| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! String representations. |
| |
| use alloc::vec::Vec; |
| use core::fmt::{self, Write}; |
| use core::ops::{self, Deref, Index}; |
| |
| use crate::{ |
| bindings, |
| error::{code::*, Error}, |
| }; |
| |
| /// Byte string without UTF-8 validity guarantee. |
| /// |
| /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. |
| pub type BStr = [u8]; |
| |
| /// Creates a new [`BStr`] from a string literal. |
| /// |
| /// `b_str!` converts the supplied string literal to byte string, so non-ASCII |
| /// characters can be included. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::b_str; |
| /// # use kernel::str::BStr; |
| /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); |
| /// ``` |
| #[macro_export] |
| macro_rules! b_str { |
| ($str:literal) => {{ |
| const S: &'static str = $str; |
| const C: &'static $crate::str::BStr = S.as_bytes(); |
| C |
| }}; |
| } |
| |
| /// Possible errors when using conversion functions in [`CStr`]. |
| #[derive(Debug, Clone, Copy)] |
| pub enum CStrConvertError { |
| /// Supplied bytes contain an interior `NUL`. |
| InteriorNul, |
| |
| /// Supplied bytes are not terminated by `NUL`. |
| NotNulTerminated, |
| } |
| |
| impl From<CStrConvertError> for Error { |
| #[inline] |
| fn from(_: CStrConvertError) -> Error { |
| EINVAL |
| } |
| } |
| |
| /// A string that is guaranteed to have exactly one `NUL` byte, which is at the |
| /// end. |
| /// |
| /// Used for interoperability with kernel APIs that take C strings. |
| #[repr(transparent)] |
| pub struct CStr([u8]); |
| |
| impl CStr { |
| /// Returns the length of this string excluding `NUL`. |
| #[inline] |
| pub const fn len(&self) -> usize { |
| self.len_with_nul() - 1 |
| } |
| |
| /// Returns the length of this string with `NUL`. |
| #[inline] |
| pub const fn len_with_nul(&self) -> usize { |
| // SAFETY: This is one of the invariant of `CStr`. |
| // We add a `unreachable_unchecked` here to hint the optimizer that |
| // the value returned from this function is non-zero. |
| if self.0.is_empty() { |
| unsafe { core::hint::unreachable_unchecked() }; |
| } |
| self.0.len() |
| } |
| |
| /// Returns `true` if the string only includes `NUL`. |
| #[inline] |
| pub const fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Wraps a raw C string pointer. |
| /// |
| /// # Safety |
| /// |
| /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must |
| /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` |
| /// must not be mutated. |
| #[inline] |
| pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { |
| // SAFETY: The safety precondition guarantees `ptr` is a valid pointer |
| // to a `NUL`-terminated C string. |
| let len = unsafe { bindings::strlen(ptr) } + 1; |
| // SAFETY: Lifetime guaranteed by the safety precondition. |
| let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; |
| // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. |
| // As we have added 1 to `len`, the last byte is known to be `NUL`. |
| unsafe { Self::from_bytes_with_nul_unchecked(bytes) } |
| } |
| |
| /// Creates a [`CStr`] from a `[u8]`. |
| /// |
| /// The provided slice must be `NUL`-terminated, does not contain any |
| /// interior `NUL` bytes. |
| pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { |
| if bytes.is_empty() { |
| return Err(CStrConvertError::NotNulTerminated); |
| } |
| if bytes[bytes.len() - 1] != 0 { |
| return Err(CStrConvertError::NotNulTerminated); |
| } |
| let mut i = 0; |
| // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, |
| // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. |
| while i + 1 < bytes.len() { |
| if bytes[i] == 0 { |
| return Err(CStrConvertError::InteriorNul); |
| } |
| i += 1; |
| } |
| // SAFETY: We just checked that all properties hold. |
| Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) |
| } |
| |
| /// Creates a [`CStr`] from a `[u8]` without performing any additional |
| /// checks. |
| /// |
| /// # Safety |
| /// |
| /// `bytes` *must* end with a `NUL` byte, and should only have a single |
| /// `NUL` byte (or the string will be truncated). |
| #[inline] |
| pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { |
| // SAFETY: Properties of `bytes` guaranteed by the safety precondition. |
| unsafe { core::mem::transmute(bytes) } |
| } |
| |
| /// Returns a C pointer to the string. |
| #[inline] |
| pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { |
| self.0.as_ptr() as _ |
| } |
| |
| /// Convert the string to a byte slice without the trailing 0 byte. |
| #[inline] |
| pub fn as_bytes(&self) -> &[u8] { |
| &self.0[..self.len()] |
| } |
| |
| /// Convert the string to a byte slice containing the trailing 0 byte. |
| #[inline] |
| pub const fn as_bytes_with_nul(&self) -> &[u8] { |
| &self.0 |
| } |
| |
| /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. |
| /// |
| /// If the contents of the [`CStr`] are valid UTF-8 data, this |
| /// function will return the corresponding [`&str`] slice. Otherwise, |
| /// it will return an error with details of where UTF-8 validation failed. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::str::CStr; |
| /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); |
| /// assert_eq!(cstr.to_str(), Ok("foo")); |
| /// ``` |
| #[inline] |
| pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { |
| core::str::from_utf8(self.as_bytes()) |
| } |
| |
| /// Unsafely convert this [`CStr`] into a [`&str`], without checking for |
| /// valid UTF-8. |
| /// |
| /// # Safety |
| /// |
| /// The contents must be valid UTF-8. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::c_str; |
| /// # use kernel::str::CStr; |
| /// // SAFETY: String literals are guaranteed to be valid UTF-8 |
| /// // by the Rust compiler. |
| /// let bar = c_str!("ツ"); |
| /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); |
| /// ``` |
| #[inline] |
| pub unsafe fn as_str_unchecked(&self) -> &str { |
| unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } |
| } |
| } |
| |
| impl fmt::Display for CStr { |
| /// Formats printable ASCII characters, escaping the rest. |
| /// |
| /// ``` |
| /// # use kernel::c_str; |
| /// # use kernel::str::CStr; |
| /// # use kernel::str::CString; |
| /// let penguin = c_str!("🐧"); |
| /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); |
| /// |
| /// let ascii = c_str!("so \"cool\""); |
| /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); |
| /// ``` |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| for &c in self.as_bytes() { |
| if (0x20..0x7f).contains(&c) { |
| // Printable character. |
| f.write_char(c as char)?; |
| } else { |
| write!(f, "\\x{:02x}", c)?; |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| impl fmt::Debug for CStr { |
| /// Formats printable ASCII characters with a double quote on either end, escaping the rest. |
| /// |
| /// ``` |
| /// # use kernel::c_str; |
| /// # use kernel::str::CStr; |
| /// # use kernel::str::CString; |
| /// let penguin = c_str!("🐧"); |
| /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); |
| /// |
| /// // Embedded double quotes are escaped. |
| /// let ascii = c_str!("so \"cool\""); |
| /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); |
| /// ``` |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.write_str("\"")?; |
| for &c in self.as_bytes() { |
| match c { |
| // Printable characters. |
| b'\"' => f.write_str("\\\"")?, |
| 0x20..=0x7e => f.write_char(c as char)?, |
| _ => write!(f, "\\x{:02x}", c)?, |
| } |
| } |
| f.write_str("\"") |
| } |
| } |
| |
| impl AsRef<BStr> for CStr { |
| #[inline] |
| fn as_ref(&self) -> &BStr { |
| self.as_bytes() |
| } |
| } |
| |
| impl Deref for CStr { |
| type Target = BStr; |
| |
| #[inline] |
| fn deref(&self) -> &Self::Target { |
| self.as_bytes() |
| } |
| } |
| |
| impl Index<ops::RangeFrom<usize>> for CStr { |
| type Output = CStr; |
| |
| #[inline] |
| fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { |
| // Delegate bounds checking to slice. |
| // Assign to _ to mute clippy's unnecessary operation warning. |
| let _ = &self.as_bytes()[index.start..]; |
| // SAFETY: We just checked the bounds. |
| unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } |
| } |
| } |
| |
| impl Index<ops::RangeFull> for CStr { |
| type Output = CStr; |
| |
| #[inline] |
| fn index(&self, _index: ops::RangeFull) -> &Self::Output { |
| self |
| } |
| } |
| |
| mod private { |
| use core::ops; |
| |
| // Marker trait for index types that can be forward to `BStr`. |
| pub trait CStrIndex {} |
| |
| impl CStrIndex for usize {} |
| impl CStrIndex for ops::Range<usize> {} |
| impl CStrIndex for ops::RangeInclusive<usize> {} |
| impl CStrIndex for ops::RangeToInclusive<usize> {} |
| } |
| |
| impl<Idx> Index<Idx> for CStr |
| where |
| Idx: private::CStrIndex, |
| BStr: Index<Idx>, |
| { |
| type Output = <BStr as Index<Idx>>::Output; |
| |
| #[inline] |
| fn index(&self, index: Idx) -> &Self::Output { |
| &self.as_bytes()[index] |
| } |
| } |
| |
| /// Creates a new [`CStr`] from a string literal. |
| /// |
| /// The string literal should not contain any `NUL` bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::c_str; |
| /// # use kernel::str::CStr; |
| /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); |
| /// ``` |
| #[macro_export] |
| macro_rules! c_str { |
| ($str:expr) => {{ |
| const S: &str = concat!($str, "\0"); |
| const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { |
| Ok(v) => v, |
| Err(_) => panic!("string contains interior NUL"), |
| }; |
| C |
| }}; |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn test_cstr_to_str() { |
| let good_bytes = b"\xf0\x9f\xa6\x80\0"; |
| let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); |
| let checked_str = checked_cstr.to_str().unwrap(); |
| assert_eq!(checked_str, "🦀"); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_cstr_to_str_panic() { |
| let bad_bytes = b"\xc3\x28\0"; |
| let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); |
| checked_cstr.to_str().unwrap(); |
| } |
| |
| #[test] |
| fn test_cstr_as_str_unchecked() { |
| let good_bytes = b"\xf0\x9f\x90\xA7\0"; |
| let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); |
| let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; |
| assert_eq!(unchecked_str, "🐧"); |
| } |
| } |
| |
| /// Allows formatting of [`fmt::Arguments`] into a raw buffer. |
| /// |
| /// It does not fail if callers write past the end of the buffer so that they can calculate the |
| /// size required to fit everything. |
| /// |
| /// # Invariants |
| /// |
| /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` |
| /// is less than `end`. |
| pub(crate) struct RawFormatter { |
| // Use `usize` to use `saturating_*` functions. |
| beg: usize, |
| pos: usize, |
| end: usize, |
| } |
| |
| impl RawFormatter { |
| /// Creates a new instance of [`RawFormatter`] with an empty buffer. |
| fn new() -> Self { |
| // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. |
| Self { |
| beg: 0, |
| pos: 0, |
| end: 0, |
| } |
| } |
| |
| /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. |
| /// |
| /// # Safety |
| /// |
| /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` |
| /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. |
| pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { |
| // INVARIANT: The safety requierments guarantee the type invariants. |
| Self { |
| beg: pos as _, |
| pos: pos as _, |
| end: end as _, |
| } |
| } |
| |
| /// Creates a new instance of [`RawFormatter`] with the given buffer. |
| /// |
| /// # Safety |
| /// |
| /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes |
| /// for the lifetime of the returned [`RawFormatter`]. |
| pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { |
| let pos = buf as usize; |
| // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements |
| // guarantees that the memory region is valid for writes. |
| Self { |
| pos, |
| beg: pos, |
| end: pos.saturating_add(len), |
| } |
| } |
| |
| /// Returns the current insert position. |
| /// |
| /// N.B. It may point to invalid memory. |
| pub(crate) fn pos(&self) -> *mut u8 { |
| self.pos as _ |
| } |
| |
| /// Return the number of bytes written to the formatter. |
| pub(crate) fn bytes_written(&self) -> usize { |
| self.pos - self.beg |
| } |
| } |
| |
| impl fmt::Write for RawFormatter { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we |
| // don't want it to wrap around to 0. |
| let pos_new = self.pos.saturating_add(s.len()); |
| |
| // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. |
| let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); |
| |
| if len_to_copy > 0 { |
| // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` |
| // yet, so it is valid for write per the type invariants. |
| unsafe { |
| core::ptr::copy_nonoverlapping( |
| s.as_bytes().as_ptr(), |
| self.pos as *mut u8, |
| len_to_copy, |
| ) |
| }; |
| } |
| |
| self.pos = pos_new; |
| Ok(()) |
| } |
| } |
| |
| /// Allows formatting of [`fmt::Arguments`] into a raw buffer. |
| /// |
| /// Fails if callers attempt to write more than will fit in the buffer. |
| pub(crate) struct Formatter(RawFormatter); |
| |
| impl Formatter { |
| /// Creates a new instance of [`Formatter`] with the given buffer. |
| /// |
| /// # Safety |
| /// |
| /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes |
| /// for the lifetime of the returned [`Formatter`]. |
| pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { |
| // SAFETY: The safety requirements of this function satisfy those of the callee. |
| Self(unsafe { RawFormatter::from_buffer(buf, len) }) |
| } |
| } |
| |
| impl Deref for Formatter { |
| type Target = RawFormatter; |
| |
| fn deref(&self) -> &Self::Target { |
| &self.0 |
| } |
| } |
| |
| impl fmt::Write for Formatter { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| self.0.write_str(s)?; |
| |
| // Fail the request if we go past the end of the buffer. |
| if self.0.pos > self.0.end { |
| Err(fmt::Error) |
| } else { |
| Ok(()) |
| } |
| } |
| } |
| |
| /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. |
| /// |
| /// Used for interoperability with kernel APIs that take C strings. |
| /// |
| /// # Invariants |
| /// |
| /// The string is always `NUL`-terminated and contains no other `NUL` bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::str::CString; |
| /// |
| /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); |
| /// |
| /// let tmp = "testing"; |
| /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); |
| /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); |
| /// |
| /// // This fails because it has an embedded `NUL` byte. |
| /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); |
| /// assert_eq!(s.is_ok(), false); |
| /// ``` |
| pub struct CString { |
| buf: Vec<u8>, |
| } |
| |
| impl CString { |
| /// Creates an instance of [`CString`] from the given formatted arguments. |
| pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { |
| // Calculate the size needed (formatted string plus `NUL` terminator). |
| let mut f = RawFormatter::new(); |
| f.write_fmt(args)?; |
| f.write_str("\0")?; |
| let size = f.bytes_written(); |
| |
| // Allocate a vector with the required number of bytes, and write to it. |
| let mut buf = Vec::try_with_capacity(size)?; |
| // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. |
| let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; |
| f.write_fmt(args)?; |
| f.write_str("\0")?; |
| |
| // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is |
| // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. |
| unsafe { buf.set_len(f.bytes_written()) }; |
| |
| // Check that there are no `NUL` bytes before the end. |
| // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` |
| // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) |
| // so `f.bytes_written() - 1` doesn't underflow. |
| let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; |
| if !ptr.is_null() { |
| return Err(EINVAL); |
| } |
| |
| // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes |
| // exist in the buffer. |
| Ok(Self { buf }) |
| } |
| } |
| |
| impl Deref for CString { |
| type Target = CStr; |
| |
| fn deref(&self) -> &Self::Target { |
| // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no |
| // other `NUL` bytes exist. |
| unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } |
| } |
| } |
| |
| /// A convenience alias for [`core::format_args`]. |
| #[macro_export] |
| macro_rules! fmt { |
| ($($f:tt)*) => ( core::format_args!($($f)*) ) |
| } |