provided latency values |
| * starting with POWER10 platforms. In the |
| * case that we are running on a POWER10 |
| * platform but in an earlier compat mode, we |
| * can still use the firmware provided values. |
| * |
| * However, on platforms prior to POWER10, we |
| * cannot rely on the accuracy of the firmware |
| * provided latency values. On such platforms, |
| * go with the conservative default estimate |
| * of 10us. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10)) |
| fixup_cede0_latency(); |
| cpuidle_state_table = dedicated_states; |
| max_idle_state = NR_DEDICATED_STATES; |
| } |
| } else |
| return -ENODEV; |
| |
| if (max_idle_state > 1) { |
| snooze_timeout_en = true; |
| snooze_timeout = cpuidle_state_table[1].target_residency * |
| tb_ticks_per_usec; |
| } |
| return 0; |
| } |
| |
| static int __init pseries_processor_idle_init(void) |
| { |
| int retval; |
| |
| retval = pseries_idle_probe(); |
| if (retval) |
| return retval; |
| |
| pseries_cpuidle_driver_init(); |
| retval = cpuidle_register(&pseries_idle_driver, NULL); |
| if (retval) { |
| printk(KERN_DEBUG "Registration of pseries driver failed.\n"); |
| return retval; |
| } |
| |
| retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, |
| "cpuidle/pseries:online", |
| pseries_cpuidle_cpu_online, NULL); |
| WARN_ON(retval < 0); |
| retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD, |
| "cpuidle/pseries:DEAD", NULL, |
| pseries_cpuidle_cpu_dead); |
| WARN_ON(retval < 0); |
| printk(KERN_DEBUG "pseries_idle_driver registered\n"); |
| return 0; |
| } |
| |
| device_initcall(pseries_processor_idle_init); |