blob: 888069e106593289ad3c9de83b28e9924f8ca5b2 [file] [log] [blame]
/*
* Sonics Silicon Backplane
* Broadcom ChipCommon Power Management Unit driver
*
* Copyright 2009, Michael Buesch <m@bues.ch>
* Copyright 2007, Broadcom Corporation
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "ssb_private.h"
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/delay.h>
#include <linux/export.h>
#ifdef CONFIG_BCM47XX
#include <linux/bcm47xx_nvram.h>
#endif
static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
{
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
}
static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
u32 offset, u32 value)
{
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
}
static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
u32 offset, u32 mask, u32 set)
{
u32 value;
chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
value &= mask;
value |= set;
chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
}
struct pmu0_plltab_entry {
u16 freq; /* Crystal frequency in kHz.*/
u8 xf; /* Crystal frequency value for PMU control */
u8 wb_int;
u32 wb_frac;
};
static const struct pmu0_plltab_entry pmu0_plltab[] = {
{ .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
{ .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
{ .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
{ .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
{ .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
{ .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
{ .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
{ .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
{ .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
};
#define SSB_PMU0_DEFAULT_XTALFREQ 20000
static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
{
const struct pmu0_plltab_entry *e;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
e = &pmu0_plltab[i];
if (e->freq == crystalfreq)
return e;
}
return NULL;
}
/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
u32 crystalfreq)
{
struct ssb_bus *bus = cc->dev->bus;
const struct pmu0_plltab_entry *e = NULL;
u32 pmuctl, tmp, pllctl;
unsigned int i;
if (crystalfreq)
e = pmu0_plltab_find_entry(crystalfreq);
if (!e)
e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
BUG_ON(!e);
crystalfreq = e->freq;
cc->pmu.crystalfreq = e->freq;
/* Check if the PLL already is programmed to this frequency. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
/* We're already there... */
return;
}
dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n",
crystalfreq / 1000, crystalfreq % 1000);
/* First turn the PLL off. */
switch (bus->chip_id) {
case 0x4328:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~(1 << SSB_PMURES_4328_BB_PLL_PU));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~(1 << SSB_PMURES_4328_BB_PLL_PU));
break;
case 0x5354:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~(1 << SSB_PMURES_5354_BB_PLL_PU));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~(1 << SSB_PMURES_5354_BB_PLL_PU));
break;
default:
WARN_ON(1);
}
for (i = 1500; i; i--) {
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
break;
udelay(10);
}
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n");
/* Set PDIV in PLL control 0. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
else
pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
/* Set WILD in PLL control 1. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
if (e->wb_frac == 0)
pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
/* Set WILD in PLL control 2. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
/* Set the crystalfrequency and the divisor. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
& SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
}
struct pmu1_plltab_entry {
u16 freq; /* Crystal frequency in kHz.*/
u8 xf; /* Crystal frequency value for PMU control */
u8 ndiv_int;
u32 ndiv_frac;
u8 p1div;
u8 p2div;
};
static const struct pmu1_plltab_entry pmu1_plltab[] = {
{ .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
{ .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
{ .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
{ .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
{ .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
{ .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
{ .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
{ .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
{ .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
{ .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
{ .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
{ .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
{ .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
};
#define SSB_PMU1_DEFAULT_XTALFREQ 15360
static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
{
const struct pmu1_plltab_entry *e;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
e = &pmu1_plltab[i];
if (e->freq == crystalfreq)
return e;
}
return NULL;
}
/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
u32 crystalfreq)
{
struct ssb_bus *bus = cc->dev->bus;
const struct pmu1_plltab_entry *e = NULL;
u32 buffer_strength = 0;
u32 tmp, pllctl, pmuctl;
unsigned int i;
if (bus->chip_id == 0x4312) {
/* We do not touch the BCM4312 PLL and assume
* the default crystal settings work out-of-the-box. */
cc->pmu.crystalfreq = 20000;
return;
}
if (crystalfreq)
e = pmu1_plltab_find_entry(crystalfreq);
if (!e)
e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
BUG_ON(!e);
crystalfreq = e->freq;
cc->pmu.crystalfreq = e->freq;
/* Check if the PLL already is programmed to this frequency. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
/* We're already there... */
return;
}
dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n",
crystalfreq / 1000, crystalfreq % 1000);
/* First turn the PLL off. */
switch (bus->chip_id) {
case 0x4325:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
(1 << SSB_PMURES_4325_HT_AVAIL)));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
(1 << SSB_PMURES_4325_HT_AVAIL)));
/* Adjust the BBPLL to 2 on all channels later. */
buffer_strength = 0x222222;
break;
default:
WARN_ON(1);
}
for (i = 1500; i; i--) {
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
break;
udelay(10);
}
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n");
/* Set p1div and p2div. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
/* Set ndiv int and ndiv mode */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
/* Set ndiv frac */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
/* Change the drive strength, if required. */
if (buffer_strength) {
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
}
/* Tune the crystalfreq and the divisor. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
& SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
}
static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
if (bus->bustype == SSB_BUSTYPE_SSB) {
#ifdef CONFIG_BCM47XX
char buf[20];
if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0)
crystalfreq = simple_strtoul(buf, NULL, 0);
#endif
}
switch (bus->chip_id) {
case 0x4312:
case 0x4325:
ssb_pmu1_pllinit_r0(cc, crystalfreq);
break;
case 0x4328:
ssb_pmu0_pllinit_r0(cc, crystalfreq);
break;
case 0x5354:
if (crystalfreq == 0)
crystalfreq = 25000;
ssb_pmu0_pllinit_r0(cc, crystalfreq);
break;
case 0x4322:
if (cc->pmu.rev == 2) {
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
}
break;
case 43222:
break;
default:
dev_err(cc->dev->dev, "ERROR: PLL init unknown for device %04X\n",
bus->chip_id);
}
}
struct pmu_res_updown_tab_entry {
u8 resource; /* The resource number */
u16 updown; /* The updown value */
};
enum pmu_res_depend_tab_task {
PMU_RES_DEP_SET = 1,
PMU_RES_DEP_ADD,
PMU_RES_DEP_REMOVE,
};
struct pmu_res_depend_tab_entry {
u8 resource; /* The resource number */
u8 task; /* SET | ADD | REMOVE */
u32 depend; /* The depend mask */
};
static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
};
static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
{
/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
.resource = SSB_PMURES_4328_ILP_REQUEST,
.task = PMU_RES_DEP_SET,
.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
},
};
static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
{ .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
};
static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
{
/* Adjust HT-Available dependencies. */
.resource = SSB_PMURES_4325_HT_AVAIL,
.task = PMU_RES_DEP_ADD,
.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
(1 << SSB_PMURES_4325_TX_PWRSW_PU) |
(1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
(1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
},
};
static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 min_msk = 0, max_msk = 0;
unsigned int i;
const struct pmu_res_updown_tab_entry *updown_tab = NULL;
unsigned int updown_tab_size = 0;
const struct pmu_res_depend_tab_entry *depend_tab = NULL;
unsigned int depend_tab_size = 0;
switch (bus->chip_id) {
case 0x4312:
min_msk = 0xCBB;
break;
case 0x4322:
case 43222:
/* We keep the default settings:
* min_msk = 0xCBB
* max_msk = 0x7FFFF
*/
break;
case 0x4325:
/* Power OTP down later. */
min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
(1 << SSB_PMURES_4325_LNLDO2_PU);
if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
SSB_CHIPCO_CHST_4325_PMUTOP_2B)
min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
updown_tab = pmu_res_updown_tab_4325a0;
updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
depend_tab = pmu_res_depend_tab_4325a0;
depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
break;
case 0x4328:
min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_XTAL_EN);
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
updown_tab = pmu_res_updown_tab_4328a0;
updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
depend_tab = pmu_res_depend_tab_4328a0;
depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
break;
case 0x5354:
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
break;
default:
dev_err(cc->dev->dev, "ERROR: PMU resource config unknown for device %04X\n",
bus->chip_id);
}
if (updown_tab) {
for (i = 0; i < updown_tab_size; i++) {
chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
updown_tab[i].resource);
chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
updown_tab[i].updown);
}
}
if (depend_tab) {
for (i = 0; i < depend_tab_size; i++) {
chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
depend_tab[i].resource);
switch (depend_tab[i].task) {
case PMU_RES_DEP_SET:
chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
depend_tab[i].depend);
break;
case PMU_RES_DEP_ADD:
chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
depend_tab[i].depend);
break;
case PMU_RES_DEP_REMOVE:
chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
~(depend_tab[i].depend));
break;
default:
WARN_ON(1);
}
}
}
/* Set the resource masks. */
if (min_msk)
chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
if (max_msk)
chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
}
/* https://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
void ssb_pmu_init(struct ssb_chipcommon *cc)
{
u32 pmucap;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
return;
pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
dev_dbg(cc->dev->dev, "Found rev %u PMU (capabilities 0x%08X)\n",
cc->pmu.rev, pmucap);
if (cc->pmu.rev == 1)
chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
~SSB_CHIPCO_PMU_CTL_NOILPONW);
else
chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
SSB_CHIPCO_PMU_CTL_NOILPONW);
ssb_pmu_pll_init(cc);
ssb_pmu_resources_init(cc);
}
void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
enum ssb_pmu_ldo_volt_id id, u32 voltage)
{
struct ssb_bus *bus = cc->dev->bus;
u32 addr, shift, mask;
switch (bus->chip_id) {
case 0x4328:
case 0x5354:
switch (id) {
case LDO_VOLT1:
addr = 2;
shift = 25;
mask = 0xF;
break;
case LDO_VOLT2:
addr = 3;
shift = 1;
mask = 0xF;
break;
case LDO_VOLT3:
addr = 3;
shift = 9;
mask = 0xF;
break;
case LDO_PAREF:
addr = 3;
shift = 17;
mask = 0x3F;
break;
default:
WARN_ON(1);
return;
}
break;
case 0x4312:
if (WARN_ON(id != LDO_PAREF))
return;
addr = 0;
shift = 21;
mask = 0x3F;
break;
default:
return;
}
ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
(voltage & mask) << shift);
}
void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
{
struct ssb_bus *bus = cc->dev->bus;
int ldo;
switch (bus->chip_id) {
case 0x4312:
ldo = SSB_PMURES_4312_PA_REF_LDO;
break;
case 0x4328:
ldo = SSB_PMURES_4328_PA_REF_LDO;
break;
case 0x5354:
ldo = SSB_PMURES_5354_PA_REF_LDO;
break;
default:
return;
}
if (on)
chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
else
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
}
EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc)
{
u32 crystalfreq;
const struct pmu0_plltab_entry *e = NULL;
crystalfreq = (chipco_read32(cc, SSB_CHIPCO_PMU_CTL) &
SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT;
e = pmu0_plltab_find_entry(crystalfreq);
BUG_ON(!e);
return e->freq * 1000;
}
u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
return ssb_pmu_get_alp_clock_clk0(cc);
default:
dev_err(cc->dev->dev, "ERROR: PMU alp clock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}
u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
/* 5354 chip uses a non programmable PLL of frequency 240MHz */
return 240000000;
default:
dev_err(cc->dev->dev, "ERROR: PMU cpu clock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}
u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
return 120000000;
default:
dev_err(cc->dev->dev, "ERROR: PMU controlclock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}
void ssb_pmu_spuravoid_pllupdate(struct ssb_chipcommon *cc, int spuravoid)
{
u32 pmu_ctl = 0;
switch (cc->dev->bus->chip_id) {
case 0x4322:
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100070);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x1014140a);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888854);
if (spuravoid == 1)
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05201828);
else
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05001828);
pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
break;
case 43222:
if (spuravoid == 1) {
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11500008);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0C000C06);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x0F600a08);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x2001E920);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888815);
} else {
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100008);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0c000c06);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x03000a08);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x200005c0);
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888855);
}
pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
break;
default:
dev_err(cc->dev->dev,
"Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n",
cc->dev->bus->chip_id);
return;
}
chipco_set32(cc, SSB_CHIPCO_PMU_CTL, pmu_ctl);
}
EXPORT_SYMBOL_GPL(ssb_pmu_spuravoid_pllupdate);