| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Block driver for media (i.e., flash cards) |
| * |
| * Copyright 2002 Hewlett-Packard Company |
| * Copyright 2005-2008 Pierre Ossman |
| * |
| * Use consistent with the GNU GPL is permitted, |
| * provided that this copyright notice is |
| * preserved in its entirety in all copies and derived works. |
| * |
| * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, |
| * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS |
| * FITNESS FOR ANY PARTICULAR PURPOSE. |
| * |
| * Many thanks to Alessandro Rubini and Jonathan Corbet! |
| * |
| * Author: Andrew Christian |
| * 28 May 2002 |
| */ |
| #include <linux/moduleparam.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/hdreg.h> |
| #include <linux/kdev_t.h> |
| #include <linux/kref.h> |
| #include <linux/blkdev.h> |
| #include <linux/cdev.h> |
| #include <linux/mutex.h> |
| #include <linux/scatterlist.h> |
| #include <linux/string.h> |
| #include <linux/string_helpers.h> |
| #include <linux/delay.h> |
| #include <linux/capability.h> |
| #include <linux/compat.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/idr.h> |
| #include <linux/debugfs.h> |
| #include <linux/rpmb.h> |
| |
| #include <linux/mmc/ioctl.h> |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include "queue.h" |
| #include "block.h" |
| #include "core.h" |
| #include "card.h" |
| #include "crypto.h" |
| #include "host.h" |
| #include "bus.h" |
| #include "mmc_ops.h" |
| #include "quirks.h" |
| #include "sd_ops.h" |
| |
| MODULE_ALIAS("mmc:block"); |
| #ifdef MODULE_PARAM_PREFIX |
| #undef MODULE_PARAM_PREFIX |
| #endif |
| #define MODULE_PARAM_PREFIX "mmcblk." |
| |
| /* |
| * Set a 10 second timeout for polling write request busy state. Note, mmc core |
| * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 |
| * second software timer to timeout the whole request, so 10 seconds should be |
| * ample. |
| */ |
| #define MMC_BLK_TIMEOUT_MS (10 * 1000) |
| #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) |
| #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) |
| |
| /** |
| * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51) |
| * |
| * @stuff : stuff bytes |
| * @key_mac : The authentication key or the message authentication |
| * code (MAC) depending on the request/response type. |
| * The MAC will be delivered in the last (or the only) |
| * block of data. |
| * @data : Data to be written or read by signed access. |
| * @nonce : Random number generated by the host for the requests |
| * and copied to the response by the RPMB engine. |
| * @write_counter: Counter value for the total amount of the successful |
| * authenticated data write requests made by the host. |
| * @addr : Address of the data to be programmed to or read |
| * from the RPMB. Address is the serial number of |
| * the accessed block (half sector 256B). |
| * @block_count : Number of blocks (half sectors, 256B) requested to be |
| * read/programmed. |
| * @result : Includes information about the status of the write counter |
| * (valid, expired) and result of the access made to the RPMB. |
| * @req_resp : Defines the type of request and response to/from the memory. |
| * |
| * The stuff bytes and big-endian properties are modeled to fit to the spec. |
| */ |
| struct rpmb_frame { |
| u8 stuff[196]; |
| u8 key_mac[32]; |
| u8 data[256]; |
| u8 nonce[16]; |
| __be32 write_counter; |
| __be16 addr; |
| __be16 block_count; |
| __be16 result; |
| __be16 req_resp; |
| } __packed; |
| |
| #define RPMB_PROGRAM_KEY 0x1 /* Program RPMB Authentication Key */ |
| #define RPMB_GET_WRITE_COUNTER 0x2 /* Read RPMB write counter */ |
| #define RPMB_WRITE_DATA 0x3 /* Write data to RPMB partition */ |
| #define RPMB_READ_DATA 0x4 /* Read data from RPMB partition */ |
| #define RPMB_RESULT_READ 0x5 /* Read result request (Internal) */ |
| |
| static DEFINE_MUTEX(block_mutex); |
| |
| /* |
| * The defaults come from config options but can be overriden by module |
| * or bootarg options. |
| */ |
| static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; |
| |
| /* |
| * We've only got one major, so number of mmcblk devices is |
| * limited to (1 << 20) / number of minors per device. It is also |
| * limited by the MAX_DEVICES below. |
| */ |
| static int max_devices; |
| |
| #define MAX_DEVICES 256 |
| |
| static DEFINE_IDA(mmc_blk_ida); |
| static DEFINE_IDA(mmc_rpmb_ida); |
| |
| struct mmc_blk_busy_data { |
| struct mmc_card *card; |
| u32 status; |
| }; |
| |
| /* |
| * There is one mmc_blk_data per slot. |
| */ |
| struct mmc_blk_data { |
| struct device *parent; |
| struct gendisk *disk; |
| struct mmc_queue queue; |
| struct list_head part; |
| struct list_head rpmbs; |
| |
| unsigned int flags; |
| #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ |
| #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ |
| |
| struct kref kref; |
| unsigned int read_only; |
| unsigned int part_type; |
| unsigned int reset_done; |
| #define MMC_BLK_READ BIT(0) |
| #define MMC_BLK_WRITE BIT(1) |
| #define MMC_BLK_DISCARD BIT(2) |
| #define MMC_BLK_SECDISCARD BIT(3) |
| #define MMC_BLK_CQE_RECOVERY BIT(4) |
| #define MMC_BLK_TRIM BIT(5) |
| |
| /* |
| * Only set in main mmc_blk_data associated |
| * with mmc_card with dev_set_drvdata, and keeps |
| * track of the current selected device partition. |
| */ |
| unsigned int part_curr; |
| #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ |
| int area_type; |
| |
| /* debugfs files (only in main mmc_blk_data) */ |
| struct dentry *status_dentry; |
| struct dentry *ext_csd_dentry; |
| }; |
| |
| /* Device type for RPMB character devices */ |
| static dev_t mmc_rpmb_devt; |
| |
| /* Bus type for RPMB character devices */ |
| static const struct bus_type mmc_rpmb_bus_type = { |
| .name = "mmc_rpmb", |
| }; |
| |
| /** |
| * struct mmc_rpmb_data - special RPMB device type for these areas |
| * @dev: the device for the RPMB area |
| * @chrdev: character device for the RPMB area |
| * @id: unique device ID number |
| * @part_index: partition index (0 on first) |
| * @md: parent MMC block device |
| * @rdev: registered RPMB device |
| * @node: list item, so we can put this device on a list |
| */ |
| struct mmc_rpmb_data { |
| struct device dev; |
| struct cdev chrdev; |
| int id; |
| unsigned int part_index; |
| struct mmc_blk_data *md; |
| struct rpmb_dev *rdev; |
| struct list_head node; |
| }; |
| |
| static DEFINE_MUTEX(open_lock); |
| |
| module_param(perdev_minors, int, 0444); |
| MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); |
| |
| static inline int mmc_blk_part_switch(struct mmc_card *card, |
| unsigned int part_type); |
| static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, |
| struct mmc_card *card, |
| int recovery_mode, |
| struct mmc_queue *mq); |
| static void mmc_blk_hsq_req_done(struct mmc_request *mrq); |
| static int mmc_spi_err_check(struct mmc_card *card); |
| static int mmc_blk_busy_cb(void *cb_data, bool *busy); |
| |
| static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) |
| { |
| struct mmc_blk_data *md; |
| |
| mutex_lock(&open_lock); |
| md = disk->private_data; |
| if (md && !kref_get_unless_zero(&md->kref)) |
| md = NULL; |
| mutex_unlock(&open_lock); |
| |
| return md; |
| } |
| |
| static inline int mmc_get_devidx(struct gendisk *disk) |
| { |
| int devidx = disk->first_minor / perdev_minors; |
| return devidx; |
| } |
| |
| static void mmc_blk_kref_release(struct kref *ref) |
| { |
| struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); |
| int devidx; |
| |
| devidx = mmc_get_devidx(md->disk); |
| ida_free(&mmc_blk_ida, devidx); |
| |
| mutex_lock(&open_lock); |
| md->disk->private_data = NULL; |
| mutex_unlock(&open_lock); |
| |
| put_disk(md->disk); |
| kfree(md); |
| } |
| |
| static void mmc_blk_put(struct mmc_blk_data *md) |
| { |
| kref_put(&md->kref, mmc_blk_kref_release); |
| } |
| |
| static ssize_t power_ro_lock_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int ret; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| struct mmc_card *card = md->queue.card; |
| int locked = 0; |
| |
| if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) |
| locked = 2; |
| else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) |
| locked = 1; |
| |
| ret = sysfs_emit(buf, "%d\n", locked); |
| |
| mmc_blk_put(md); |
| |
| return ret; |
| } |
| |
| static ssize_t power_ro_lock_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| int ret; |
| struct mmc_blk_data *md, *part_md; |
| struct mmc_queue *mq; |
| struct request *req; |
| unsigned long set; |
| |
| if (kstrtoul(buf, 0, &set)) |
| return -EINVAL; |
| |
| if (set != 1) |
| return count; |
| |
| md = mmc_blk_get(dev_to_disk(dev)); |
| mq = &md->queue; |
| |
| /* Dispatch locking to the block layer */ |
| req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); |
| if (IS_ERR(req)) { |
| count = PTR_ERR(req); |
| goto out_put; |
| } |
| req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; |
| req_to_mmc_queue_req(req)->drv_op_result = -EIO; |
| blk_execute_rq(req, false); |
| ret = req_to_mmc_queue_req(req)->drv_op_result; |
| blk_mq_free_request(req); |
| |
| if (!ret) { |
| pr_info("%s: Locking boot partition ro until next power on\n", |
| md->disk->disk_name); |
| set_disk_ro(md->disk, 1); |
| |
| list_for_each_entry(part_md, &md->part, part) |
| if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { |
| pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); |
| set_disk_ro(part_md->disk, 1); |
| } |
| } |
| out_put: |
| mmc_blk_put(md); |
| return count; |
| } |
| |
| static DEVICE_ATTR(ro_lock_until_next_power_on, 0, |
| power_ro_lock_show, power_ro_lock_store); |
| |
| static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int ret; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| |
| ret = sysfs_emit(buf, "%d\n", |
| get_disk_ro(dev_to_disk(dev)) ^ |
| md->read_only); |
| mmc_blk_put(md); |
| return ret; |
| } |
| |
| static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| unsigned long set; |
| |
| if (kstrtoul(buf, 0, &set)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| set_disk_ro(dev_to_disk(dev), set || md->read_only); |
| ret = count; |
| out: |
| mmc_blk_put(md); |
| return ret; |
| } |
| |
| static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); |
| |
| static struct attribute *mmc_disk_attrs[] = { |
| &dev_attr_force_ro.attr, |
| &dev_attr_ro_lock_until_next_power_on.attr, |
| NULL, |
| }; |
| |
| static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, |
| struct attribute *a, int n) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| umode_t mode = a->mode; |
| |
| if (a == &dev_attr_ro_lock_until_next_power_on.attr && |
| (md->area_type & MMC_BLK_DATA_AREA_BOOT) && |
| md->queue.card->ext_csd.boot_ro_lockable) { |
| mode = S_IRUGO; |
| if (!(md->queue.card->ext_csd.boot_ro_lock & |
| EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) |
| mode |= S_IWUSR; |
| } |
| |
| mmc_blk_put(md); |
| return mode; |
| } |
| |
| static const struct attribute_group mmc_disk_attr_group = { |
| .is_visible = mmc_disk_attrs_is_visible, |
| .attrs = mmc_disk_attrs, |
| }; |
| |
| static const struct attribute_group *mmc_disk_attr_groups[] = { |
| &mmc_disk_attr_group, |
| NULL, |
| }; |
| |
| static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) |
| { |
| struct mmc_blk_data *md = mmc_blk_get(disk); |
| int ret = -ENXIO; |
| |
| mutex_lock(&block_mutex); |
| if (md) { |
| ret = 0; |
| if ((mode & BLK_OPEN_WRITE) && md->read_only) { |
| mmc_blk_put(md); |
| ret = -EROFS; |
| } |
| } |
| mutex_unlock(&block_mutex); |
| |
| return ret; |
| } |
| |
| static void mmc_blk_release(struct gendisk *disk) |
| { |
| struct mmc_blk_data *md = disk->private_data; |
| |
| mutex_lock(&block_mutex); |
| mmc_blk_put(md); |
| mutex_unlock(&block_mutex); |
| } |
| |
| static int |
| mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); |
| geo->heads = 4; |
| geo->sectors = 16; |
| return 0; |
| } |
| |
| struct mmc_blk_ioc_data { |
| struct mmc_ioc_cmd ic; |
| unsigned char *buf; |
| u64 buf_bytes; |
| unsigned int flags; |
| #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */ |
| #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */ |
| |
| struct mmc_rpmb_data *rpmb; |
| }; |
| |
| static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( |
| struct mmc_ioc_cmd __user *user) |
| { |
| struct mmc_blk_ioc_data *idata; |
| int err; |
| |
| idata = kzalloc(sizeof(*idata), GFP_KERNEL); |
| if (!idata) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { |
| err = -EFAULT; |
| goto idata_err; |
| } |
| |
| idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; |
| if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { |
| err = -EOVERFLOW; |
| goto idata_err; |
| } |
| |
| if (!idata->buf_bytes) { |
| idata->buf = NULL; |
| return idata; |
| } |
| |
| idata->buf = memdup_user((void __user *)(unsigned long) |
| idata->ic.data_ptr, idata->buf_bytes); |
| if (IS_ERR(idata->buf)) { |
| err = PTR_ERR(idata->buf); |
| goto idata_err; |
| } |
| |
| return idata; |
| |
| idata_err: |
| kfree(idata); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, |
| struct mmc_blk_ioc_data *idata) |
| { |
| struct mmc_ioc_cmd *ic = &idata->ic; |
| |
| if (copy_to_user(&(ic_ptr->response), ic->response, |
| sizeof(ic->response))) |
| return -EFAULT; |
| |
| if (!idata->ic.write_flag) { |
| if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, |
| idata->buf, idata->buf_bytes)) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, |
| struct mmc_blk_ioc_data **idatas, int i) |
| { |
| struct mmc_command cmd = {}, sbc = {}; |
| struct mmc_data data = {}; |
| struct mmc_request mrq = {}; |
| struct scatterlist sg; |
| bool r1b_resp; |
| unsigned int busy_timeout_ms; |
| int err; |
| unsigned int target_part; |
| struct mmc_blk_ioc_data *idata = idatas[i]; |
| struct mmc_blk_ioc_data *prev_idata = NULL; |
| |
| if (!card || !md || !idata) |
| return -EINVAL; |
| |
| if (idata->flags & MMC_BLK_IOC_DROP) |
| return 0; |
| |
| if (idata->flags & MMC_BLK_IOC_SBC && i > 0) |
| prev_idata = idatas[i - 1]; |
| |
| /* |
| * The RPMB accesses comes in from the character device, so we |
| * need to target these explicitly. Else we just target the |
| * partition type for the block device the ioctl() was issued |
| * on. |
| */ |
| if (idata->rpmb) { |
| /* Support multiple RPMB partitions */ |
| target_part = idata->rpmb->part_index; |
| target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; |
| } else { |
| target_part = md->part_type; |
| } |
| |
| cmd.opcode = idata->ic.opcode; |
| cmd.arg = idata->ic.arg; |
| cmd.flags = idata->ic.flags; |
| |
| if (idata->buf_bytes) { |
| data.sg = &sg; |
| data.sg_len = 1; |
| data.blksz = idata->ic.blksz; |
| data.blocks = idata->ic.blocks; |
| |
| sg_init_one(data.sg, idata->buf, idata->buf_bytes); |
| |
| if (idata->ic.write_flag) |
| data.flags = MMC_DATA_WRITE; |
| else |
| data.flags = MMC_DATA_READ; |
| |
| /* data.flags must already be set before doing this. */ |
| mmc_set_data_timeout(&data, card); |
| |
| /* Allow overriding the timeout_ns for empirical tuning. */ |
| if (idata->ic.data_timeout_ns) |
| data.timeout_ns = idata->ic.data_timeout_ns; |
| |
| mrq.data = &data; |
| } |
| |
| mrq.cmd = &cmd; |
| |
| err = mmc_blk_part_switch(card, target_part); |
| if (err) |
| return err; |
| |
| if (idata->ic.is_acmd) { |
| err = mmc_app_cmd(card->host, card); |
| if (err) |
| return err; |
| } |
| |
| if (idata->rpmb || prev_idata) { |
| sbc.opcode = MMC_SET_BLOCK_COUNT; |
| /* |
| * We don't do any blockcount validation because the max size |
| * may be increased by a future standard. We just copy the |
| * 'Reliable Write' bit here. |
| */ |
| sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); |
| if (prev_idata) |
| sbc.arg = prev_idata->ic.arg; |
| sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| mrq.sbc = &sbc; |
| } |
| |
| if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && |
| (cmd.opcode == MMC_SWITCH)) |
| return mmc_sanitize(card, idata->ic.cmd_timeout_ms); |
| |
| /* If it's an R1B response we need some more preparations. */ |
| busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; |
| r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; |
| if (r1b_resp) |
| mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms); |
| |
| mmc_wait_for_req(card->host, &mrq); |
| memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); |
| |
| if (prev_idata) { |
| memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp)); |
| if (sbc.error) { |
| dev_err(mmc_dev(card->host), "%s: sbc error %d\n", |
| __func__, sbc.error); |
| return sbc.error; |
| } |
| } |
| |
| if (cmd.error) { |
| dev_err(mmc_dev(card->host), "%s: cmd error %d\n", |
| __func__, cmd.error); |
| return cmd.error; |
| } |
| if (data.error) { |
| dev_err(mmc_dev(card->host), "%s: data error %d\n", |
| __func__, data.error); |
| return data.error; |
| } |
| |
| /* |
| * Make sure the cache of the PARTITION_CONFIG register and |
| * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write |
| * changed it successfully. |
| */ |
| if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && |
| (cmd.opcode == MMC_SWITCH)) { |
| struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); |
| u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); |
| |
| /* |
| * Update cache so the next mmc_blk_part_switch call operates |
| * on up-to-date data. |
| */ |
| card->ext_csd.part_config = value; |
| main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; |
| } |
| |
| /* |
| * Make sure to update CACHE_CTRL in case it was changed. The cache |
| * will get turned back on if the card is re-initialized, e.g. |
| * suspend/resume or hw reset in recovery. |
| */ |
| if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && |
| (cmd.opcode == MMC_SWITCH)) { |
| u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; |
| |
| card->ext_csd.cache_ctrl = value; |
| } |
| |
| /* |
| * According to the SD specs, some commands require a delay after |
| * issuing the command. |
| */ |
| if (idata->ic.postsleep_min_us) |
| usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); |
| |
| if (mmc_host_is_spi(card->host)) { |
| if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) |
| return mmc_spi_err_check(card); |
| return err; |
| } |
| |
| /* |
| * Ensure RPMB, writes and R1B responses are completed by polling with |
| * CMD13. Note that, usually we don't need to poll when using HW busy |
| * detection, but here it's needed since some commands may indicate the |
| * error through the R1 status bits. |
| */ |
| if (idata->rpmb || idata->ic.write_flag || r1b_resp) { |
| struct mmc_blk_busy_data cb_data = { |
| .card = card, |
| }; |
| |
| err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms, |
| &mmc_blk_busy_cb, &cb_data); |
| |
| idata->ic.response[0] = cb_data.status; |
| } |
| |
| return err; |
| } |
| |
| static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, |
| struct mmc_ioc_cmd __user *ic_ptr, |
| struct mmc_rpmb_data *rpmb) |
| { |
| struct mmc_blk_ioc_data *idata; |
| struct mmc_blk_ioc_data *idatas[1]; |
| struct mmc_queue *mq; |
| struct mmc_card *card; |
| int err = 0, ioc_err = 0; |
| struct request *req; |
| |
| idata = mmc_blk_ioctl_copy_from_user(ic_ptr); |
| if (IS_ERR(idata)) |
| return PTR_ERR(idata); |
| /* This will be NULL on non-RPMB ioctl():s */ |
| idata->rpmb = rpmb; |
| |
| card = md->queue.card; |
| if (IS_ERR(card)) { |
| err = PTR_ERR(card); |
| goto cmd_done; |
| } |
| |
| /* |
| * Dispatch the ioctl() into the block request queue. |
| */ |
| mq = &md->queue; |
| req = blk_mq_alloc_request(mq->queue, |
| idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); |
| if (IS_ERR(req)) { |
| err = PTR_ERR(req); |
| goto cmd_done; |
| } |
| idatas[0] = idata; |
| req_to_mmc_queue_req(req)->drv_op = |
| rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; |
| req_to_mmc_queue_req(req)->drv_op_result = -EIO; |
| req_to_mmc_queue_req(req)->drv_op_data = idatas; |
| req_to_mmc_queue_req(req)->ioc_count = 1; |
| blk_execute_rq(req, false); |
| ioc_err = req_to_mmc_queue_req(req)->drv_op_result; |
| err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); |
| blk_mq_free_request(req); |
| |
| cmd_done: |
| kfree(idata->buf); |
| kfree(idata); |
| return ioc_err ? ioc_err : err; |
| } |
| |
| static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, |
| struct mmc_ioc_multi_cmd __user *user, |
| struct mmc_rpmb_data *rpmb) |
| { |
| struct mmc_blk_ioc_data **idata = NULL; |
| struct mmc_ioc_cmd __user *cmds = user->cmds; |
| struct mmc_card *card; |
| struct mmc_queue *mq; |
| int err = 0, ioc_err = 0; |
| __u64 num_of_cmds; |
| unsigned int i, n; |
| struct request *req; |
| |
| if (copy_from_user(&num_of_cmds, &user->num_of_cmds, |
| sizeof(num_of_cmds))) |
| return -EFAULT; |
| |
| if (!num_of_cmds) |
| return 0; |
| |
| if (num_of_cmds > MMC_IOC_MAX_CMDS) |
| return -EINVAL; |
| |
| n = num_of_cmds; |
| idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); |
| if (!idata) |
| return -ENOMEM; |
| |
| for (i = 0; i < n; i++) { |
| idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); |
| if (IS_ERR(idata[i])) { |
| err = PTR_ERR(idata[i]); |
| n = i; |
| goto cmd_err; |
| } |
| /* This will be NULL on non-RPMB ioctl():s */ |
| idata[i]->rpmb = rpmb; |
| } |
| |
| card = md->queue.card; |
| if (IS_ERR(card)) { |
| err = PTR_ERR(card); |
| goto cmd_err; |
| } |
| |
| |
| /* |
| * Dispatch the ioctl()s into the block request queue. |
| */ |
| mq = &md->queue; |
| req = blk_mq_alloc_request(mq->queue, |
| idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); |
| if (IS_ERR(req)) { |
| err = PTR_ERR(req); |
| goto cmd_err; |
| } |
| req_to_mmc_queue_req(req)->drv_op = |
| rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; |
| req_to_mmc_queue_req(req)->drv_op_result = -EIO; |
| req_to_mmc_queue_req(req)->drv_op_data = idata; |
| req_to_mmc_queue_req(req)->ioc_count = n; |
| blk_execute_rq(req, false); |
| ioc_err = req_to_mmc_queue_req(req)->drv_op_result; |
| |
| /* copy to user if data and response */ |
| for (i = 0; i < n && !err; i++) |
| err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); |
| |
| blk_mq_free_request(req); |
| |
| cmd_err: |
| for (i = 0; i < n; i++) { |
| kfree(idata[i]->buf); |
| kfree(idata[i]); |
| } |
| kfree(idata); |
| return ioc_err ? ioc_err : err; |
| } |
| |
| static int mmc_blk_check_blkdev(struct block_device *bdev) |
| { |
| /* |
| * The caller must have CAP_SYS_RAWIO, and must be calling this on the |
| * whole block device, not on a partition. This prevents overspray |
| * between sibling partitions. |
| */ |
| if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) |
| return -EPERM; |
| return 0; |
| } |
| |
| static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct mmc_blk_data *md; |
| int ret; |
| |
| switch (cmd) { |
| case MMC_IOC_CMD: |
| ret = mmc_blk_check_blkdev(bdev); |
| if (ret) |
| return ret; |
| md = mmc_blk_get(bdev->bd_disk); |
| if (!md) |
| return -EINVAL; |
| ret = mmc_blk_ioctl_cmd(md, |
| (struct mmc_ioc_cmd __user *)arg, |
| NULL); |
| mmc_blk_put(md); |
| return ret; |
| case MMC_IOC_MULTI_CMD: |
| ret = mmc_blk_check_blkdev(bdev); |
| if (ret) |
| return ret; |
| md = mmc_blk_get(bdev->bd_disk); |
| if (!md) |
| return -EINVAL; |
| ret = mmc_blk_ioctl_multi_cmd(md, |
| (struct mmc_ioc_multi_cmd __user *)arg, |
| NULL); |
| mmc_blk_put(md); |
| return ret; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); |
| } |
| #endif |
| |
| static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, |
| sector_t *sector) |
| { |
| struct mmc_blk_data *md; |
| int ret; |
| |
| md = mmc_blk_get(disk); |
| if (!md) |
| return -EINVAL; |
| |
| if (md->queue.card) |
| ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); |
| else |
| ret = -ENODEV; |
| |
| mmc_blk_put(md); |
| |
| return ret; |
| } |
| |
| static const struct block_device_operations mmc_bdops = { |
| .open = mmc_blk_open, |
| .release = mmc_blk_release, |
| .getgeo = mmc_blk_getgeo, |
| .owner = THIS_MODULE, |
| .ioctl = mmc_blk_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = mmc_blk_compat_ioctl, |
| #endif |
| .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, |
| }; |
| |
| static int mmc_blk_part_switch_pre(struct mmc_card *card, |
| unsigned int part_type) |
| { |
| const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK; |
| const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB; |
| int ret = 0; |
| |
| if ((part_type & mask) == rpmb) { |
| if (card->ext_csd.cmdq_en) { |
| ret = mmc_cmdq_disable(card); |
| if (ret) |
| return ret; |
| } |
| mmc_retune_pause(card->host); |
| } |
| |
| return ret; |
| } |
| |
| static int mmc_blk_part_switch_post(struct mmc_card *card, |
| unsigned int part_type) |
| { |
| const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK; |
| const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB; |
| int ret = 0; |
| |
| if ((part_type & mask) == rpmb) { |
| mmc_retune_unpause(card->host); |
| if (card->reenable_cmdq && !card->ext_csd.cmdq_en) |
| ret = mmc_cmdq_enable(card); |
| } |
| |
| return ret; |
| } |
| |
| static inline int mmc_blk_part_switch(struct mmc_card *card, |
| unsigned int part_type) |
| { |
| int ret = 0; |
| struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); |
| |
| if (main_md->part_curr == part_type) |
| return 0; |
| |
| if (mmc_card_mmc(card)) { |
| u8 part_config = card->ext_csd.part_config; |
| |
| ret = mmc_blk_part_switch_pre(card, part_type); |
| if (ret) |
| return ret; |
| |
| part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; |
| part_config |= part_type; |
| |
| ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_PART_CONFIG, part_config, |
| card->ext_csd.part_time); |
| if (ret) { |
| mmc_blk_part_switch_post(card, part_type); |
| return ret; |
| } |
| |
| card->ext_csd.part_config = part_config; |
| |
| ret = mmc_blk_part_switch_post(card, main_md->part_curr); |
| } |
| |
| main_md->part_curr = part_type; |
| return ret; |
| } |
| |
| static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) |
| { |
| int err; |
| u32 result; |
| __be32 *blocks; |
| |
| struct mmc_request mrq = {}; |
| struct mmc_command cmd = {}; |
| struct mmc_data data = {}; |
| |
| struct scatterlist sg; |
| |
| err = mmc_app_cmd(card->host, card); |
| if (err) |
| return err; |
| |
| cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| data.blksz = 4; |
| data.blocks = 1; |
| data.flags = MMC_DATA_READ; |
| data.sg = &sg; |
| data.sg_len = 1; |
| mmc_set_data_timeout(&data, card); |
| |
| mrq.cmd = &cmd; |
| mrq.data = &data; |
| |
| blocks = kmalloc(4, GFP_KERNEL); |
| if (!blocks) |
| return -ENOMEM; |
| |
| sg_init_one(&sg, blocks, 4); |
| |
| mmc_wait_for_req(card->host, &mrq); |
| |
| result = ntohl(*blocks); |
| kfree(blocks); |
| |
| if (cmd.error || data.error) |
| return -EIO; |
| |
| *written_blocks = result; |
| |
| return 0; |
| } |
| |
| static unsigned int mmc_blk_clock_khz(struct mmc_host *host) |
| { |
| if (host->actual_clock) |
| return host->actual_clock / 1000; |
| |
| /* Clock may be subject to a divisor, fudge it by a factor of 2. */ |
| if (host->ios.clock) |
| return host->ios.clock / 2000; |
| |
| /* How can there be no clock */ |
| WARN_ON_ONCE(1); |
| return 100; /* 100 kHz is minimum possible value */ |
| } |
| |
| static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, |
| struct mmc_data *data) |
| { |
| unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); |
| unsigned int khz; |
| |
| if (data->timeout_clks) { |
| khz = mmc_blk_clock_khz(host); |
| ms += DIV_ROUND_UP(data->timeout_clks, khz); |
| } |
| |
| return ms; |
| } |
| |
| /* |
| * Attempts to reset the card and get back to the requested partition. |
| * Therefore any error here must result in cancelling the block layer |
| * request, it must not be reattempted without going through the mmc_blk |
| * partition sanity checks. |
| */ |
| static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, |
| int type) |
| { |
| int err; |
| struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); |
| |
| if (md->reset_done & type) |
| return -EEXIST; |
| |
| md->reset_done |= type; |
| err = mmc_hw_reset(host->card); |
| /* |
| * A successful reset will leave the card in the main partition, but |
| * upon failure it might not be, so set it to MMC_BLK_PART_INVALID |
| * in that case. |
| */ |
| main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; |
| if (err) |
| return err; |
| /* Ensure we switch back to the correct partition */ |
| if (mmc_blk_part_switch(host->card, md->part_type)) |
| /* |
| * We have failed to get back into the correct |
| * partition, so we need to abort the whole request. |
| */ |
| return -ENODEV; |
| return 0; |
| } |
| |
| static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) |
| { |
| md->reset_done &= ~type; |
| } |
| |
| static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq) |
| { |
| struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data; |
| int i; |
| |
| for (i = 1; i < mq_rq->ioc_count; i++) { |
| if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT && |
| mmc_op_multi(idata[i]->ic.opcode)) { |
| idata[i - 1]->flags |= MMC_BLK_IOC_DROP; |
| idata[i]->flags |= MMC_BLK_IOC_SBC; |
| } |
| } |
| } |
| |
| /* |
| * The non-block commands come back from the block layer after it queued it and |
| * processed it with all other requests and then they get issued in this |
| * function. |
| */ |
| static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mq_rq; |
| struct mmc_card *card = mq->card; |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_blk_ioc_data **idata; |
| bool rpmb_ioctl; |
| u8 **ext_csd; |
| u32 status; |
| int ret; |
| int i; |
| |
| mq_rq = req_to_mmc_queue_req(req); |
| rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); |
| |
| switch (mq_rq->drv_op) { |
| case MMC_DRV_OP_IOCTL: |
| if (card->ext_csd.cmdq_en) { |
| ret = mmc_cmdq_disable(card); |
| if (ret) |
| break; |
| } |
| |
| mmc_blk_check_sbc(mq_rq); |
| |
| fallthrough; |
| case MMC_DRV_OP_IOCTL_RPMB: |
| idata = mq_rq->drv_op_data; |
| for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { |
| ret = __mmc_blk_ioctl_cmd(card, md, idata, i); |
| if (ret) |
| break; |
| } |
| /* Always switch back to main area after RPMB access */ |
| if (rpmb_ioctl) |
| mmc_blk_part_switch(card, 0); |
| else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) |
| mmc_cmdq_enable(card); |
| break; |
| case MMC_DRV_OP_BOOT_WP: |
| ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, |
| card->ext_csd.boot_ro_lock | |
| EXT_CSD_BOOT_WP_B_PWR_WP_EN, |
| card->ext_csd.part_time); |
| if (ret) |
| pr_err("%s: Locking boot partition ro until next power on failed: %d\n", |
| md->disk->disk_name, ret); |
| else |
| card->ext_csd.boot_ro_lock |= |
| EXT_CSD_BOOT_WP_B_PWR_WP_EN; |
| break; |
| case MMC_DRV_OP_GET_CARD_STATUS: |
| ret = mmc_send_status(card, &status); |
| if (!ret) |
| ret = status; |
| break; |
| case MMC_DRV_OP_GET_EXT_CSD: |
| ext_csd = mq_rq->drv_op_data; |
| ret = mmc_get_ext_csd(card, ext_csd); |
| break; |
| default: |
| pr_err("%s: unknown driver specific operation\n", |
| md->disk->disk_name); |
| ret = -EINVAL; |
| break; |
| } |
| mq_rq->drv_op_result = ret; |
| blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); |
| } |
| |
| static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, |
| int type, unsigned int erase_arg) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| unsigned int from, nr; |
| int err = 0; |
| blk_status_t status = BLK_STS_OK; |
| |
| if (!mmc_can_erase(card)) { |
| status = BLK_STS_NOTSUPP; |
| goto fail; |
| } |
| |
| from = blk_rq_pos(req); |
| nr = blk_rq_sectors(req); |
| |
| do { |
| err = 0; |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| erase_arg == MMC_TRIM_ARG ? |
| INAND_CMD38_ARG_TRIM : |
| INAND_CMD38_ARG_ERASE, |
| card->ext_csd.generic_cmd6_time); |
| } |
| if (!err) |
| err = mmc_erase(card, from, nr, erase_arg); |
| } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); |
| if (err) |
| status = BLK_STS_IOERR; |
| else |
| mmc_blk_reset_success(md, type); |
| fail: |
| blk_mq_end_request(req, status); |
| } |
| |
| static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) |
| { |
| mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); |
| } |
| |
| static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| unsigned int arg = card->erase_arg; |
| |
| if (mmc_card_broken_sd_discard(card)) |
| arg = SD_ERASE_ARG; |
| |
| mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); |
| } |
| |
| static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, |
| struct request *req) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| unsigned int from, nr, arg; |
| int err = 0, type = MMC_BLK_SECDISCARD; |
| blk_status_t status = BLK_STS_OK; |
| |
| if (!(mmc_can_secure_erase_trim(card))) { |
| status = BLK_STS_NOTSUPP; |
| goto out; |
| } |
| |
| from = blk_rq_pos(req); |
| nr = blk_rq_sectors(req); |
| |
| if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) |
| arg = MMC_SECURE_TRIM1_ARG; |
| else |
| arg = MMC_SECURE_ERASE_ARG; |
| |
| retry: |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| arg == MMC_SECURE_TRIM1_ARG ? |
| INAND_CMD38_ARG_SECTRIM1 : |
| INAND_CMD38_ARG_SECERASE, |
| card->ext_csd.generic_cmd6_time); |
| if (err) |
| goto out_retry; |
| } |
| |
| err = mmc_erase(card, from, nr, arg); |
| if (err == -EIO) |
| goto out_retry; |
| if (err) { |
| status = BLK_STS_IOERR; |
| goto out; |
| } |
| |
| if (arg == MMC_SECURE_TRIM1_ARG) { |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| INAND_CMD38_ARG_SECTRIM2, |
| card->ext_csd.generic_cmd6_time); |
| if (err) |
| goto out_retry; |
| } |
| |
| err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); |
| if (err == -EIO) |
| goto out_retry; |
| if (err) { |
| status = BLK_STS_IOERR; |
| goto out; |
| } |
| } |
| |
| out_retry: |
| if (err && !mmc_blk_reset(md, card->host, type)) |
| goto retry; |
| if (!err) |
| mmc_blk_reset_success(md, type); |
| out: |
| blk_mq_end_request(req, status); |
| } |
| |
| static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| int ret = 0; |
| |
| ret = mmc_flush_cache(card->host); |
| blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); |
| } |
| |
| /* |
| * Reformat current write as a reliable write, supporting |
| * both legacy and the enhanced reliable write MMC cards. |
| * In each transfer we'll handle only as much as a single |
| * reliable write can handle, thus finish the request in |
| * partial completions. |
| */ |
| static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, |
| struct mmc_card *card, |
| struct request *req) |
| { |
| if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { |
| /* Legacy mode imposes restrictions on transfers. */ |
| if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) |
| brq->data.blocks = 1; |
| |
| if (brq->data.blocks > card->ext_csd.rel_sectors) |
| brq->data.blocks = card->ext_csd.rel_sectors; |
| else if (brq->data.blocks < card->ext_csd.rel_sectors) |
| brq->data.blocks = 1; |
| } |
| } |
| |
| #define CMD_ERRORS_EXCL_OOR \ |
| (R1_ADDRESS_ERROR | /* Misaligned address */ \ |
| R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ |
| R1_WP_VIOLATION | /* Tried to write to protected block */ \ |
| R1_CARD_ECC_FAILED | /* Card ECC failed */ \ |
| R1_CC_ERROR | /* Card controller error */ \ |
| R1_ERROR) /* General/unknown error */ |
| |
| #define CMD_ERRORS \ |
| (CMD_ERRORS_EXCL_OOR | \ |
| R1_OUT_OF_RANGE) /* Command argument out of range */ \ |
| |
| static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) |
| { |
| u32 val; |
| |
| /* |
| * Per the SD specification(physical layer version 4.10)[1], |
| * section 4.3.3, it explicitly states that "When the last |
| * block of user area is read using CMD18, the host should |
| * ignore OUT_OF_RANGE error that may occur even the sequence |
| * is correct". And JESD84-B51 for eMMC also has a similar |
| * statement on section 6.8.3. |
| * |
| * Multiple block read/write could be done by either predefined |
| * method, namely CMD23, or open-ending mode. For open-ending mode, |
| * we should ignore the OUT_OF_RANGE error as it's normal behaviour. |
| * |
| * However the spec[1] doesn't tell us whether we should also |
| * ignore that for predefined method. But per the spec[1], section |
| * 4.15 Set Block Count Command, it says"If illegal block count |
| * is set, out of range error will be indicated during read/write |
| * operation (For example, data transfer is stopped at user area |
| * boundary)." In another word, we could expect a out of range error |
| * in the response for the following CMD18/25. And if argument of |
| * CMD23 + the argument of CMD18/25 exceed the max number of blocks, |
| * we could also expect to get a -ETIMEDOUT or any error number from |
| * the host drivers due to missing data response(for write)/data(for |
| * read), as the cards will stop the data transfer by itself per the |
| * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. |
| */ |
| |
| if (!brq->stop.error) { |
| bool oor_with_open_end; |
| /* If there is no error yet, check R1 response */ |
| |
| val = brq->stop.resp[0] & CMD_ERRORS; |
| oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; |
| |
| if (val && !oor_with_open_end) |
| brq->stop.error = -EIO; |
| } |
| } |
| |
| static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, |
| int recovery_mode, bool *do_rel_wr_p, |
| bool *do_data_tag_p) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| struct mmc_blk_request *brq = &mqrq->brq; |
| struct request *req = mmc_queue_req_to_req(mqrq); |
| bool do_rel_wr, do_data_tag; |
| |
| /* |
| * Reliable writes are used to implement Forced Unit Access and |
| * are supported only on MMCs. |
| */ |
| do_rel_wr = (req->cmd_flags & REQ_FUA) && |
| rq_data_dir(req) == WRITE && |
| (md->flags & MMC_BLK_REL_WR); |
| |
| memset(brq, 0, sizeof(struct mmc_blk_request)); |
| |
| mmc_crypto_prepare_req(mqrq); |
| |
| brq->mrq.data = &brq->data; |
| brq->mrq.tag = req->tag; |
| |
| brq->stop.opcode = MMC_STOP_TRANSMISSION; |
| brq->stop.arg = 0; |
| |
| if (rq_data_dir(req) == READ) { |
| brq->data.flags = MMC_DATA_READ; |
| brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| } else { |
| brq->data.flags = MMC_DATA_WRITE; |
| brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| } |
| |
| brq->data.blksz = 512; |
| brq->data.blocks = blk_rq_sectors(req); |
| brq->data.blk_addr = blk_rq_pos(req); |
| |
| /* |
| * The command queue supports 2 priorities: "high" (1) and "simple" (0). |
| * The eMMC will give "high" priority tasks priority over "simple" |
| * priority tasks. Here we always set "simple" priority by not setting |
| * MMC_DATA_PRIO. |
| */ |
| |
| /* |
| * The block layer doesn't support all sector count |
| * restrictions, so we need to be prepared for too big |
| * requests. |
| */ |
| if (brq->data.blocks > card->host->max_blk_count) |
| brq->data.blocks = card->host->max_blk_count; |
| |
| if (brq->data.blocks > 1) { |
| /* |
| * Some SD cards in SPI mode return a CRC error or even lock up |
| * completely when trying to read the last block using a |
| * multiblock read command. |
| */ |
| if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && |
| (blk_rq_pos(req) + blk_rq_sectors(req) == |
| get_capacity(md->disk))) |
| brq->data.blocks--; |
| |
| /* |
| * After a read error, we redo the request one (native) sector |
| * at a time in order to accurately determine which |
| * sectors can be read successfully. |
| */ |
| if (recovery_mode) |
| brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; |
| |
| /* |
| * Some controllers have HW issues while operating |
| * in multiple I/O mode |
| */ |
| if (card->host->ops->multi_io_quirk) |
| brq->data.blocks = card->host->ops->multi_io_quirk(card, |
| (rq_data_dir(req) == READ) ? |
| MMC_DATA_READ : MMC_DATA_WRITE, |
| brq->data.blocks); |
| } |
| |
| if (do_rel_wr) { |
| mmc_apply_rel_rw(brq, card, req); |
| brq->data.flags |= MMC_DATA_REL_WR; |
| } |
| |
| /* |
| * Data tag is used only during writing meta data to speed |
| * up write and any subsequent read of this meta data |
| */ |
| do_data_tag = card->ext_csd.data_tag_unit_size && |
| (req->cmd_flags & REQ_META) && |
| (rq_data_dir(req) == WRITE) && |
| ((brq->data.blocks * brq->data.blksz) >= |
| card->ext_csd.data_tag_unit_size); |
| |
| if (do_data_tag) |
| brq->data.flags |= MMC_DATA_DAT_TAG; |
| |
| mmc_set_data_timeout(&brq->data, card); |
| |
| brq->data.sg = mqrq->sg; |
| brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); |
| |
| /* |
| * Adjust the sg list so it is the same size as the |
| * request. |
| */ |
| if (brq->data.blocks != blk_rq_sectors(req)) { |
| int i, data_size = brq->data.blocks << 9; |
| struct scatterlist *sg; |
| |
| for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { |
| data_size -= sg->length; |
| if (data_size <= 0) { |
| sg->length += data_size; |
| i++; |
| break; |
| } |
| } |
| brq->data.sg_len = i; |
| } |
| |
| if (do_rel_wr_p) |
| *do_rel_wr_p = do_rel_wr; |
| |
| if (do_data_tag_p) |
| *do_data_tag_p = do_data_tag; |
| } |
| |
| #define MMC_CQE_RETRIES 2 |
| |
| static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_request *mrq = &mqrq->brq.mrq; |
| struct request_queue *q = req->q; |
| struct mmc_host *host = mq->card->host; |
| enum mmc_issue_type issue_type = mmc_issue_type(mq, req); |
| unsigned long flags; |
| bool put_card; |
| int err; |
| |
| mmc_cqe_post_req(host, mrq); |
| |
| if (mrq->cmd && mrq->cmd->error) |
| err = mrq->cmd->error; |
| else if (mrq->data && mrq->data->error) |
| err = mrq->data->error; |
| else |
| err = 0; |
| |
| if (err) { |
| if (mqrq->retries++ < MMC_CQE_RETRIES) |
| blk_mq_requeue_request(req, true); |
| else |
| blk_mq_end_request(req, BLK_STS_IOERR); |
| } else if (mrq->data) { |
| if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) |
| blk_mq_requeue_request(req, true); |
| else |
| __blk_mq_end_request(req, BLK_STS_OK); |
| } else if (mq->in_recovery) { |
| blk_mq_requeue_request(req, true); |
| } else { |
| blk_mq_end_request(req, BLK_STS_OK); |
| } |
| |
| spin_lock_irqsave(&mq->lock, flags); |
| |
| mq->in_flight[issue_type] -= 1; |
| |
| put_card = (mmc_tot_in_flight(mq) == 0); |
| |
| mmc_cqe_check_busy(mq); |
| |
| spin_unlock_irqrestore(&mq->lock, flags); |
| |
| if (!mq->cqe_busy) |
| blk_mq_run_hw_queues(q, true); |
| |
| if (put_card) |
| mmc_put_card(mq->card, &mq->ctx); |
| } |
| |
| void mmc_blk_cqe_recovery(struct mmc_queue *mq) |
| { |
| struct mmc_card *card = mq->card; |
| struct mmc_host *host = card->host; |
| int err; |
| |
| pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); |
| |
| err = mmc_cqe_recovery(host); |
| if (err) |
| mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); |
| mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); |
| |
| pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); |
| } |
| |
| static void mmc_blk_cqe_req_done(struct mmc_request *mrq) |
| { |
| struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, |
| brq.mrq); |
| struct request *req = mmc_queue_req_to_req(mqrq); |
| struct request_queue *q = req->q; |
| struct mmc_queue *mq = q->queuedata; |
| |
| /* |
| * Block layer timeouts race with completions which means the normal |
| * completion path cannot be used during recovery. |
| */ |
| if (mq->in_recovery) |
| mmc_blk_cqe_complete_rq(mq, req); |
| else if (likely(!blk_should_fake_timeout(req->q))) |
| blk_mq_complete_request(req); |
| } |
| |
| static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| mrq->done = mmc_blk_cqe_req_done; |
| mrq->recovery_notifier = mmc_cqe_recovery_notifier; |
| |
| return mmc_cqe_start_req(host, mrq); |
| } |
| |
| static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, |
| struct request *req) |
| { |
| struct mmc_blk_request *brq = &mqrq->brq; |
| |
| memset(brq, 0, sizeof(*brq)); |
| |
| brq->mrq.cmd = &brq->cmd; |
| brq->mrq.tag = req->tag; |
| |
| return &brq->mrq; |
| } |
| |
| static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); |
| |
| mrq->cmd->opcode = MMC_SWITCH; |
| mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | |
| (EXT_CSD_FLUSH_CACHE << 16) | |
| (1 << 8) | |
| EXT_CSD_CMD_SET_NORMAL; |
| mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; |
| |
| return mmc_blk_cqe_start_req(mq->card->host, mrq); |
| } |
| |
| static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_host *host = mq->card->host; |
| int err; |
| |
| mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); |
| mqrq->brq.mrq.done = mmc_blk_hsq_req_done; |
| mmc_pre_req(host, &mqrq->brq.mrq); |
| |
| err = mmc_cqe_start_req(host, &mqrq->brq.mrq); |
| if (err) |
| mmc_post_req(host, &mqrq->brq.mrq, err); |
| |
| return err; |
| } |
| |
| static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_host *host = mq->card->host; |
| |
| if (host->hsq_enabled) |
| return mmc_blk_hsq_issue_rw_rq(mq, req); |
| |
| mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); |
| |
| return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); |
| } |
| |
| static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, |
| struct mmc_card *card, |
| int recovery_mode, |
| struct mmc_queue *mq) |
| { |
| u32 readcmd, writecmd; |
| struct mmc_blk_request *brq = &mqrq->brq; |
| struct request *req = mmc_queue_req_to_req(mqrq); |
| struct mmc_blk_data *md = mq->blkdata; |
| bool do_rel_wr, do_data_tag; |
| |
| mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); |
| |
| brq->mrq.cmd = &brq->cmd; |
| |
| brq->cmd.arg = blk_rq_pos(req); |
| if (!mmc_card_blockaddr(card)) |
| brq->cmd.arg <<= 9; |
| brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| if (brq->data.blocks > 1 || do_rel_wr) { |
| /* SPI multiblock writes terminate using a special |
| * token, not a STOP_TRANSMISSION request. |
| */ |
| if (!mmc_host_is_spi(card->host) || |
| rq_data_dir(req) == READ) |
| brq->mrq.stop = &brq->stop; |
| readcmd = MMC_READ_MULTIPLE_BLOCK; |
| writecmd = MMC_WRITE_MULTIPLE_BLOCK; |
| } else { |
| brq->mrq.stop = NULL; |
| readcmd = MMC_READ_SINGLE_BLOCK; |
| writecmd = MMC_WRITE_BLOCK; |
| } |
| brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; |
| |
| /* |
| * Pre-defined multi-block transfers are preferable to |
| * open ended-ones (and necessary for reliable writes). |
| * However, it is not sufficient to just send CMD23, |
| * and avoid the final CMD12, as on an error condition |
| * CMD12 (stop) needs to be sent anyway. This, coupled |
| * with Auto-CMD23 enhancements provided by some |
| * hosts, means that the complexity of dealing |
| * with this is best left to the host. If CMD23 is |
| * supported by card and host, we'll fill sbc in and let |
| * the host deal with handling it correctly. This means |
| * that for hosts that don't expose MMC_CAP_CMD23, no |
| * change of behavior will be observed. |
| * |
| * N.B: Some MMC cards experience perf degradation. |
| * We'll avoid using CMD23-bounded multiblock writes for |
| * these, while retaining features like reliable writes. |
| */ |
| if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && |
| (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || |
| do_data_tag)) { |
| brq->sbc.opcode = MMC_SET_BLOCK_COUNT; |
| brq->sbc.arg = brq->data.blocks | |
| (do_rel_wr ? (1 << 31) : 0) | |
| (do_data_tag ? (1 << 29) : 0); |
| brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| brq->mrq.sbc = &brq->sbc; |
| } |
| } |
| |
| #define MMC_MAX_RETRIES 5 |
| #define MMC_DATA_RETRIES 2 |
| #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) |
| |
| static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) |
| { |
| struct mmc_command cmd = { |
| .opcode = MMC_STOP_TRANSMISSION, |
| .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, |
| /* Some hosts wait for busy anyway, so provide a busy timeout */ |
| .busy_timeout = timeout, |
| }; |
| |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| |
| static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_blk_request *brq = &mqrq->brq; |
| unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); |
| int err; |
| |
| mmc_retune_hold_now(card->host); |
| |
| mmc_blk_send_stop(card, timeout); |
| |
| err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); |
| |
| mmc_retune_release(card->host); |
| |
| return err; |
| } |
| |
| #define MMC_READ_SINGLE_RETRIES 2 |
| |
| /* Single (native) sector read during recovery */ |
| static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_request *mrq = &mqrq->brq.mrq; |
| struct mmc_card *card = mq->card; |
| struct mmc_host *host = card->host; |
| blk_status_t error = BLK_STS_OK; |
| size_t bytes_per_read = queue_physical_block_size(mq->queue); |
| |
| do { |
| u32 status; |
| int err; |
| int retries = 0; |
| |
| while (retries++ <= MMC_READ_SINGLE_RETRIES) { |
| mmc_blk_rw_rq_prep(mqrq, card, 1, mq); |
| |
| mmc_wait_for_req(host, mrq); |
| |
| err = mmc_send_status(card, &status); |
| if (err) |
| goto error_exit; |
| |
| if (!mmc_host_is_spi(host) && |
| !mmc_ready_for_data(status)) { |
| err = mmc_blk_fix_state(card, req); |
| if (err) |
| goto error_exit; |
| } |
| |
| if (!mrq->cmd->error) |
| break; |
| } |
| |
| if (mrq->cmd->error || |
| mrq->data->error || |
| (!mmc_host_is_spi(host) && |
| (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) |
| error = BLK_STS_IOERR; |
| else |
| error = BLK_STS_OK; |
| |
| } while (blk_update_request(req, error, bytes_per_read)); |
| |
| return; |
| |
| error_exit: |
| mrq->data->bytes_xfered = 0; |
| blk_update_request(req, BLK_STS_IOERR, bytes_per_read); |
| /* Let it try the remaining request again */ |
| if (mqrq->retries > MMC_MAX_RETRIES - 1) |
| mqrq->retries = MMC_MAX_RETRIES - 1; |
| } |
| |
| static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) |
| { |
| return !!brq->mrq.sbc; |
| } |
| |
| static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) |
| { |
| return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; |
| } |
| |
| /* |
| * Check for errors the host controller driver might not have seen such as |
| * response mode errors or invalid card state. |
| */ |
| static bool mmc_blk_status_error(struct request *req, u32 status) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_blk_request *brq = &mqrq->brq; |
| struct mmc_queue *mq = req->q->queuedata; |
| u32 stop_err_bits; |
| |
| if (mmc_host_is_spi(mq->card->host)) |
| return false; |
| |
| stop_err_bits = mmc_blk_stop_err_bits(brq); |
| |
| return brq->cmd.resp[0] & CMD_ERRORS || |
| brq->stop.resp[0] & stop_err_bits || |
| status & stop_err_bits || |
| (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); |
| } |
| |
| static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) |
| { |
| return !brq->sbc.error && !brq->cmd.error && |
| !(brq->cmd.resp[0] & CMD_ERRORS); |
| } |
| |
| /* |
| * Requests are completed by mmc_blk_mq_complete_rq() which sets simple |
| * policy: |
| * 1. A request that has transferred at least some data is considered |
| * successful and will be requeued if there is remaining data to |
| * transfer. |
| * 2. Otherwise the number of retries is incremented and the request |
| * will be requeued if there are remaining retries. |
| * 3. Otherwise the request will be errored out. |
| * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and |
| * mqrq->retries. So there are only 4 possible actions here: |
| * 1. do not accept the bytes_xfered value i.e. set it to zero |
| * 2. change mqrq->retries to determine the number of retries |
| * 3. try to reset the card |
| * 4. read one sector at a time |
| */ |
| static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) |
| { |
| int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_blk_request *brq = &mqrq->brq; |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = mq->card; |
| u32 status; |
| u32 blocks; |
| int err; |
| |
| /* |
| * Some errors the host driver might not have seen. Set the number of |
| * bytes transferred to zero in that case. |
| */ |
| err = __mmc_send_status(card, &status, 0); |
| if (err || mmc_blk_status_error(req, status)) |
| brq->data.bytes_xfered = 0; |
| |
| mmc_retune_release(card->host); |
| |
| /* |
| * Try again to get the status. This also provides an opportunity for |
| * re-tuning. |
| */ |
| if (err) |
| err = __mmc_send_status(card, &status, 0); |
| |
| /* |
| * Nothing more to do after the number of bytes transferred has been |
| * updated and there is no card. |
| */ |
| if (err && mmc_detect_card_removed(card->host)) |
| return; |
| |
| /* Try to get back to "tran" state */ |
| if (!mmc_host_is_spi(mq->card->host) && |
| (err || !mmc_ready_for_data(status))) |
| err = mmc_blk_fix_state(mq->card, req); |
| |
| /* |
| * Special case for SD cards where the card might record the number of |
| * blocks written. |
| */ |
| if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && |
| rq_data_dir(req) == WRITE) { |
| if (mmc_sd_num_wr_blocks(card, &blocks)) |
| brq->data.bytes_xfered = 0; |
| else |
| brq->data.bytes_xfered = blocks << 9; |
| } |
| |
| /* Reset if the card is in a bad state */ |
| if (!mmc_host_is_spi(mq->card->host) && |
| err && mmc_blk_reset(md, card->host, type)) { |
| pr_err("%s: recovery failed!\n", req->q->disk->disk_name); |
| mqrq->retries = MMC_NO_RETRIES; |
| return; |
| } |
| |
| /* |
| * If anything was done, just return and if there is anything remaining |
| * on the request it will get requeued. |
| */ |
| if (brq->data.bytes_xfered) |
| return; |
| |
| /* Reset before last retry */ |
| if (mqrq->retries + 1 == MMC_MAX_RETRIES && |
| mmc_blk_reset(md, card->host, type)) |
| return; |
| |
| /* Command errors fail fast, so use all MMC_MAX_RETRIES */ |
| if (brq->sbc.error || brq->cmd.error) |
| return; |
| |
| /* Reduce the remaining retries for data errors */ |
| if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { |
| mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; |
| return; |
| } |
| |
| if (rq_data_dir(req) == READ && brq->data.blocks > |
| queue_physical_block_size(mq->queue) >> 9) { |
| /* Read one (native) sector at a time */ |
| mmc_blk_read_single(mq, req); |
| return; |
| } |
| } |
| |
| static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) |
| { |
| mmc_blk_eval_resp_error(brq); |
| |
| return brq->sbc.error || brq->cmd.error || brq->stop.error || |
| brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; |
| } |
| |
| static int mmc_spi_err_check(struct mmc_card *card) |
| { |
| u32 status = 0; |
| int err; |
| |
| /* |
| * SPI does not have a TRAN state we have to wait on, instead the |
| * card is ready again when it no longer holds the line LOW. |
| * We still have to ensure two things here before we know the write |
| * was successful: |
| * 1. The card has not disconnected during busy and we actually read our |
| * own pull-up, thinking it was still connected, so ensure it |
| * still responds. |
| * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a |
| * just reconnected card after being disconnected during busy. |
| */ |
| err = __mmc_send_status(card, &status, 0); |
| if (err) |
| return err; |
| /* All R1 and R2 bits of SPI are errors in our case */ |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| static int mmc_blk_busy_cb(void *cb_data, bool *busy) |
| { |
| struct mmc_blk_busy_data *data = cb_data; |
| u32 status = 0; |
| int err; |
| |
| err = mmc_send_status(data->card, &status); |
| if (err) |
| return err; |
| |
| /* Accumulate response error bits. */ |
| data->status |= status; |
| |
| *busy = !mmc_ready_for_data(status); |
| return 0; |
| } |
| |
| static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_blk_busy_data cb_data; |
| int err; |
| |
| if (rq_data_dir(req) == READ) |
| return 0; |
| |
| if (mmc_host_is_spi(card->host)) { |
| err = mmc_spi_err_check(card); |
| if (err) |
| mqrq->brq.data.bytes_xfered = 0; |
| return err; |
| } |
| |
| cb_data.card = card; |
| cb_data.status = 0; |
| err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, |
| &mmc_blk_busy_cb, &cb_data); |
| |
| /* |
| * Do not assume data transferred correctly if there are any error bits |
| * set. |
| */ |
| if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { |
| mqrq->brq.data.bytes_xfered = 0; |
| err = err ? err : -EIO; |
| } |
| |
| /* Copy the exception bit so it will be seen later on */ |
| if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) |
| mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; |
| |
| return err; |
| } |
| |
| static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, |
| struct request *req) |
| { |
| int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; |
| |
| mmc_blk_reset_success(mq->blkdata, type); |
| } |
| |
| static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; |
| |
| if (nr_bytes) { |
| if (blk_update_request(req, BLK_STS_OK, nr_bytes)) |
| blk_mq_requeue_request(req, true); |
| else |
| __blk_mq_end_request(req, BLK_STS_OK); |
| } else if (!blk_rq_bytes(req)) { |
| __blk_mq_end_request(req, BLK_STS_IOERR); |
| } else if (mqrq->retries++ < MMC_MAX_RETRIES) { |
| blk_mq_requeue_request(req, true); |
| } else { |
| if (mmc_card_removed(mq->card)) |
| req->rq_flags |= RQF_QUIET; |
| blk_mq_end_request(req, BLK_STS_IOERR); |
| } |
| } |
| |
| static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, |
| struct mmc_queue_req *mqrq) |
| { |
| return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && |
| (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || |
| mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); |
| } |
| |
| static void mmc_blk_urgent_bkops(struct mmc_queue *mq, |
| struct mmc_queue_req *mqrq) |
| { |
| if (mmc_blk_urgent_bkops_needed(mq, mqrq)) |
| mmc_run_bkops(mq->card); |
| } |
| |
| static void mmc_blk_hsq_req_done(struct mmc_request *mrq) |
| { |
| struct mmc_queue_req *mqrq = |
| container_of(mrq, struct mmc_queue_req, brq.mrq); |
| struct request *req = mmc_queue_req_to_req(mqrq); |
| struct request_queue *q = req->q; |
| struct mmc_queue *mq = q->queuedata; |
| struct mmc_host *host = mq->card->host; |
| unsigned long flags; |
| |
| if (mmc_blk_rq_error(&mqrq->brq) || |
| mmc_blk_urgent_bkops_needed(mq, mqrq)) { |
| spin_lock_irqsave(&mq->lock, flags); |
| mq->recovery_needed = true; |
| mq->recovery_req = req; |
| spin_unlock_irqrestore(&mq->lock, flags); |
| |
| host->cqe_ops->cqe_recovery_start(host); |
| |
| schedule_work(&mq->recovery_work); |
| return; |
| } |
| |
| mmc_blk_rw_reset_success(mq, req); |
| |
| /* |
| * Block layer timeouts race with completions which means the normal |
| * completion path cannot be used during recovery. |
| */ |
| if (mq->in_recovery) |
| mmc_blk_cqe_complete_rq(mq, req); |
| else if (likely(!blk_should_fake_timeout(req->q))) |
| blk_mq_complete_request(req); |
| } |
| |
| void mmc_blk_mq_complete(struct request *req) |
| { |
| struct mmc_queue *mq = req->q->queuedata; |
| struct mmc_host *host = mq->card->host; |
| |
| if (host->cqe_enabled) |
| mmc_blk_cqe_complete_rq(mq, req); |
| else if (likely(!blk_should_fake_timeout(req->q))) |
| mmc_blk_mq_complete_rq(mq, req); |
| } |
| |
| static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, |
| struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_host *host = mq->card->host; |
| |
| if (mmc_blk_rq_error(&mqrq->brq) || |
| mmc_blk_card_busy(mq->card, req)) { |
| mmc_blk_mq_rw_recovery(mq, req); |
| } else { |
| mmc_blk_rw_reset_success(mq, req); |
| mmc_retune_release(host); |
| } |
| |
| mmc_blk_urgent_bkops(mq, mqrq); |
| } |
| |
| static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) |
| { |
| unsigned long flags; |
| bool put_card; |
| |
| spin_lock_irqsave(&mq->lock, flags); |
| |
| mq->in_flight[issue_type] -= 1; |
| |
| put_card = (mmc_tot_in_flight(mq) == 0); |
| |
| spin_unlock_irqrestore(&mq->lock, flags); |
| |
| if (put_card) |
| mmc_put_card(mq->card, &mq->ctx); |
| } |
| |
| static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, |
| bool can_sleep) |
| { |
| enum mmc_issue_type issue_type = mmc_issue_type(mq, req); |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_request *mrq = &mqrq->brq.mrq; |
| struct mmc_host *host = mq->card->host; |
| |
| mmc_post_req(host, mrq, 0); |
| |
| /* |
| * Block layer timeouts race with completions which means the normal |
| * completion path cannot be used during recovery. |
| */ |
| if (mq->in_recovery) { |
| mmc_blk_mq_complete_rq(mq, req); |
| } else if (likely(!blk_should_fake_timeout(req->q))) { |
| if (can_sleep) |
| blk_mq_complete_request_direct(req, mmc_blk_mq_complete); |
| else |
| blk_mq_complete_request(req); |
| } |
| |
| mmc_blk_mq_dec_in_flight(mq, issue_type); |
| } |
| |
| void mmc_blk_mq_recovery(struct mmc_queue *mq) |
| { |
| struct request *req = mq->recovery_req; |
| struct mmc_host *host = mq->card->host; |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| |
| mq->recovery_req = NULL; |
| mq->rw_wait = false; |
| |
| if (mmc_blk_rq_error(&mqrq->brq)) { |
| mmc_retune_hold_now(host); |
| mmc_blk_mq_rw_recovery(mq, req); |
| } |
| |
| mmc_blk_urgent_bkops(mq, mqrq); |
| |
| mmc_blk_mq_post_req(mq, req, true); |
| } |
| |
| static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, |
| struct request **prev_req) |
| { |
| if (mmc_host_done_complete(mq->card->host)) |
| return; |
| |
| mutex_lock(&mq->complete_lock); |
| |
| if (!mq->complete_req) |
| goto out_unlock; |
| |
| mmc_blk_mq_poll_completion(mq, mq->complete_req); |
| |
| if (prev_req) |
| *prev_req = mq->complete_req; |
| else |
| mmc_blk_mq_post_req(mq, mq->complete_req, true); |
| |
| mq->complete_req = NULL; |
| |
| out_unlock: |
| mutex_unlock(&mq->complete_lock); |
| } |
| |
| void mmc_blk_mq_complete_work(struct work_struct *work) |
| { |
| struct mmc_queue *mq = container_of(work, struct mmc_queue, |
| complete_work); |
| |
| mmc_blk_mq_complete_prev_req(mq, NULL); |
| } |
| |
| static void mmc_blk_mq_req_done(struct mmc_request *mrq) |
| { |
| struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, |
| brq.mrq); |
| struct request *req = mmc_queue_req_to_req(mqrq); |
| struct request_queue *q = req->q; |
| struct mmc_queue *mq = q->queuedata; |
| struct mmc_host *host = mq->card->host; |
| unsigned long flags; |
| |
| if (!mmc_host_done_complete(host)) { |
| bool waiting; |
| |
| /* |
| * We cannot complete the request in this context, so record |
| * that there is a request to complete, and that a following |
| * request does not need to wait (although it does need to |
| * complete complete_req first). |
| */ |
| spin_lock_irqsave(&mq->lock, flags); |
| mq->complete_req = req; |
| mq->rw_wait = false; |
| waiting = mq->waiting; |
| spin_unlock_irqrestore(&mq->lock, flags); |
| |
| /* |
| * If 'waiting' then the waiting task will complete this |
| * request, otherwise queue a work to do it. Note that |
| * complete_work may still race with the dispatch of a following |
| * request. |
| */ |
| if (waiting) |
| wake_up(&mq->wait); |
| else |
| queue_work(mq->card->complete_wq, &mq->complete_work); |
| |
| return; |
| } |
| |
| /* Take the recovery path for errors or urgent background operations */ |
| if (mmc_blk_rq_error(&mqrq->brq) || |
| mmc_blk_urgent_bkops_needed(mq, mqrq)) { |
| spin_lock_irqsave(&mq->lock, flags); |
| mq->recovery_needed = true; |
| mq->recovery_req = req; |
| spin_unlock_irqrestore(&mq->lock, flags); |
| wake_up(&mq->wait); |
| schedule_work(&mq->recovery_work); |
| return; |
| } |
| |
| mmc_blk_rw_reset_success(mq, req); |
| |
| mq->rw_wait = false; |
| wake_up(&mq->wait); |
| |
| /* context unknown */ |
| mmc_blk_mq_post_req(mq, req, false); |
| } |
| |
| static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) |
| { |
| unsigned long flags; |
| bool done; |
| |
| /* |
| * Wait while there is another request in progress, but not if recovery |
| * is needed. Also indicate whether there is a request waiting to start. |
| */ |
| spin_lock_irqsave(&mq->lock, flags); |
| if (mq->recovery_needed) { |
| *err = -EBUSY; |
| done = true; |
| } else { |
| done = !mq->rw_wait; |
| } |
| mq->waiting = !done; |
| spin_unlock_irqrestore(&mq->lock, flags); |
| |
| return done; |
| } |
| |
| static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) |
| { |
| int err = 0; |
| |
| wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); |
| |
| /* Always complete the previous request if there is one */ |
| mmc_blk_mq_complete_prev_req(mq, prev_req); |
| |
| return err; |
| } |
| |
| static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, |
| struct request *req) |
| { |
| struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); |
| struct mmc_host *host = mq->card->host; |
| struct request *prev_req = NULL; |
| int err = 0; |
| |
| mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); |
| |
| mqrq->brq.mrq.done = mmc_blk_mq_req_done; |
| |
| mmc_pre_req(host, &mqrq->brq.mrq); |
| |
| err = mmc_blk_rw_wait(mq, &prev_req); |
| if (err) |
| goto out_post_req; |
| |
| mq->rw_wait = true; |
| |
| err = mmc_start_request(host, &mqrq->brq.mrq); |
| |
| if (prev_req) |
| mmc_blk_mq_post_req(mq, prev_req, true); |
| |
| if (err) |
| mq->rw_wait = false; |
| |
| /* Release re-tuning here where there is no synchronization required */ |
| if (err || mmc_host_done_complete(host)) |
| mmc_retune_release(host); |
| |
| out_post_req: |
| if (err) |
| mmc_post_req(host, &mqrq->brq.mrq, err); |
| |
| return err; |
| } |
| |
| static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) |
| { |
| if (host->cqe_enabled) |
| return host->cqe_ops->cqe_wait_for_idle(host); |
| |
| return mmc_blk_rw_wait(mq, NULL); |
| } |
| |
| enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_blk_data *md = mq->blkdata; |
| struct mmc_card *card = md->queue.card; |
| struct mmc_host *host = card->host; |
| int ret; |
| |
| ret = mmc_blk_part_switch(card, md->part_type); |
| if (ret) |
| return MMC_REQ_FAILED_TO_START; |
| |
| switch (mmc_issue_type(mq, req)) { |
| case MMC_ISSUE_SYNC: |
| ret = mmc_blk_wait_for_idle(mq, host); |
| if (ret) |
| return MMC_REQ_BUSY; |
| switch (req_op(req)) { |
| case REQ_OP_DRV_IN: |
| case REQ_OP_DRV_OUT: |
| mmc_blk_issue_drv_op(mq, req); |
| break; |
| case REQ_OP_DISCARD: |
| mmc_blk_issue_discard_rq(mq, req); |
| break; |
| case REQ_OP_SECURE_ERASE: |
| mmc_blk_issue_secdiscard_rq(mq, req); |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| mmc_blk_issue_trim_rq(mq, req); |
| break; |
| case REQ_OP_FLUSH: |
| mmc_blk_issue_flush(mq, req); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return MMC_REQ_FAILED_TO_START; |
| } |
| return MMC_REQ_FINISHED; |
| case MMC_ISSUE_DCMD: |
| case MMC_ISSUE_ASYNC: |
| switch (req_op(req)) { |
| case REQ_OP_FLUSH: |
| if (!mmc_cache_enabled(host)) { |
| blk_mq_end_request(req, BLK_STS_OK); |
| return MMC_REQ_FINISHED; |
| } |
| ret = mmc_blk_cqe_issue_flush(mq, req); |
| break; |
| case REQ_OP_WRITE: |
| card->written_flag = true; |
| fallthrough; |
| case REQ_OP_READ: |
| if (host->cqe_enabled) |
| ret = mmc_blk_cqe_issue_rw_rq(mq, req); |
| else |
| ret = mmc_blk_mq_issue_rw_rq(mq, req); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| ret = -EINVAL; |
| } |
| if (!ret) |
| return MMC_REQ_STARTED; |
| return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; |
| default: |
| WARN_ON_ONCE(1); |
| return MMC_REQ_FAILED_TO_START; |
| } |
| } |
| |
| static inline int mmc_blk_readonly(struct mmc_card *card) |
| { |
| return mmc_card_readonly(card) || |
| !(card->csd.cmdclass & CCC_BLOCK_WRITE); |
| } |
| |
| /* |
| * Search for a declared partitions node for the disk in mmc-card related node. |
| * |
| * This is to permit support for partition table defined in DT in special case |
| * where a partition table is not written in the disk and is expected to be |
| * passed from the running system. |
| * |
| * For the user disk, "partitions" node is searched. |
| * For the special HW disk, "partitions-" node with the appended name is used |
| * following this conversion table (to adhere to JEDEC naming) |
| * - boot0 -> partitions-boot1 |
| * - boot1 -> partitions-boot2 |
| * - gp0 -> partitions-gp1 |
| * - gp1 -> partitions-gp2 |
| * - gp2 -> partitions-gp3 |
| * - gp3 -> partitions-gp4 |
| */ |
| static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev, |
| const char *subname) |
| { |
| const char *node_name = "partitions"; |
| |
| if (subname) { |
| mmc_dev = mmc_dev->parent; |
| |
| /* |
| * Check if we are allocating a BOOT disk boot0/1 disk. |
| * In DT we use the JEDEC naming boot1/2. |
| */ |
| if (!strcmp(subname, "boot0")) |
| node_name = "partitions-boot1"; |
| if (!strcmp(subname, "boot1")) |
| node_name = "partitions-boot2"; |
| /* |
| * Check if we are allocating a GP disk gp0/1/2/3 disk. |
| * In DT we use the JEDEC naming gp1/2/3/4. |
| */ |
| if (!strcmp(subname, "gp0")) |
| node_name = "partitions-gp1"; |
| if (!strcmp(subname, "gp1")) |
| node_name = "partitions-gp2"; |
| if (!strcmp(subname, "gp2")) |
| node_name = "partitions-gp3"; |
| if (!strcmp(subname, "gp3")) |
| node_name = "partitions-gp4"; |
| } |
| |
| return device_get_named_child_node(mmc_dev, node_name); |
| } |
| |
| static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, |
| struct device *parent, |
| sector_t size, |
| bool default_ro, |
| const char *subname, |
| int area_type, |
| unsigned int part_type) |
| { |
| struct fwnode_handle *disk_fwnode; |
| struct mmc_blk_data *md; |
| int devidx, ret; |
| char cap_str[10]; |
| unsigned int features = 0; |
| |
| devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL); |
| if (devidx < 0) { |
| /* |
| * We get -ENOSPC because there are no more any available |
| * devidx. The reason may be that, either userspace haven't yet |
| * unmounted the partitions, which postpones mmc_blk_release() |
| * from being called, or the device has more partitions than |
| * what we support. |
| */ |
| if (devidx == -ENOSPC) |
| dev_err(mmc_dev(card->host), |
| "no more device IDs available\n"); |
| |
| return ERR_PTR(devidx); |
| } |
| |
| md = kzalloc(sizeof(*md), GFP_KERNEL); |
| if (!md) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| md->area_type = area_type; |
| |
| /* |
| * Set the read-only status based on the supported commands |
| * and the write protect switch. |
| */ |
| md->read_only = mmc_blk_readonly(card); |
| |
| if (mmc_host_cmd23(card->host)) { |
| if ((mmc_card_mmc(card) && |
| card->csd.mmca_vsn >= CSD_SPEC_VER_3) || |
| (mmc_card_sd(card) && |
| card->scr.cmds & SD_SCR_CMD23_SUPPORT)) |
| md->flags |= MMC_BLK_CMD23; |
| } |
| |
| if (md->flags & MMC_BLK_CMD23 && |
| ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || |
| card->ext_csd.rel_sectors)) { |
| md->flags |= MMC_BLK_REL_WR; |
| features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); |
| } else if (mmc_cache_enabled(card->host)) { |
| features |= BLK_FEAT_WRITE_CACHE; |
| } |
| |
| md->disk = mmc_init_queue(&md->queue, card, features); |
| if (IS_ERR(md->disk)) { |
| ret = PTR_ERR(md->disk); |
| goto err_kfree; |
| } |
| |
| INIT_LIST_HEAD(&md->part); |
| INIT_LIST_HEAD(&md->rpmbs); |
| kref_init(&md->kref); |
| |
| md->queue.blkdata = md; |
| md->part_type = part_type; |
| |
| md->disk->major = MMC_BLOCK_MAJOR; |
| md->disk->minors = perdev_minors; |
| md->disk->first_minor = devidx * perdev_minors; |
| md->disk->fops = &mmc_bdops; |
| md->disk->private_data = md; |
| md->parent = parent; |
| set_disk_ro(md->disk, md->read_only || default_ro); |
| if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) |
| md->disk->flags |= GENHD_FL_NO_PART; |
| |
| /* |
| * As discussed on lkml, GENHD_FL_REMOVABLE should: |
| * |
| * - be set for removable media with permanent block devices |
| * - be unset for removable block devices with permanent media |
| * |
| * Since MMC block devices clearly fall under the second |
| * case, we do not set GENHD_FL_REMOVABLE. Userspace |
| * should use the block device creation/destruction hotplug |
| * messages to tell when the card is present. |
| */ |
| |
| snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), |
| "mmcblk%u%s", card->host->index, subname ? subname : ""); |
| |
| set_capacity(md->disk, size); |
| |
| string_get_size((u64)size, 512, STRING_UNITS_2, |
| cap_str, sizeof(cap_str)); |
| pr_info("%s: %s %s %s%s\n", |
| md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), |
| cap_str, md->read_only ? " (ro)" : ""); |
| |
| /* used in ->open, must be set before add_disk: */ |
| if (area_type == MMC_BLK_DATA_AREA_MAIN) |
| dev_set_drvdata(&card->dev, md); |
| disk_fwnode = mmc_blk_get_partitions_node(parent, subname); |
| ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups, |
| disk_fwnode); |
| if (ret) |
| goto err_put_disk; |
| return md; |
| |
| err_put_disk: |
| put_disk(md->disk); |
| blk_mq_free_tag_set(&md->queue.tag_set); |
| err_kfree: |
| kfree(md); |
| out: |
| ida_free(&mmc_blk_ida, devidx); |
| return ERR_PTR(ret); |
| } |
| |
| static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) |
| { |
| sector_t size; |
| |
| if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { |
| /* |
| * The EXT_CSD sector count is in number or 512 byte |
| * sectors. |
| */ |
| size = card->ext_csd.sectors; |
| } else { |
| /* |
| * The CSD capacity field is in units of read_blkbits. |
| * set_capacity takes units of 512 bytes. |
| */ |
| size = (typeof(sector_t))card->csd.capacity |
| << (card->csd.read_blkbits - 9); |
| } |
| |
| return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, |
| MMC_BLK_DATA_AREA_MAIN, 0); |
| } |
| |
| static int mmc_blk_alloc_part(struct mmc_card *card, |
| struct mmc_blk_data *md, |
| unsigned int part_type, |
| sector_t size, |
| bool default_ro, |
| const char *subname, |
| int area_type) |
| { |
| struct mmc_blk_data *part_md; |
| |
| part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, |
| subname, area_type, part_type); |
| if (IS_ERR(part_md)) |
| return PTR_ERR(part_md); |
| list_add(&part_md->part, &md->part); |
| |
| return 0; |
| } |
| |
| /** |
| * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev |
| * @filp: the character device file |
| * @cmd: the ioctl() command |
| * @arg: the argument from userspace |
| * |
| * This will essentially just redirect the ioctl()s coming in over to |
| * the main block device spawning the RPMB character device. |
| */ |
| static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct mmc_rpmb_data *rpmb = filp->private_data; |
| int ret; |
| |
| switch (cmd) { |
| case MMC_IOC_CMD: |
| ret = mmc_blk_ioctl_cmd(rpmb->md, |
| (struct mmc_ioc_cmd __user *)arg, |
| rpmb); |
| break; |
| case MMC_IOC_MULTI_CMD: |
| ret = mmc_blk_ioctl_multi_cmd(rpmb->md, |
| (struct mmc_ioc_multi_cmd __user *)arg, |
| rpmb); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, |
| unsigned long arg) |
| { |
| return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); |
| } |
| #endif |
| |
| static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) |
| { |
| struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, |
| struct mmc_rpmb_data, chrdev); |
| |
| get_device(&rpmb->dev); |
| filp->private_data = rpmb; |
| |
| return nonseekable_open(inode, filp); |
| } |
| |
| static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) |
| { |
| struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, |
| struct mmc_rpmb_data, chrdev); |
| |
| put_device(&rpmb->dev); |
| |
| return 0; |
| } |
| |
| static const struct file_operations mmc_rpmb_fileops = { |
| .release = mmc_rpmb_chrdev_release, |
| .open = mmc_rpmb_chrdev_open, |
| .owner = THIS_MODULE, |
| .unlocked_ioctl = mmc_rpmb_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = mmc_rpmb_ioctl_compat, |
| #endif |
| }; |
| |
| static void mmc_blk_rpmb_device_release(struct device *dev) |
| { |
| struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); |
| |
| rpmb_dev_unregister(rpmb->rdev); |
| mmc_blk_put(rpmb->md); |
| ida_free(&mmc_rpmb_ida, rpmb->id); |
| kfree(rpmb); |
| } |
| |
| static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count) |
| { |
| unsigned int n; |
| |
| for (n = 0; n < cmd_count; n++) |
| kfree(idata[n]); |
| kfree(idata); |
| } |
| |
| static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb, |
| unsigned int cmd_count) |
| { |
| struct mmc_blk_ioc_data **idata; |
| unsigned int n; |
| |
| idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL); |
| if (!idata) |
| return NULL; |
| |
| for (n = 0; n < cmd_count; n++) { |
| idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL); |
| if (!idata[n]) { |
| free_idata(idata, n); |
| return NULL; |
| } |
| idata[n]->rpmb = rpmb; |
| } |
| |
| return idata; |
| } |
| |
| static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode, |
| int write_flag, u8 *buf, unsigned int buf_bytes) |
| { |
| /* |
| * The size of an RPMB frame must match what's expected by the |
| * hardware. |
| */ |
| BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512); |
| |
| idata->ic.opcode = opcode; |
| idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC; |
| idata->ic.write_flag = write_flag; |
| idata->ic.blksz = sizeof(struct rpmb_frame); |
| idata->ic.blocks = buf_bytes / idata->ic.blksz; |
| idata->buf = buf; |
| idata->buf_bytes = buf_bytes; |
| } |
| |
| static int mmc_route_rpmb_frames(struct device *dev, u8 *req, |
| unsigned int req_len, u8 *resp, |
| unsigned int resp_len) |
| { |
| struct rpmb_frame *frm = (struct rpmb_frame *)req; |
| struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); |
| struct mmc_blk_data *md = rpmb->md; |
| struct mmc_blk_ioc_data **idata; |
| struct mmc_queue_req *mq_rq; |
| unsigned int cmd_count; |
| struct request *rq; |
| u16 req_type; |
| bool write; |
| int ret; |
| |
| if (IS_ERR(md->queue.card)) |
| return PTR_ERR(md->queue.card); |
| |
| if (req_len < sizeof(*frm)) |
| return -EINVAL; |
| |
| req_type = be16_to_cpu(frm->req_resp); |
| switch (req_type) { |
| case RPMB_PROGRAM_KEY: |
| if (req_len != sizeof(struct rpmb_frame) || |
| resp_len != sizeof(struct rpmb_frame)) |
| return -EINVAL; |
| write = true; |
| break; |
| case RPMB_GET_WRITE_COUNTER: |
| if (req_len != sizeof(struct rpmb_frame) || |
| resp_len != sizeof(struct rpmb_frame)) |
| return -EINVAL; |
| write = false; |
| break; |
| case RPMB_WRITE_DATA: |
| if (req_len % sizeof(struct rpmb_frame) || |
| resp_len != sizeof(struct rpmb_frame)) |
| return -EINVAL; |
| write = true; |
| break; |
| case RPMB_READ_DATA: |
| if (req_len != sizeof(struct rpmb_frame) || |
| resp_len % sizeof(struct rpmb_frame)) |
| return -EINVAL; |
| write = false; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (write) |
| cmd_count = 3; |
| else |
| cmd_count = 2; |
| |
| idata = alloc_idata(rpmb, cmd_count); |
| if (!idata) |
| return -ENOMEM; |
| |
| if (write) { |
| struct rpmb_frame *frm = (struct rpmb_frame *)resp; |
| |
| /* Send write request frame(s) */ |
| set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, |
| 1 | MMC_CMD23_ARG_REL_WR, req, req_len); |
| |
| /* Send result request frame */ |
| memset(frm, 0, sizeof(*frm)); |
| frm->req_resp = cpu_to_be16(RPMB_RESULT_READ); |
| set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp, |
| resp_len); |
| |
| /* Read response frame */ |
| set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len); |
| } else { |
| /* Send write request frame(s) */ |
| set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len); |
| |
| /* Read response frame */ |
| set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len); |
| } |
| |
| rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0); |
| if (IS_ERR(rq)) { |
| ret = PTR_ERR(rq); |
| goto out; |
| } |
| |
| mq_rq = req_to_mmc_queue_req(rq); |
| mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB; |
| mq_rq->drv_op_result = -EIO; |
| mq_rq->drv_op_data = idata; |
| mq_rq->ioc_count = cmd_count; |
| blk_execute_rq(rq, false); |
| ret = req_to_mmc_queue_req(rq)->drv_op_result; |
| |
| blk_mq_free_request(rq); |
| |
| out: |
| free_idata(idata, cmd_count); |
| return ret; |
| } |
| |
| static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, |
| struct mmc_blk_data *md, |
| unsigned int part_index, |
| sector_t size, |
| const char *subname) |
| { |
| int devidx, ret; |
| char rpmb_name[DISK_NAME_LEN]; |
| char cap_str[10]; |
| struct mmc_rpmb_data *rpmb; |
| |
| /* This creates the minor number for the RPMB char device */ |
| devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL); |
| if (devidx < 0) |
| return devidx; |
| |
| rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); |
| if (!rpmb) { |
| ida_free(&mmc_rpmb_ida, devidx); |
| return -ENOMEM; |
| } |
| |
| snprintf(rpmb_name, sizeof(rpmb_name), |
| "mmcblk%u%s", card->host->index, subname ? subname : ""); |
| |
| rpmb->id = devidx; |
| rpmb->part_index = part_index; |
| rpmb->dev.init_name = rpmb_name; |
| rpmb->dev.bus = &mmc_rpmb_bus_type; |
| rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); |
| rpmb->dev.parent = &card->dev; |
| rpmb->dev.release = mmc_blk_rpmb_device_release; |
| device_initialize(&rpmb->dev); |
| dev_set_drvdata(&rpmb->dev, rpmb); |
| mmc_blk_get(md->disk); |
| rpmb->md = md; |
| |
| cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); |
| rpmb->chrdev.owner = THIS_MODULE; |
| ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); |
| if (ret) { |
| pr_err("%s: could not add character device\n", rpmb_name); |
| goto out_put_device; |
| } |
| |
| list_add(&rpmb->node, &md->rpmbs); |
| |
| string_get_size((u64)size, 512, STRING_UNITS_2, |
| cap_str, sizeof(cap_str)); |
| |
| pr_info("%s: %s %s %s, chardev (%d:%d)\n", |
| rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, |
| MAJOR(mmc_rpmb_devt), rpmb->id); |
| |
| return 0; |
| |
| out_put_device: |
| put_device(&rpmb->dev); |
| return ret; |
| } |
| |
| static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) |
| |
| { |
| cdev_device_del(&rpmb->chrdev, &rpmb->dev); |
| put_device(&rpmb->dev); |
| } |
| |
| /* MMC Physical partitions consist of two boot partitions and |
| * up to four general purpose partitions. |
| * For each partition enabled in EXT_CSD a block device will be allocatedi |
| * to provide access to the partition. |
| */ |
| |
| static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) |
| { |
| int idx, ret; |
| |
| if (!mmc_card_mmc(card)) |
| return 0; |
| |
| for (idx = 0; idx < card->nr_parts; idx++) { |
| if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { |
| /* |
| * RPMB partitions does not provide block access, they |
| * are only accessed using ioctl():s. Thus create |
| * special RPMB block devices that do not have a |
| * backing block queue for these. |
| */ |
| ret = mmc_blk_alloc_rpmb_part(card, md, |
| card->part[idx].part_cfg, |
| card->part[idx].size >> 9, |
| card->part[idx].name); |
| if (ret) |
| return ret; |
| } else if (card->part[idx].size) { |
| ret = mmc_blk_alloc_part(card, md, |
| card->part[idx].part_cfg, |
| card->part[idx].size >> 9, |
| card->part[idx].force_ro, |
| card->part[idx].name, |
| card->part[idx].area_type); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mmc_blk_remove_req(struct mmc_blk_data *md) |
| { |
| /* |
| * Flush remaining requests and free queues. It is freeing the queue |
| * that stops new requests from being accepted. |
| */ |
| del_gendisk(md->disk); |
| mmc_cleanup_queue(&md->queue); |
| mmc_blk_put(md); |
| } |
| |
| static void mmc_blk_remove_parts(struct mmc_card *card, |
| struct mmc_blk_data *md) |
| { |
| struct list_head *pos, *q; |
| struct mmc_blk_data *part_md; |
| struct mmc_rpmb_data *rpmb; |
| |
| /* Remove RPMB partitions */ |
| list_for_each_safe(pos, q, &md->rpmbs) { |
| rpmb = list_entry(pos, struct mmc_rpmb_data, node); |
| list_del(pos); |
| mmc_blk_remove_rpmb_part(rpmb); |
| } |
| /* Remove block partitions */ |
| list_for_each_safe(pos, q, &md->part) { |
| part_md = list_entry(pos, struct mmc_blk_data, part); |
| list_del(pos); |
| mmc_blk_remove_req(part_md); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| static int mmc_dbg_card_status_get(void *data, u64 *val) |
| { |
| struct mmc_card *card = data; |
| struct mmc_blk_data *md = dev_get_drvdata(&card->dev); |
| struct mmc_queue *mq = &md->queue; |
| struct request *req; |
| int ret; |
| |
| /* Ask the block layer about the card status */ |
| req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; |
| req_to_mmc_queue_req(req)->drv_op_result = -EIO; |
| blk_execute_rq(req, false); |
| ret = req_to_mmc_queue_req(req)->drv_op_result; |
| if (ret >= 0) { |
| *val = ret; |
| ret = 0; |
| } |
| blk_mq_free_request(req); |
| |
| return ret; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, |
| NULL, "%08llx\n"); |
| |
| /* That is two digits * 512 + 1 for newline */ |
| #define EXT_CSD_STR_LEN 1025 |
| |
| static int mmc_ext_csd_open(struct inode *inode, struct file *filp) |
| { |
| struct mmc_card *card = inode->i_private; |
| struct mmc_blk_data *md = dev_get_drvdata(&card->dev); |
| struct mmc_queue *mq = &md->queue; |
| struct request *req; |
| char *buf; |
| ssize_t n = 0; |
| u8 *ext_csd; |
| int err, i; |
| |
| buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* Ask the block layer for the EXT CSD */ |
| req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); |
| if (IS_ERR(req)) { |
| err = PTR_ERR(req); |
| goto out_free; |
| } |
| req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; |
| req_to_mmc_queue_req(req)->drv_op_result = -EIO; |
| req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; |
| blk_execute_rq(req, false); |
| err = req_to_mmc_queue_req(req)->drv_op_result; |
| blk_mq_free_request(req); |
| if (err) { |
| pr_err("FAILED %d\n", err); |
| goto out_free; |
| } |
| |
| for (i = 0; i < 512; i++) |
| n += sprintf(buf + n, "%02x", ext_csd[i]); |
| n += sprintf(buf + n, "\n"); |
| |
| if (n != EXT_CSD_STR_LEN) { |
| err = -EINVAL; |
| kfree(ext_csd); |
| goto out_free; |
| } |
| |
| filp->private_data = buf; |
| kfree(ext_csd); |
| return 0; |
| |
| out_free: |
| kfree(buf); |
| return err; |
| } |
| |
| static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| char *buf = filp->private_data; |
| |
| return simple_read_from_buffer(ubuf, cnt, ppos, |
| buf, EXT_CSD_STR_LEN); |
| } |
| |
| static int mmc_ext_csd_release(struct inode *inode, struct file *file) |
| { |
| kfree(file->private_data); |
| return 0; |
| } |
| |
| static const struct file_operations mmc_dbg_ext_csd_fops = { |
| .open = mmc_ext_csd_open, |
| .read = mmc_ext_csd_read, |
| .release = mmc_ext_csd_release, |
| .llseek = default_llseek, |
| }; |
| |
| static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) |
| { |
| struct dentry *root; |
| |
| if (!card->debugfs_root) |
| return; |
| |
| root = card->debugfs_root; |
| |
| if (mmc_card_mmc(card) || mmc_card_sd(card)) { |
| md->status_dentry = |
| debugfs_create_file_unsafe("status", 0400, root, |
| card, |
| &mmc_dbg_card_status_fops); |
| } |
| |
| if (mmc_card_mmc(card)) { |
| md->ext_csd_dentry = |
| debugfs_create_file("ext_csd", S_IRUSR, root, card, |
| &mmc_dbg_ext_csd_fops); |
| } |
| } |
| |
| static void mmc_blk_remove_debugfs(struct mmc_card *card, |
| struct mmc_blk_data *md) |
| { |
| if (!card->debugfs_root) |
| return; |
| |
| debugfs_remove(md->status_dentry); |
| md->status_dentry = NULL; |
| |
| debugfs_remove(md->ext_csd_dentry); |
| md->ext_csd_dentry = NULL; |
| } |
| |
| #else |
| |
| static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) |
| { |
| } |
| |
| static void mmc_blk_remove_debugfs(struct mmc_card *card, |
| struct mmc_blk_data *md) |
| { |
| } |
| |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| static void mmc_blk_rpmb_add(struct mmc_card *card) |
| { |
| struct mmc_blk_data *md = dev_get_drvdata(&card->dev); |
| struct mmc_rpmb_data *rpmb; |
| struct rpmb_dev *rdev; |
| unsigned int n; |
| u32 cid[4]; |
| struct rpmb_descr descr = { |
| .type = RPMB_TYPE_EMMC, |
| .route_frames = mmc_route_rpmb_frames, |
| .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ? |
| 2 : 32, |
| .capacity = card->ext_csd.raw_rpmb_size_mult, |
| .dev_id = (void *)cid, |
| .dev_id_len = sizeof(cid), |
| }; |
| |
| /* |
| * Provice CID as an octet array. The CID needs to be interpreted |
| * when used as input to derive the RPMB key since some fields |
| * will change due to firmware updates. |
| */ |
| for (n = 0; n < 4; n++) |
| cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]); |
| |
| list_for_each_entry(rpmb, &md->rpmbs, node) { |
| rdev = rpmb_dev_register(&rpmb->dev, &descr); |
| if (IS_ERR(rdev)) { |
| pr_warn("%s: could not register RPMB device\n", |
| dev_name(&rpmb->dev)); |
| continue; |
| } |
| rpmb->rdev = rdev; |
| } |
| } |
| |
| static int mmc_blk_probe(struct mmc_card *card) |
| { |
| struct mmc_blk_data *md; |
| int ret = 0; |
| |
| /* |
| * Check that the card supports the command class(es) we need. |
| */ |
| if (!(card->csd.cmdclass & CCC_BLOCK_READ)) |
| return -ENODEV; |
| |
| mmc_fixup_device(card, mmc_blk_fixups); |
| |
| card->complete_wq = alloc_workqueue("mmc_complete", |
| WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); |
| if (!card->complete_wq) { |
| pr_err("Failed to create mmc completion workqueue"); |
| return -ENOMEM; |
| } |
| |
| md = mmc_blk_alloc(card); |
| if (IS_ERR(md)) { |
| ret = PTR_ERR(md); |
| goto out_free; |
| } |
| |
| ret = mmc_blk_alloc_parts(card, md); |
| if (ret) |
| goto out; |
| |
| /* Add two debugfs entries */ |
| mmc_blk_add_debugfs(card, md); |
| |
| pm_runtime_set_autosuspend_delay(&card->dev, 3000); |
| pm_runtime_use_autosuspend(&card->dev); |
| |
| /* |
| * Don't enable runtime PM for SD-combo cards here. Leave that |
| * decision to be taken during the SDIO init sequence instead. |
| */ |
| if (!mmc_card_sd_combo(card)) { |
| pm_runtime_set_active(&card->dev); |
| pm_runtime_enable(&card->dev); |
| } |
| |
| mmc_blk_rpmb_add(card); |
| |
| return 0; |
| |
| out: |
| mmc_blk_remove_parts(card, md); |
| mmc_blk_remove_req(md); |
| out_free: |
| destroy_workqueue(card->complete_wq); |
| return ret; |
| } |
| |
| static void mmc_blk_remove(struct mmc_card *card) |
| { |
| struct mmc_blk_data *md = dev_get_drvdata(&card->dev); |
| |
| mmc_blk_remove_debugfs(card, md); |
| mmc_blk_remove_parts(card, md); |
| pm_runtime_get_sync(&card->dev); |
| if (md->part_curr != md->part_type) { |
| mmc_claim_host(card->host); |
| mmc_blk_part_switch(card, md->part_type); |
| mmc_release_host(card->host); |
| } |
| if (!mmc_card_sd_combo(card)) |
| pm_runtime_disable(&card->dev); |
| pm_runtime_put_noidle(&card->dev); |
| mmc_blk_remove_req(md); |
| destroy_workqueue(card->complete_wq); |
| } |
| |
| static int _mmc_blk_suspend(struct mmc_card *card) |
| { |
| struct mmc_blk_data *part_md; |
| struct mmc_blk_data *md = dev_get_drvdata(&card->dev); |
| |
| if (md) { |
| mmc_queue_suspend(&md->queue); |
| list_for_each_entry(part_md, &md->part, part) { |
| mmc_queue_suspend(&part_md->queue); |
| } |
| } |
| return 0; |
| } |
| |
| static void mmc_blk_shutdown(struct mmc_card *card) |
| { |
| _mmc_blk_suspend(card); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int mmc_blk_suspend(struct device *dev) |
| { |
| struct mmc_card *card = mmc_dev_to_card(dev); |
| |
| return _mmc_blk_suspend(card); |
| } |
| |
| static int mmc_blk_resume(struct device *dev) |
| { |
| struct mmc_blk_data *part_md; |
| struct mmc_blk_data *md = dev_get_drvdata(dev); |
| |
| if (md) { |
| /* |
| * Resume involves the card going into idle state, |
| * so current partition is always the main one. |
| */ |
| md->part_curr = md->part_type; |
| mmc_queue_resume(&md->queue); |
| list_for_each_entry(part_md, &md->part, part) { |
| mmc_queue_resume(&part_md->queue); |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); |
| |
| static struct mmc_driver mmc_driver = { |
| .drv = { |
| .name = "mmcblk", |
| .pm = &mmc_blk_pm_ops, |
| }, |
| .probe = mmc_blk_probe, |
| .remove = mmc_blk_remove, |
| .shutdown = mmc_blk_shutdown, |
| }; |
| |
| static int __init mmc_blk_init(void) |
| { |
| int res; |
| |
| res = bus_register(&mmc_rpmb_bus_type); |
| if (res < 0) { |
| pr_err("mmcblk: could not register RPMB bus type\n"); |
| return res; |
| } |
| res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); |
| if (res < 0) { |
| pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); |
| goto out_bus_unreg; |
| } |
| |
| if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) |
| pr_info("mmcblk: using %d minors per device\n", perdev_minors); |
| |
| max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); |
| |
| res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| if (res) |
| goto out_chrdev_unreg; |
| |
| res = mmc_register_driver(&mmc_driver); |
| if (res) |
| goto out_blkdev_unreg; |
| |
| return 0; |
| |
| out_blkdev_unreg: |
| unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| out_chrdev_unreg: |
| unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); |
| out_bus_unreg: |
| bus_unregister(&mmc_rpmb_bus_type); |
| return res; |
| } |
| |
| static void __exit mmc_blk_exit(void) |
| { |
| mmc_unregister_driver(&mmc_driver); |
| unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); |
| bus_unregister(&mmc_rpmb_bus_type); |
| } |
| |
| module_init(mmc_blk_init); |
| module_exit(mmc_blk_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); |