x86: change bitwise operations to get a void parameter.
This patch changes the bitwise operations in bitops.h to get
a void pointers as a parameter. Before this patch, a lot of warnings
can be seen. They're gone after it.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
diff --git a/include/asm-x86/bitops.h b/include/asm-x86/bitops.h
index c6dd7e2..1a23ce1 100644
--- a/include/asm-x86/bitops.h
+++ b/include/asm-x86/bitops.h
@@ -43,7 +43,7 @@
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-static inline void set_bit(int nr, volatile unsigned long *addr)
+static inline void set_bit(int nr, volatile void *addr)
{
asm volatile(LOCK_PREFIX "bts %1,%0"
: ADDR
@@ -59,7 +59,7 @@
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-static inline void __set_bit(int nr, volatile unsigned long *addr)
+static inline void __set_bit(int nr, volatile void *addr)
{
asm volatile("bts %1,%0"
: ADDR
@@ -77,7 +77,7 @@
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
-static inline void clear_bit(int nr, volatile unsigned long *addr)
+static inline void clear_bit(int nr, volatile void *addr)
{
asm volatile(LOCK_PREFIX "btr %1,%0"
: ADDR
@@ -92,13 +92,13 @@
* clear_bit() is atomic and implies release semantics before the memory
* operation. It can be used for an unlock.
*/
-static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
+static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
{
barrier();
clear_bit(nr, addr);
}
-static inline void __clear_bit(int nr, volatile unsigned long *addr)
+static inline void __clear_bit(int nr, volatile void *addr)
{
asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
}
@@ -115,7 +115,7 @@
* No memory barrier is required here, because x86 cannot reorder stores past
* older loads. Same principle as spin_unlock.
*/
-static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
+static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
{
barrier();
__clear_bit(nr, addr);
@@ -133,7 +133,7 @@
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-static inline void __change_bit(int nr, volatile unsigned long *addr)
+static inline void __change_bit(int nr, volatile void *addr)
{
asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
}
@@ -147,7 +147,7 @@
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-static inline void change_bit(int nr, volatile unsigned long *addr)
+static inline void change_bit(int nr, volatile void *addr)
{
asm volatile(LOCK_PREFIX "btc %1,%0"
: ADDR : "Ir" (nr));
@@ -161,7 +161,7 @@
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -180,7 +180,7 @@
*
* This is the same as test_and_set_bit on x86.
*/
-static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
+static inline int test_and_set_bit_lock(int nr, volatile void *addr)
{
return test_and_set_bit(nr, addr);
}
@@ -194,7 +194,7 @@
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -213,7 +213,7 @@
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -234,7 +234,7 @@
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -246,7 +246,7 @@
}
/* WARNING: non atomic and it can be reordered! */
-static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -266,7 +266,7 @@
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -278,19 +278,20 @@
return oldbit;
}
-static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
+static inline int constant_test_bit(int nr, const volatile void *addr)
{
- return ((1UL << (nr % BITS_PER_LONG)) & (addr[nr / BITS_PER_LONG])) != 0;
+ return ((1UL << (nr % BITS_PER_LONG)) &
+ (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
}
-static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
+static inline int variable_test_bit(int nr, volatile const void *addr)
{
int oldbit;
asm volatile("bt %2,%1\n\t"
"sbb %0,%0"
: "=r" (oldbit)
- : "m" (*addr), "Ir" (nr));
+ : "m" (*(unsigned long *)addr), "Ir" (nr));
return oldbit;
}