| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * ST Microelectronics |
| * Flexible Static Memory Controller (FSMC) |
| * Driver for NAND portions |
| * |
| * Copyright © 2010 ST Microelectronics |
| * Vipin Kumar <vipin.kumar@st.com> |
| * Ashish Priyadarshi |
| * |
| * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) |
| * Copyright © 2007 STMicroelectronics Pvt. Ltd. |
| * Copyright © 2009 Alessandro Rubini |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/resource.h> |
| #include <linux/sched.h> |
| #include <linux/types.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand-ecc-sw-hamming.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/amba/bus.h> |
| #include <mtd/mtd-abi.h> |
| |
| /* fsmc controller registers for NOR flash */ |
| #define CTRL 0x0 |
| /* ctrl register definitions */ |
| #define BANK_ENABLE BIT(0) |
| #define MUXED BIT(1) |
| #define NOR_DEV (2 << 2) |
| #define WIDTH_16 BIT(4) |
| #define RSTPWRDWN BIT(6) |
| #define WPROT BIT(7) |
| #define WRT_ENABLE BIT(12) |
| #define WAIT_ENB BIT(13) |
| |
| #define CTRL_TIM 0x4 |
| /* ctrl_tim register definitions */ |
| |
| #define FSMC_NOR_BANK_SZ 0x8 |
| #define FSMC_NOR_REG_SIZE 0x40 |
| |
| #define FSMC_NOR_REG(base, bank, reg) ((base) + \ |
| (FSMC_NOR_BANK_SZ * (bank)) + \ |
| (reg)) |
| |
| /* fsmc controller registers for NAND flash */ |
| #define FSMC_PC 0x00 |
| /* pc register definitions */ |
| #define FSMC_RESET BIT(0) |
| #define FSMC_WAITON BIT(1) |
| #define FSMC_ENABLE BIT(2) |
| #define FSMC_DEVTYPE_NAND BIT(3) |
| #define FSMC_DEVWID_16 BIT(4) |
| #define FSMC_ECCEN BIT(6) |
| #define FSMC_ECCPLEN_256 BIT(7) |
| #define FSMC_TCLR_SHIFT (9) |
| #define FSMC_TCLR_MASK (0xF) |
| #define FSMC_TAR_SHIFT (13) |
| #define FSMC_TAR_MASK (0xF) |
| #define STS 0x04 |
| /* sts register definitions */ |
| #define FSMC_CODE_RDY BIT(15) |
| #define COMM 0x08 |
| /* comm register definitions */ |
| #define FSMC_TSET_SHIFT 0 |
| #define FSMC_TSET_MASK 0xFF |
| #define FSMC_TWAIT_SHIFT 8 |
| #define FSMC_TWAIT_MASK 0xFF |
| #define FSMC_THOLD_SHIFT 16 |
| #define FSMC_THOLD_MASK 0xFF |
| #define FSMC_THIZ_SHIFT 24 |
| #define FSMC_THIZ_MASK 0xFF |
| #define ATTRIB 0x0C |
| #define IOATA 0x10 |
| #define ECC1 0x14 |
| #define ECC2 0x18 |
| #define ECC3 0x1C |
| #define FSMC_NAND_BANK_SZ 0x20 |
| |
| #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) |
| |
| /* |
| * According to SPEAr300 Reference Manual (RM0082) |
| * TOUDEL = 7ns (Output delay from the flip-flops to the board) |
| * TINDEL = 5ns (Input delay from the board to the flipflop) |
| */ |
| #define TOUTDEL 7000 |
| #define TINDEL 5000 |
| |
| struct fsmc_nand_timings { |
| u8 tclr; |
| u8 tar; |
| u8 thiz; |
| u8 thold; |
| u8 twait; |
| u8 tset; |
| }; |
| |
| enum access_mode { |
| USE_DMA_ACCESS = 1, |
| USE_WORD_ACCESS, |
| }; |
| |
| /** |
| * struct fsmc_nand_data - structure for FSMC NAND device state |
| * |
| * @base: Inherit from the nand_controller struct |
| * @pid: Part ID on the AMBA PrimeCell format |
| * @nand: Chip related info for a NAND flash. |
| * |
| * @bank: Bank number for probed device. |
| * @dev: Parent device |
| * @mode: Access mode |
| * @clk: Clock structure for FSMC. |
| * |
| * @read_dma_chan: DMA channel for read access |
| * @write_dma_chan: DMA channel for write access to NAND |
| * @dma_access_complete: Completion structure |
| * |
| * @dev_timings: NAND timings |
| * |
| * @data_pa: NAND Physical port for Data. |
| * @data_va: NAND port for Data. |
| * @cmd_va: NAND port for Command. |
| * @addr_va: NAND port for Address. |
| * @regs_va: Registers base address for a given bank. |
| */ |
| struct fsmc_nand_data { |
| struct nand_controller base; |
| u32 pid; |
| struct nand_chip nand; |
| |
| unsigned int bank; |
| struct device *dev; |
| enum access_mode mode; |
| struct clk *clk; |
| |
| /* DMA related objects */ |
| struct dma_chan *read_dma_chan; |
| struct dma_chan *write_dma_chan; |
| struct completion dma_access_complete; |
| |
| struct fsmc_nand_timings *dev_timings; |
| |
| dma_addr_t data_pa; |
| void __iomem *data_va; |
| void __iomem *cmd_va; |
| void __iomem *addr_va; |
| void __iomem *regs_va; |
| }; |
| |
| static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 2; |
| oobregion->length = 3; |
| |
| return 0; |
| } |
| |
| static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 8; |
| |
| if (section < chip->ecc.steps - 1) |
| oobregion->length = 8; |
| else |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { |
| .ecc = fsmc_ecc1_ooblayout_ecc, |
| .free = fsmc_ecc1_ooblayout_free, |
| }; |
| |
| /* |
| * ECC placement definitions in oobfree type format. |
| * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| * consecutively and immediately after the 512 byte data block for hardware to |
| * generate the error bit offsets in 512 byte data. |
| */ |
| static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->length = chip->ecc.bytes; |
| |
| if (!section && mtd->writesize <= 512) |
| oobregion->offset = 0; |
| else |
| oobregion->offset = (section * 16) + 2; |
| |
| return 0; |
| } |
| |
| static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 15; |
| |
| if (section < chip->ecc.steps - 1) |
| oobregion->length = 3; |
| else |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { |
| .ecc = fsmc_ecc4_ooblayout_ecc, |
| .free = fsmc_ecc4_ooblayout_free, |
| }; |
| |
| static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) |
| { |
| return container_of(chip, struct fsmc_nand_data, nand); |
| } |
| |
| /* |
| * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine |
| * |
| * This routine initializes timing parameters related to NAND memory access in |
| * FSMC registers |
| */ |
| static void fsmc_nand_setup(struct fsmc_nand_data *host, |
| struct fsmc_nand_timings *tims) |
| { |
| u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; |
| u32 tclr, tar, thiz, thold, twait, tset; |
| |
| tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; |
| tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; |
| thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; |
| thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; |
| twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; |
| tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; |
| |
| if (host->nand.options & NAND_BUSWIDTH_16) |
| value |= FSMC_DEVWID_16; |
| |
| writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); |
| writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); |
| writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); |
| } |
| |
| static int fsmc_calc_timings(struct fsmc_nand_data *host, |
| const struct nand_sdr_timings *sdrt, |
| struct fsmc_nand_timings *tims) |
| { |
| unsigned long hclk = clk_get_rate(host->clk); |
| unsigned long hclkn = NSEC_PER_SEC / hclk; |
| u32 thiz, thold, twait, tset, twait_min; |
| |
| if (sdrt->tRC_min < 30000) |
| return -EOPNOTSUPP; |
| |
| tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; |
| if (tims->tar > FSMC_TAR_MASK) |
| tims->tar = FSMC_TAR_MASK; |
| tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; |
| if (tims->tclr > FSMC_TCLR_MASK) |
| tims->tclr = FSMC_TCLR_MASK; |
| |
| thiz = sdrt->tCS_min - sdrt->tWP_min; |
| tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); |
| |
| thold = sdrt->tDH_min; |
| if (thold < sdrt->tCH_min) |
| thold = sdrt->tCH_min; |
| if (thold < sdrt->tCLH_min) |
| thold = sdrt->tCLH_min; |
| if (thold < sdrt->tWH_min) |
| thold = sdrt->tWH_min; |
| if (thold < sdrt->tALH_min) |
| thold = sdrt->tALH_min; |
| if (thold < sdrt->tREH_min) |
| thold = sdrt->tREH_min; |
| tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); |
| if (tims->thold == 0) |
| tims->thold = 1; |
| else if (tims->thold > FSMC_THOLD_MASK) |
| tims->thold = FSMC_THOLD_MASK; |
| |
| tset = max(sdrt->tCS_min - sdrt->tWP_min, |
| sdrt->tCEA_max - sdrt->tREA_max); |
| tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; |
| if (tims->tset == 0) |
| tims->tset = 1; |
| else if (tims->tset > FSMC_TSET_MASK) |
| tims->tset = FSMC_TSET_MASK; |
| |
| /* |
| * According to SPEAr300 Reference Manual (RM0082) which gives more |
| * information related to FSMSC timings than the SPEAr600 one (RM0305), |
| * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL |
| */ |
| twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) |
| + TOUTDEL + TINDEL; |
| twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); |
| |
| tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; |
| if (tims->twait == 0) |
| tims->twait = 1; |
| else if (tims->twait > FSMC_TWAIT_MASK) |
| tims->twait = FSMC_TWAIT_MASK; |
| |
| return 0; |
| } |
| |
| static int fsmc_setup_interface(struct nand_chip *nand, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(nand); |
| struct fsmc_nand_timings tims; |
| const struct nand_sdr_timings *sdrt; |
| int ret; |
| |
| sdrt = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdrt)) |
| return PTR_ERR(sdrt); |
| |
| ret = fsmc_calc_timings(host, sdrt, &tims); |
| if (ret) |
| return ret; |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| fsmc_nand_setup(host, &tims); |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers |
| */ |
| static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| |
| writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, |
| host->regs_va + FSMC_PC); |
| writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, |
| host->regs_va + FSMC_PC); |
| writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, |
| host->regs_va + FSMC_PC); |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by |
| * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to |
| * max of 8-bits) |
| */ |
| static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, |
| u8 *ecc) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| u32 ecc_tmp; |
| unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; |
| |
| do { |
| if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) |
| break; |
| |
| cond_resched(); |
| } while (!time_after_eq(jiffies, deadline)); |
| |
| if (time_after_eq(jiffies, deadline)) { |
| dev_err(host->dev, "calculate ecc timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| ecc_tmp = readl_relaxed(host->regs_va + ECC1); |
| ecc[0] = ecc_tmp; |
| ecc[1] = ecc_tmp >> 8; |
| ecc[2] = ecc_tmp >> 16; |
| ecc[3] = ecc_tmp >> 24; |
| |
| ecc_tmp = readl_relaxed(host->regs_va + ECC2); |
| ecc[4] = ecc_tmp; |
| ecc[5] = ecc_tmp >> 8; |
| ecc[6] = ecc_tmp >> 16; |
| ecc[7] = ecc_tmp >> 24; |
| |
| ecc_tmp = readl_relaxed(host->regs_va + ECC3); |
| ecc[8] = ecc_tmp; |
| ecc[9] = ecc_tmp >> 8; |
| ecc[10] = ecc_tmp >> 16; |
| ecc[11] = ecc_tmp >> 24; |
| |
| ecc_tmp = readl_relaxed(host->regs_va + STS); |
| ecc[12] = ecc_tmp >> 16; |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by |
| * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| * max of 1-bit) |
| */ |
| static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, |
| u8 *ecc) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| u32 ecc_tmp; |
| |
| ecc_tmp = readl_relaxed(host->regs_va + ECC1); |
| ecc[0] = ecc_tmp; |
| ecc[1] = ecc_tmp >> 8; |
| ecc[2] = ecc_tmp >> 16; |
| |
| return 0; |
| } |
| |
| static int fsmc_correct_ecc1(struct nand_chip *chip, |
| unsigned char *buf, |
| unsigned char *read_ecc, |
| unsigned char *calc_ecc) |
| { |
| bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; |
| |
| return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, |
| chip->ecc.size, sm_order); |
| } |
| |
| /* Count the number of 0's in buff upto a max of max_bits */ |
| static int count_written_bits(u8 *buff, int size, int max_bits) |
| { |
| int k, written_bits = 0; |
| |
| for (k = 0; k < size; k++) { |
| written_bits += hweight8(~buff[k]); |
| if (written_bits > max_bits) |
| break; |
| } |
| |
| return written_bits; |
| } |
| |
| static void dma_complete(void *param) |
| { |
| struct fsmc_nand_data *host = param; |
| |
| complete(&host->dma_access_complete); |
| } |
| |
| static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, |
| enum dma_data_direction direction) |
| { |
| struct dma_chan *chan; |
| struct dma_device *dma_dev; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dst, dma_src, dma_addr; |
| dma_cookie_t cookie; |
| unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| int ret; |
| unsigned long time_left; |
| |
| if (direction == DMA_TO_DEVICE) |
| chan = host->write_dma_chan; |
| else if (direction == DMA_FROM_DEVICE) |
| chan = host->read_dma_chan; |
| else |
| return -EINVAL; |
| |
| dma_dev = chan->device; |
| dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); |
| |
| if (direction == DMA_TO_DEVICE) { |
| dma_src = dma_addr; |
| dma_dst = host->data_pa; |
| } else { |
| dma_src = host->data_pa; |
| dma_dst = dma_addr; |
| } |
| |
| tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, |
| len, flags); |
| if (!tx) { |
| dev_err(host->dev, "device_prep_dma_memcpy error\n"); |
| ret = -EIO; |
| goto unmap_dma; |
| } |
| |
| tx->callback = dma_complete; |
| tx->callback_param = host; |
| cookie = tx->tx_submit(tx); |
| |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(host->dev, "dma_submit_error %d\n", cookie); |
| goto unmap_dma; |
| } |
| |
| dma_async_issue_pending(chan); |
| |
| time_left = |
| wait_for_completion_timeout(&host->dma_access_complete, |
| msecs_to_jiffies(3000)); |
| if (time_left == 0) { |
| dmaengine_terminate_all(chan); |
| dev_err(host->dev, "wait_for_completion_timeout\n"); |
| ret = -ETIMEDOUT; |
| goto unmap_dma; |
| } |
| |
| ret = 0; |
| |
| unmap_dma: |
| dma_unmap_single(dma_dev->dev, dma_addr, len, direction); |
| |
| return ret; |
| } |
| |
| /* |
| * fsmc_write_buf - write buffer to chip |
| * @host: FSMC NAND controller |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, |
| int len) |
| { |
| int i; |
| |
| if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| IS_ALIGNED(len, sizeof(u32))) { |
| u32 *p = (u32 *)buf; |
| |
| len = len >> 2; |
| for (i = 0; i < len; i++) |
| writel_relaxed(p[i], host->data_va); |
| } else { |
| for (i = 0; i < len; i++) |
| writeb_relaxed(buf[i], host->data_va); |
| } |
| } |
| |
| /* |
| * fsmc_read_buf - read chip data into buffer |
| * @host: FSMC NAND controller |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) |
| { |
| int i; |
| |
| if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| IS_ALIGNED(len, sizeof(u32))) { |
| u32 *p = (u32 *)buf; |
| |
| len = len >> 2; |
| for (i = 0; i < len; i++) |
| p[i] = readl_relaxed(host->data_va); |
| } else { |
| for (i = 0; i < len; i++) |
| buf[i] = readb_relaxed(host->data_va); |
| } |
| } |
| |
| /* |
| * fsmc_read_buf_dma - read chip data into buffer |
| * @host: FSMC NAND controller |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, |
| int len) |
| { |
| dma_xfer(host, buf, len, DMA_FROM_DEVICE); |
| } |
| |
| /* |
| * fsmc_write_buf_dma - write buffer to chip |
| * @host: FSMC NAND controller |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, |
| int len) |
| { |
| dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); |
| } |
| |
| /* |
| * fsmc_exec_op - hook called by the core to execute NAND operations |
| * |
| * This controller is simple enough and thus does not need to use the parser |
| * provided by the core, instead, handle every situation here. |
| */ |
| static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, |
| bool check_only) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| const struct nand_op_instr *instr = NULL; |
| int ret = 0; |
| unsigned int op_id; |
| int i; |
| |
| if (check_only) |
| return 0; |
| |
| pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| nand_op_trace(" ", instr); |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| writeb_relaxed(instr->ctx.addr.addrs[i], |
| host->addr_va); |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| if (host->mode == USE_DMA_ACCESS) |
| fsmc_read_buf_dma(host, instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| else |
| fsmc_read_buf(host, instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| if (host->mode == USE_DMA_ACCESS) |
| fsmc_write_buf_dma(host, |
| instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| else |
| fsmc_write_buf(host, instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| ret = nand_soft_waitrdy(chip, |
| instr->ctx.waitrdy.timeout_ms); |
| break; |
| } |
| |
| if (instr->delay_ns) |
| ndelay(instr->delay_ns); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * fsmc_read_page_hwecc |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller expects OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * This routine is needed for fsmc version 8 as reading from NAND chip has to be |
| * performed in a strict sequence as follows: |
| * data(512 byte) -> ecc(13 byte) |
| * After this read, fsmc hardware generates and reports error data bits(up to a |
| * max of 8 bits) |
| */ |
| static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, j, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| u8 *p = buf; |
| u8 *ecc_calc = chip->ecc.calc_buf; |
| u8 *ecc_code = chip->ecc.code_buf; |
| int off, len, ret, group = 0; |
| /* |
| * ecc_oob is intentionally taken as u16. In 16bit devices, we |
| * end up reading 14 bytes (7 words) from oob. The local array is |
| * to maintain word alignment |
| */ |
| u16 ecc_oob[7]; |
| u8 *oob = (u8 *)&ecc_oob[0]; |
| unsigned int max_bitflips = 0; |
| |
| for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| nand_read_page_op(chip, page, s * eccsize, NULL, 0); |
| chip->ecc.hwctl(chip, NAND_ECC_READ); |
| ret = nand_read_data_op(chip, p, eccsize, false, false); |
| if (ret) |
| return ret; |
| |
| for (j = 0; j < eccbytes;) { |
| struct mtd_oob_region oobregion; |
| |
| ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); |
| if (ret) |
| return ret; |
| |
| off = oobregion.offset; |
| len = oobregion.length; |
| |
| /* |
| * length is intentionally kept a higher multiple of 2 |
| * to read at least 13 bytes even in case of 16 bit NAND |
| * devices |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| len = roundup(len, 2); |
| |
| nand_read_oob_op(chip, page, off, oob + j, len); |
| j += len; |
| } |
| |
| memcpy(&ecc_code[i], oob, chip->ecc.bytes); |
| chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| |
| stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * fsmc_bch8_correct_data |
| * @mtd: mtd info structure |
| * @dat: buffer of read data |
| * @read_ecc: ecc read from device spare area |
| * @calc_ecc: ecc calculated from read data |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset information of 13 bits each in 512 bytes of read data. |
| */ |
| static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| u32 err_idx[8]; |
| u32 num_err, i; |
| u32 ecc1, ecc2, ecc3, ecc4; |
| |
| num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; |
| |
| /* no bit flipping */ |
| if (likely(num_err == 0)) |
| return 0; |
| |
| /* too many errors */ |
| if (unlikely(num_err > 8)) { |
| /* |
| * This is a temporary erase check. A newly erased page read |
| * would result in an ecc error because the oob data is also |
| * erased to FF and the calculated ecc for an FF data is not |
| * FF..FF. |
| * This is a workaround to skip performing correction in case |
| * data is FF..FF |
| * |
| * Logic: |
| * For every page, each bit written as 0 is counted until these |
| * number of bits are greater than 8 (the maximum correction |
| * capability of FSMC for each 512 + 13 bytes) |
| */ |
| |
| int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); |
| int bits_data = count_written_bits(dat, chip->ecc.size, 8); |
| |
| if ((bits_ecc + bits_data) <= 8) { |
| if (bits_data) |
| memset(dat, 0xff, chip->ecc.size); |
| return bits_data; |
| } |
| |
| return -EBADMSG; |
| } |
| |
| /* |
| * ------------------- calc_ecc[] bit wise -----------|--13 bits--| |
| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset information of 13 bits each. calc_ecc is copied into a |
| * u64 array and error offset indexes are populated in err_idx |
| * array |
| */ |
| ecc1 = readl_relaxed(host->regs_va + ECC1); |
| ecc2 = readl_relaxed(host->regs_va + ECC2); |
| ecc3 = readl_relaxed(host->regs_va + ECC3); |
| ecc4 = readl_relaxed(host->regs_va + STS); |
| |
| err_idx[0] = (ecc1 >> 0) & 0x1FFF; |
| err_idx[1] = (ecc1 >> 13) & 0x1FFF; |
| err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); |
| err_idx[3] = (ecc2 >> 7) & 0x1FFF; |
| err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); |
| err_idx[5] = (ecc3 >> 1) & 0x1FFF; |
| err_idx[6] = (ecc3 >> 14) & 0x1FFF; |
| err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); |
| |
| i = 0; |
| while (num_err--) { |
| err_idx[i] ^= 3; |
| |
| if (err_idx[i] < chip->ecc.size * 8) { |
| int err = err_idx[i]; |
| |
| dat[err >> 3] ^= BIT(err & 7); |
| i++; |
| } |
| } |
| return i; |
| } |
| |
| static bool filter(struct dma_chan *chan, void *slave) |
| { |
| chan->private = slave; |
| return true; |
| } |
| |
| static int fsmc_nand_probe_config_dt(struct platform_device *pdev, |
| struct fsmc_nand_data *host, |
| struct nand_chip *nand) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| u32 val; |
| int ret; |
| |
| nand->options = 0; |
| |
| if (!of_property_read_u32(np, "bank-width", &val)) { |
| if (val == 2) { |
| nand->options |= NAND_BUSWIDTH_16; |
| } else if (val != 1) { |
| dev_err(&pdev->dev, "invalid bank-width %u\n", val); |
| return -EINVAL; |
| } |
| } |
| |
| if (of_get_property(np, "nand-skip-bbtscan", NULL)) |
| nand->options |= NAND_SKIP_BBTSCAN; |
| |
| host->dev_timings = devm_kzalloc(&pdev->dev, |
| sizeof(*host->dev_timings), |
| GFP_KERNEL); |
| if (!host->dev_timings) |
| return -ENOMEM; |
| |
| ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, |
| sizeof(*host->dev_timings)); |
| if (ret) |
| host->dev_timings = NULL; |
| |
| /* Set default NAND bank to 0 */ |
| host->bank = 0; |
| if (!of_property_read_u32(np, "bank", &val)) { |
| if (val > 3) { |
| dev_err(&pdev->dev, "invalid bank %u\n", val); |
| return -EINVAL; |
| } |
| host->bank = val; |
| } |
| return 0; |
| } |
| |
| static int fsmc_nand_attach_chip(struct nand_chip *nand) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct fsmc_nand_data *host = nand_to_fsmc(nand); |
| |
| if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) |
| nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| if (!nand->ecc.size) |
| nand->ecc.size = 512; |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| nand->ecc.read_page = fsmc_read_page_hwecc; |
| nand->ecc.calculate = fsmc_read_hwecc_ecc4; |
| nand->ecc.correct = fsmc_bch8_correct_data; |
| nand->ecc.bytes = 13; |
| nand->ecc.strength = 8; |
| } |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| switch (mtd->oobsize) { |
| case 16: |
| case 64: |
| case 128: |
| case 224: |
| case 256: |
| break; |
| default: |
| dev_warn(host->dev, |
| "No oob scheme defined for oobsize %d\n", |
| mtd->oobsize); |
| return -EINVAL; |
| } |
| |
| mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); |
| |
| return 0; |
| } |
| |
| switch (nand->ecc.engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); |
| nand->ecc.calculate = fsmc_read_hwecc_ecc1; |
| nand->ecc.correct = fsmc_correct_ecc1; |
| nand->ecc.hwctl = fsmc_enable_hwecc; |
| nand->ecc.bytes = 3; |
| nand->ecc.strength = 1; |
| nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; |
| break; |
| |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| if (nand->ecc.algo == NAND_ECC_ALGO_BCH) { |
| dev_info(host->dev, |
| "Using 4-bit SW BCH ECC scheme\n"); |
| break; |
| } |
| break; |
| |
| case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| break; |
| |
| default: |
| dev_err(host->dev, "Unsupported ECC mode!\n"); |
| return -ENOTSUPP; |
| } |
| |
| /* |
| * Don't set layout for BCH4 SW ECC. This will be |
| * generated later during BCH initialization. |
| */ |
| if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| switch (mtd->oobsize) { |
| case 16: |
| case 64: |
| case 128: |
| mtd_set_ooblayout(mtd, |
| &fsmc_ecc1_ooblayout_ops); |
| break; |
| default: |
| dev_warn(host->dev, |
| "No oob scheme defined for oobsize %d\n", |
| mtd->oobsize); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops fsmc_nand_controller_ops = { |
| .attach_chip = fsmc_nand_attach_chip, |
| .exec_op = fsmc_exec_op, |
| .setup_interface = fsmc_setup_interface, |
| }; |
| |
| /** |
| * fsmc_nand_disable() - Disables the NAND bank |
| * @host: The instance to disable |
| */ |
| static void fsmc_nand_disable(struct fsmc_nand_data *host) |
| { |
| u32 val; |
| |
| val = readl(host->regs_va + FSMC_PC); |
| val &= ~FSMC_ENABLE; |
| writel(val, host->regs_va + FSMC_PC); |
| } |
| |
| /* |
| * fsmc_nand_probe - Probe function |
| * @pdev: platform device structure |
| */ |
| static int __init fsmc_nand_probe(struct platform_device *pdev) |
| { |
| struct fsmc_nand_data *host; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| struct resource *res; |
| void __iomem *base; |
| dma_cap_mask_t mask; |
| int ret = 0; |
| u32 pid; |
| int i; |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| if (!host) |
| return -ENOMEM; |
| |
| nand = &host->nand; |
| |
| ret = fsmc_nand_probe_config_dt(pdev, host, nand); |
| if (ret) |
| return ret; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); |
| host->data_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->data_va)) |
| return PTR_ERR(host->data_va); |
| |
| host->data_pa = (dma_addr_t)res->start; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); |
| host->addr_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->addr_va)) |
| return PTR_ERR(host->addr_va); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); |
| host->cmd_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->cmd_va)) |
| return PTR_ERR(host->cmd_va); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); |
| base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| host->regs_va = base + FSMC_NOR_REG_SIZE + |
| (host->bank * FSMC_NAND_BANK_SZ); |
| |
| host->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| dev_err(&pdev->dev, "failed to fetch block clock\n"); |
| return PTR_ERR(host->clk); |
| } |
| |
| ret = clk_prepare_enable(host->clk); |
| if (ret) |
| return ret; |
| |
| /* |
| * This device ID is actually a common AMBA ID as used on the |
| * AMBA PrimeCell bus. However it is not a PrimeCell. |
| */ |
| for (pid = 0, i = 0; i < 4; i++) |
| pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & |
| 255) << (i * 8); |
| |
| host->pid = pid; |
| |
| dev_info(&pdev->dev, |
| "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", |
| AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), |
| AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); |
| |
| host->dev = &pdev->dev; |
| |
| if (host->mode == USE_DMA_ACCESS) |
| init_completion(&host->dma_access_complete); |
| |
| /* Link all private pointers */ |
| mtd = nand_to_mtd(&host->nand); |
| nand_set_flash_node(nand, pdev->dev.of_node); |
| |
| mtd->dev.parent = &pdev->dev; |
| |
| nand->badblockbits = 7; |
| |
| if (host->mode == USE_DMA_ACCESS) { |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| host->read_dma_chan = dma_request_channel(mask, filter, NULL); |
| if (!host->read_dma_chan) { |
| dev_err(&pdev->dev, "Unable to get read dma channel\n"); |
| ret = -ENODEV; |
| goto disable_clk; |
| } |
| host->write_dma_chan = dma_request_channel(mask, filter, NULL); |
| if (!host->write_dma_chan) { |
| dev_err(&pdev->dev, "Unable to get write dma channel\n"); |
| ret = -ENODEV; |
| goto release_dma_read_chan; |
| } |
| } |
| |
| if (host->dev_timings) { |
| fsmc_nand_setup(host, host->dev_timings); |
| nand->options |= NAND_KEEP_TIMINGS; |
| } |
| |
| nand_controller_init(&host->base); |
| host->base.ops = &fsmc_nand_controller_ops; |
| nand->controller = &host->base; |
| |
| /* |
| * Scan to find existence of the device |
| */ |
| ret = nand_scan(nand, 1); |
| if (ret) |
| goto release_dma_write_chan; |
| |
| mtd->name = "nand"; |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| goto cleanup_nand; |
| |
| platform_set_drvdata(pdev, host); |
| dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(nand); |
| release_dma_write_chan: |
| if (host->mode == USE_DMA_ACCESS) |
| dma_release_channel(host->write_dma_chan); |
| release_dma_read_chan: |
| if (host->mode == USE_DMA_ACCESS) |
| dma_release_channel(host->read_dma_chan); |
| disable_clk: |
| fsmc_nand_disable(host); |
| clk_disable_unprepare(host->clk); |
| |
| return ret; |
| } |
| |
| /* |
| * Clean up routine |
| */ |
| static int fsmc_nand_remove(struct platform_device *pdev) |
| { |
| struct fsmc_nand_data *host = platform_get_drvdata(pdev); |
| |
| if (host) { |
| struct nand_chip *chip = &host->nand; |
| int ret; |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| fsmc_nand_disable(host); |
| |
| if (host->mode == USE_DMA_ACCESS) { |
| dma_release_channel(host->write_dma_chan); |
| dma_release_channel(host->read_dma_chan); |
| } |
| clk_disable_unprepare(host->clk); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int fsmc_nand_suspend(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| |
| if (host) |
| clk_disable_unprepare(host->clk); |
| |
| return 0; |
| } |
| |
| static int fsmc_nand_resume(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| |
| if (host) { |
| clk_prepare_enable(host->clk); |
| if (host->dev_timings) |
| fsmc_nand_setup(host, host->dev_timings); |
| nand_reset(&host->nand, 0); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); |
| |
| static const struct of_device_id fsmc_nand_id_table[] = { |
| { .compatible = "st,spear600-fsmc-nand" }, |
| { .compatible = "stericsson,fsmc-nand" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); |
| |
| static struct platform_driver fsmc_nand_driver = { |
| .remove = fsmc_nand_remove, |
| .driver = { |
| .name = "fsmc-nand", |
| .of_match_table = fsmc_nand_id_table, |
| .pm = &fsmc_nand_pm_ops, |
| }, |
| }; |
| |
| module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); |
| MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |