blob: 277a05e9c9849324a277d77eeec12963cc7519b7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#include <linux/bitmap.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/err.h>
#include <linux/jhash.h>
#include <linux/random.h>
#define BLOOM_CREATE_FLAG_MASK \
(BPF_F_NUMA_NODE | BPF_F_ZERO_SEED | BPF_F_ACCESS_MASK)
struct bpf_bloom_filter {
struct bpf_map map;
u32 bitset_mask;
u32 hash_seed;
/* If the size of the values in the bloom filter is u32 aligned,
* then it is more performant to use jhash2 as the underlying hash
* function, else we use jhash. This tracks the number of u32s
* in an u32-aligned value size. If the value size is not u32 aligned,
* this will be 0.
*/
u32 aligned_u32_count;
u32 nr_hash_funcs;
unsigned long bitset[];
};
static u32 hash(struct bpf_bloom_filter *bloom, void *value,
u32 value_size, u32 index)
{
u32 h;
if (bloom->aligned_u32_count)
h = jhash2(value, bloom->aligned_u32_count,
bloom->hash_seed + index);
else
h = jhash(value, value_size, bloom->hash_seed + index);
return h & bloom->bitset_mask;
}
static int bloom_map_peek_elem(struct bpf_map *map, void *value)
{
struct bpf_bloom_filter *bloom =
container_of(map, struct bpf_bloom_filter, map);
u32 i, h;
for (i = 0; i < bloom->nr_hash_funcs; i++) {
h = hash(bloom, value, map->value_size, i);
if (!test_bit(h, bloom->bitset))
return -ENOENT;
}
return 0;
}
static int bloom_map_push_elem(struct bpf_map *map, void *value, u64 flags)
{
struct bpf_bloom_filter *bloom =
container_of(map, struct bpf_bloom_filter, map);
u32 i, h;
if (flags != BPF_ANY)
return -EINVAL;
for (i = 0; i < bloom->nr_hash_funcs; i++) {
h = hash(bloom, value, map->value_size, i);
set_bit(h, bloom->bitset);
}
return 0;
}
static int bloom_map_pop_elem(struct bpf_map *map, void *value)
{
return -EOPNOTSUPP;
}
static int bloom_map_delete_elem(struct bpf_map *map, void *value)
{
return -EOPNOTSUPP;
}
static struct bpf_map *bloom_map_alloc(union bpf_attr *attr)
{
u32 bitset_bytes, bitset_mask, nr_hash_funcs, nr_bits;
int numa_node = bpf_map_attr_numa_node(attr);
struct bpf_bloom_filter *bloom;
if (!bpf_capable())
return ERR_PTR(-EPERM);
if (attr->key_size != 0 || attr->value_size == 0 ||
attr->max_entries == 0 ||
attr->map_flags & ~BLOOM_CREATE_FLAG_MASK ||
!bpf_map_flags_access_ok(attr->map_flags) ||
/* The lower 4 bits of map_extra (0xF) specify the number
* of hash functions
*/
(attr->map_extra & ~0xF))
return ERR_PTR(-EINVAL);
nr_hash_funcs = attr->map_extra;
if (nr_hash_funcs == 0)
/* Default to using 5 hash functions if unspecified */
nr_hash_funcs = 5;
/* For the bloom filter, the optimal bit array size that minimizes the
* false positive probability is n * k / ln(2) where n is the number of
* expected entries in the bloom filter and k is the number of hash
* functions. We use 7 / 5 to approximate 1 / ln(2).
*
* We round this up to the nearest power of two to enable more efficient
* hashing using bitmasks. The bitmask will be the bit array size - 1.
*
* If this overflows a u32, the bit array size will have 2^32 (4
* GB) bits.
*/
if (check_mul_overflow(attr->max_entries, nr_hash_funcs, &nr_bits) ||
check_mul_overflow(nr_bits / 5, (u32)7, &nr_bits) ||
nr_bits > (1UL << 31)) {
/* The bit array size is 2^32 bits but to avoid overflowing the
* u32, we use U32_MAX, which will round up to the equivalent
* number of bytes
*/
bitset_bytes = BITS_TO_BYTES(U32_MAX);
bitset_mask = U32_MAX;
} else {
if (nr_bits <= BITS_PER_LONG)
nr_bits = BITS_PER_LONG;
else
nr_bits = roundup_pow_of_two(nr_bits);
bitset_bytes = BITS_TO_BYTES(nr_bits);
bitset_mask = nr_bits - 1;
}
bitset_bytes = roundup(bitset_bytes, sizeof(unsigned long));
bloom = bpf_map_area_alloc(sizeof(*bloom) + bitset_bytes, numa_node);
if (!bloom)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&bloom->map, attr);
bloom->nr_hash_funcs = nr_hash_funcs;
bloom->bitset_mask = bitset_mask;
/* Check whether the value size is u32-aligned */
if ((attr->value_size & (sizeof(u32) - 1)) == 0)
bloom->aligned_u32_count =
attr->value_size / sizeof(u32);
if (!(attr->map_flags & BPF_F_ZERO_SEED))
bloom->hash_seed = get_random_int();
return &bloom->map;
}
static void bloom_map_free(struct bpf_map *map)
{
struct bpf_bloom_filter *bloom =
container_of(map, struct bpf_bloom_filter, map);
bpf_map_area_free(bloom);
}
static void *bloom_map_lookup_elem(struct bpf_map *map, void *key)
{
/* The eBPF program should use map_peek_elem instead */
return ERR_PTR(-EINVAL);
}
static int bloom_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 flags)
{
/* The eBPF program should use map_push_elem instead */
return -EINVAL;
}
static int bloom_map_check_btf(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type)
{
/* Bloom filter maps are keyless */
return btf_type_is_void(key_type) ? 0 : -EINVAL;
}
static int bpf_bloom_map_btf_id;
const struct bpf_map_ops bloom_filter_map_ops = {
.map_meta_equal = bpf_map_meta_equal,
.map_alloc = bloom_map_alloc,
.map_free = bloom_map_free,
.map_push_elem = bloom_map_push_elem,
.map_peek_elem = bloom_map_peek_elem,
.map_pop_elem = bloom_map_pop_elem,
.map_lookup_elem = bloom_map_lookup_elem,
.map_update_elem = bloom_map_update_elem,
.map_delete_elem = bloom_map_delete_elem,
.map_check_btf = bloom_map_check_btf,
.map_btf_name = "bpf_bloom_filter",
.map_btf_id = &bpf_bloom_map_btf_id,
};