blob: 045ead46ec8fcb6fb410e219165c2a944a77f7f5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright 2014-2015 Freescale
// Copyright 2018 NXP
/*
* Driver for NXP Layerscape Queue Direct Memory Access Controller
*
* Author:
* Wen He <wen.he_1@nxp.com>
* Jiaheng Fan <jiaheng.fan@nxp.com>
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/of_dma.h>
#include <linux/dma-mapping.h>
#include "virt-dma.h"
#include "fsldma.h"
/* Register related definition */
#define FSL_QDMA_DMR 0x0
#define FSL_QDMA_DSR 0x4
#define FSL_QDMA_DEIER 0xe00
#define FSL_QDMA_DEDR 0xe04
#define FSL_QDMA_DECFDW0R 0xe10
#define FSL_QDMA_DECFDW1R 0xe14
#define FSL_QDMA_DECFDW2R 0xe18
#define FSL_QDMA_DECFDW3R 0xe1c
#define FSL_QDMA_DECFQIDR 0xe30
#define FSL_QDMA_DECBR 0xe34
#define FSL_QDMA_BCQMR(x) (0xc0 + 0x100 * (x))
#define FSL_QDMA_BCQSR(x) (0xc4 + 0x100 * (x))
#define FSL_QDMA_BCQEDPA_SADDR(x) (0xc8 + 0x100 * (x))
#define FSL_QDMA_BCQDPA_SADDR(x) (0xcc + 0x100 * (x))
#define FSL_QDMA_BCQEEPA_SADDR(x) (0xd0 + 0x100 * (x))
#define FSL_QDMA_BCQEPA_SADDR(x) (0xd4 + 0x100 * (x))
#define FSL_QDMA_BCQIER(x) (0xe0 + 0x100 * (x))
#define FSL_QDMA_BCQIDR(x) (0xe4 + 0x100 * (x))
#define FSL_QDMA_SQDPAR 0x80c
#define FSL_QDMA_SQEPAR 0x814
#define FSL_QDMA_BSQMR 0x800
#define FSL_QDMA_BSQSR 0x804
#define FSL_QDMA_BSQICR 0x828
#define FSL_QDMA_CQMR 0xa00
#define FSL_QDMA_CQDSCR1 0xa08
#define FSL_QDMA_CQDSCR2 0xa0c
#define FSL_QDMA_CQIER 0xa10
#define FSL_QDMA_CQEDR 0xa14
#define FSL_QDMA_SQCCMR 0xa20
/* Registers for bit and genmask */
#define FSL_QDMA_CQIDR_SQT BIT(15)
#define QDMA_CCDF_FORMAT BIT(29)
#define QDMA_CCDF_SER BIT(30)
#define QDMA_SG_FIN BIT(30)
#define QDMA_SG_LEN_MASK GENMASK(29, 0)
#define QDMA_CCDF_MASK GENMASK(28, 20)
#define FSL_QDMA_DEDR_CLEAR GENMASK(31, 0)
#define FSL_QDMA_BCQIDR_CLEAR GENMASK(31, 0)
#define FSL_QDMA_DEIER_CLEAR GENMASK(31, 0)
#define FSL_QDMA_BCQIER_CQTIE BIT(15)
#define FSL_QDMA_BCQIER_CQPEIE BIT(23)
#define FSL_QDMA_BSQICR_ICEN BIT(31)
#define FSL_QDMA_BSQICR_ICST(x) ((x) << 16)
#define FSL_QDMA_CQIER_MEIE BIT(31)
#define FSL_QDMA_CQIER_TEIE BIT(0)
#define FSL_QDMA_SQCCMR_ENTER_WM BIT(21)
#define FSL_QDMA_BCQMR_EN BIT(31)
#define FSL_QDMA_BCQMR_EI BIT(30)
#define FSL_QDMA_BCQMR_CD_THLD(x) ((x) << 20)
#define FSL_QDMA_BCQMR_CQ_SIZE(x) ((x) << 16)
#define FSL_QDMA_BCQSR_QF BIT(16)
#define FSL_QDMA_BCQSR_XOFF BIT(0)
#define FSL_QDMA_BSQMR_EN BIT(31)
#define FSL_QDMA_BSQMR_DI BIT(30)
#define FSL_QDMA_BSQMR_CQ_SIZE(x) ((x) << 16)
#define FSL_QDMA_BSQSR_QE BIT(17)
#define FSL_QDMA_DMR_DQD BIT(30)
#define FSL_QDMA_DSR_DB BIT(31)
/* Size related definition */
#define FSL_QDMA_QUEUE_MAX 8
#define FSL_QDMA_COMMAND_BUFFER_SIZE 64
#define FSL_QDMA_DESCRIPTOR_BUFFER_SIZE 32
#define FSL_QDMA_CIRCULAR_DESC_SIZE_MIN 64
#define FSL_QDMA_CIRCULAR_DESC_SIZE_MAX 16384
#define FSL_QDMA_QUEUE_NUM_MAX 8
/* Field definition for CMD */
#define FSL_QDMA_CMD_RWTTYPE 0x4
#define FSL_QDMA_CMD_LWC 0x2
#define FSL_QDMA_CMD_RWTTYPE_OFFSET 28
#define FSL_QDMA_CMD_NS_OFFSET 27
#define FSL_QDMA_CMD_DQOS_OFFSET 24
#define FSL_QDMA_CMD_WTHROTL_OFFSET 20
#define FSL_QDMA_CMD_DSEN_OFFSET 19
#define FSL_QDMA_CMD_LWC_OFFSET 16
/* Field definition for Descriptor status */
#define QDMA_CCDF_STATUS_RTE BIT(5)
#define QDMA_CCDF_STATUS_WTE BIT(4)
#define QDMA_CCDF_STATUS_CDE BIT(2)
#define QDMA_CCDF_STATUS_SDE BIT(1)
#define QDMA_CCDF_STATUS_DDE BIT(0)
#define QDMA_CCDF_STATUS_MASK (QDMA_CCDF_STATUS_RTE | \
QDMA_CCDF_STATUS_WTE | \
QDMA_CCDF_STATUS_CDE | \
QDMA_CCDF_STATUS_SDE | \
QDMA_CCDF_STATUS_DDE)
/* Field definition for Descriptor offset */
#define QDMA_CCDF_OFFSET 20
#define QDMA_SDDF_CMD(x) (((u64)(x)) << 32)
/* Field definition for safe loop count*/
#define FSL_QDMA_HALT_COUNT 1500
#define FSL_QDMA_MAX_SIZE 16385
#define FSL_QDMA_COMP_TIMEOUT 1000
#define FSL_COMMAND_QUEUE_OVERFLLOW 10
#define FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma_engine, x) \
(((fsl_qdma_engine)->block_offset) * (x))
/**
* struct fsl_qdma_format - This is the struct holding describing compound
* descriptor format with qDMA.
* @status: Command status and enqueue status notification.
* @cfg: Frame offset and frame format.
* @addr_lo: Holding the compound descriptor of the lower
* 32-bits address in memory 40-bit address.
* @addr_hi: Same as above member, but point high 8-bits in
* memory 40-bit address.
* @__reserved1: Reserved field.
* @cfg8b_w1: Compound descriptor command queue origin produced
* by qDMA and dynamic debug field.
* @data: Pointer to the memory 40-bit address, describes DMA
* source information and DMA destination information.
*/
struct fsl_qdma_format {
__le32 status;
__le32 cfg;
union {
struct {
__le32 addr_lo;
u8 addr_hi;
u8 __reserved1[2];
u8 cfg8b_w1;
} __packed;
__le64 data;
};
} __packed;
/* qDMA status notification pre information */
struct fsl_pre_status {
u64 addr;
u8 queue;
};
static DEFINE_PER_CPU(struct fsl_pre_status, pre);
struct fsl_qdma_chan {
struct virt_dma_chan vchan;
struct virt_dma_desc vdesc;
enum dma_status status;
struct fsl_qdma_engine *qdma;
struct fsl_qdma_queue *queue;
};
struct fsl_qdma_queue {
struct fsl_qdma_format *virt_head;
struct fsl_qdma_format *virt_tail;
struct list_head comp_used;
struct list_head comp_free;
struct dma_pool *comp_pool;
struct dma_pool *desc_pool;
spinlock_t queue_lock;
dma_addr_t bus_addr;
u32 n_cq;
u32 id;
struct fsl_qdma_format *cq;
void __iomem *block_base;
};
struct fsl_qdma_comp {
dma_addr_t bus_addr;
dma_addr_t desc_bus_addr;
struct fsl_qdma_format *virt_addr;
struct fsl_qdma_format *desc_virt_addr;
struct fsl_qdma_chan *qchan;
struct virt_dma_desc vdesc;
struct list_head list;
};
struct fsl_qdma_engine {
struct dma_device dma_dev;
void __iomem *ctrl_base;
void __iomem *status_base;
void __iomem *block_base;
u32 n_chans;
u32 n_queues;
struct mutex fsl_qdma_mutex;
int error_irq;
int *queue_irq;
u32 feature;
struct fsl_qdma_queue *queue;
struct fsl_qdma_queue **status;
struct fsl_qdma_chan *chans;
int block_number;
int block_offset;
int irq_base;
int desc_allocated;
};
static inline u64
qdma_ccdf_addr_get64(const struct fsl_qdma_format *ccdf)
{
return le64_to_cpu(ccdf->data) & (U64_MAX >> 24);
}
static inline void
qdma_desc_addr_set64(struct fsl_qdma_format *ccdf, u64 addr)
{
ccdf->addr_hi = upper_32_bits(addr);
ccdf->addr_lo = cpu_to_le32(lower_32_bits(addr));
}
static inline u8
qdma_ccdf_get_queue(const struct fsl_qdma_format *ccdf)
{
return ccdf->cfg8b_w1 & U8_MAX;
}
static inline int
qdma_ccdf_get_offset(const struct fsl_qdma_format *ccdf)
{
return (le32_to_cpu(ccdf->cfg) & QDMA_CCDF_MASK) >> QDMA_CCDF_OFFSET;
}
static inline void
qdma_ccdf_set_format(struct fsl_qdma_format *ccdf, int offset)
{
ccdf->cfg = cpu_to_le32(QDMA_CCDF_FORMAT |
(offset << QDMA_CCDF_OFFSET));
}
static inline int
qdma_ccdf_get_status(const struct fsl_qdma_format *ccdf)
{
return (le32_to_cpu(ccdf->status) & QDMA_CCDF_STATUS_MASK);
}
static inline void
qdma_ccdf_set_ser(struct fsl_qdma_format *ccdf, int status)
{
ccdf->status = cpu_to_le32(QDMA_CCDF_SER | status);
}
static inline void qdma_csgf_set_len(struct fsl_qdma_format *csgf, int len)
{
csgf->cfg = cpu_to_le32(len & QDMA_SG_LEN_MASK);
}
static inline void qdma_csgf_set_f(struct fsl_qdma_format *csgf, int len)
{
csgf->cfg = cpu_to_le32(QDMA_SG_FIN | (len & QDMA_SG_LEN_MASK));
}
static u32 qdma_readl(struct fsl_qdma_engine *qdma, void __iomem *addr)
{
return FSL_DMA_IN(qdma, addr, 32);
}
static void qdma_writel(struct fsl_qdma_engine *qdma, u32 val,
void __iomem *addr)
{
FSL_DMA_OUT(qdma, addr, val, 32);
}
static struct fsl_qdma_chan *to_fsl_qdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct fsl_qdma_chan, vchan.chan);
}
static struct fsl_qdma_comp *to_fsl_qdma_comp(struct virt_dma_desc *vd)
{
return container_of(vd, struct fsl_qdma_comp, vdesc);
}
static void fsl_qdma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma;
struct fsl_qdma_comp *comp_temp, *_comp_temp;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
if (!fsl_queue->comp_pool && !fsl_queue->desc_pool)
return;
list_for_each_entry_safe(comp_temp, _comp_temp,
&fsl_queue->comp_used, list) {
dma_pool_free(fsl_queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
dma_pool_free(fsl_queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
list_for_each_entry_safe(comp_temp, _comp_temp,
&fsl_queue->comp_free, list) {
dma_pool_free(fsl_queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
dma_pool_free(fsl_queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
dma_pool_destroy(fsl_queue->comp_pool);
dma_pool_destroy(fsl_queue->desc_pool);
fsl_qdma->desc_allocated--;
fsl_queue->comp_pool = NULL;
fsl_queue->desc_pool = NULL;
}
static void fsl_qdma_comp_fill_memcpy(struct fsl_qdma_comp *fsl_comp,
dma_addr_t dst, dma_addr_t src, u32 len)
{
u32 cmd;
struct fsl_qdma_format *sdf, *ddf;
struct fsl_qdma_format *ccdf, *csgf_desc, *csgf_src, *csgf_dest;
ccdf = fsl_comp->virt_addr;
csgf_desc = fsl_comp->virt_addr + 1;
csgf_src = fsl_comp->virt_addr + 2;
csgf_dest = fsl_comp->virt_addr + 3;
sdf = fsl_comp->desc_virt_addr;
ddf = fsl_comp->desc_virt_addr + 1;
memset(fsl_comp->virt_addr, 0, FSL_QDMA_COMMAND_BUFFER_SIZE);
memset(fsl_comp->desc_virt_addr, 0, FSL_QDMA_DESCRIPTOR_BUFFER_SIZE);
/* Head Command Descriptor(Frame Descriptor) */
qdma_desc_addr_set64(ccdf, fsl_comp->bus_addr + 16);
qdma_ccdf_set_format(ccdf, qdma_ccdf_get_offset(ccdf));
qdma_ccdf_set_ser(ccdf, qdma_ccdf_get_status(ccdf));
/* Status notification is enqueued to status queue. */
/* Compound Command Descriptor(Frame List Table) */
qdma_desc_addr_set64(csgf_desc, fsl_comp->desc_bus_addr);
/* It must be 32 as Compound S/G Descriptor */
qdma_csgf_set_len(csgf_desc, 32);
qdma_desc_addr_set64(csgf_src, src);
qdma_csgf_set_len(csgf_src, len);
qdma_desc_addr_set64(csgf_dest, dst);
qdma_csgf_set_len(csgf_dest, len);
/* This entry is the last entry. */
qdma_csgf_set_f(csgf_dest, len);
/* Descriptor Buffer */
cmd = cpu_to_le32(FSL_QDMA_CMD_RWTTYPE <<
FSL_QDMA_CMD_RWTTYPE_OFFSET);
sdf->data = QDMA_SDDF_CMD(cmd);
cmd = cpu_to_le32(FSL_QDMA_CMD_RWTTYPE <<
FSL_QDMA_CMD_RWTTYPE_OFFSET);
cmd |= cpu_to_le32(FSL_QDMA_CMD_LWC << FSL_QDMA_CMD_LWC_OFFSET);
ddf->data = QDMA_SDDF_CMD(cmd);
}
/*
* Pre-request full command descriptor for enqueue.
*/
static int fsl_qdma_pre_request_enqueue_desc(struct fsl_qdma_queue *queue)
{
int i;
struct fsl_qdma_comp *comp_temp, *_comp_temp;
for (i = 0; i < queue->n_cq + FSL_COMMAND_QUEUE_OVERFLLOW; i++) {
comp_temp = kzalloc(sizeof(*comp_temp), GFP_KERNEL);
if (!comp_temp)
goto err_alloc;
comp_temp->virt_addr =
dma_pool_alloc(queue->comp_pool, GFP_KERNEL,
&comp_temp->bus_addr);
if (!comp_temp->virt_addr)
goto err_dma_alloc;
comp_temp->desc_virt_addr =
dma_pool_alloc(queue->desc_pool, GFP_KERNEL,
&comp_temp->desc_bus_addr);
if (!comp_temp->desc_virt_addr)
goto err_desc_dma_alloc;
list_add_tail(&comp_temp->list, &queue->comp_free);
}
return 0;
err_desc_dma_alloc:
dma_pool_free(queue->comp_pool, comp_temp->virt_addr,
comp_temp->bus_addr);
err_dma_alloc:
kfree(comp_temp);
err_alloc:
list_for_each_entry_safe(comp_temp, _comp_temp,
&queue->comp_free, list) {
if (comp_temp->virt_addr)
dma_pool_free(queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
if (comp_temp->desc_virt_addr)
dma_pool_free(queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
return -ENOMEM;
}
/*
* Request a command descriptor for enqueue.
*/
static struct fsl_qdma_comp
*fsl_qdma_request_enqueue_desc(struct fsl_qdma_chan *fsl_chan)
{
unsigned long flags;
struct fsl_qdma_comp *comp_temp;
int timeout = FSL_QDMA_COMP_TIMEOUT;
struct fsl_qdma_queue *queue = fsl_chan->queue;
while (timeout--) {
spin_lock_irqsave(&queue->queue_lock, flags);
if (!list_empty(&queue->comp_free)) {
comp_temp = list_first_entry(&queue->comp_free,
struct fsl_qdma_comp,
list);
list_del(&comp_temp->list);
spin_unlock_irqrestore(&queue->queue_lock, flags);
comp_temp->qchan = fsl_chan;
return comp_temp;
}
spin_unlock_irqrestore(&queue->queue_lock, flags);
udelay(1);
}
return NULL;
}
static struct fsl_qdma_queue
*fsl_qdma_alloc_queue_resources(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int ret, len, i, j;
int queue_num, block_number;
unsigned int queue_size[FSL_QDMA_QUEUE_MAX];
struct fsl_qdma_queue *queue_head, *queue_temp;
queue_num = fsl_qdma->n_queues;
block_number = fsl_qdma->block_number;
if (queue_num > FSL_QDMA_QUEUE_MAX)
queue_num = FSL_QDMA_QUEUE_MAX;
len = sizeof(*queue_head) * queue_num * block_number;
queue_head = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!queue_head)
return NULL;
ret = device_property_read_u32_array(&pdev->dev, "queue-sizes",
queue_size, queue_num);
if (ret) {
dev_err(&pdev->dev, "Can't get queue-sizes.\n");
return NULL;
}
for (j = 0; j < block_number; j++) {
for (i = 0; i < queue_num; i++) {
if (queue_size[i] > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX ||
queue_size[i] < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) {
dev_err(&pdev->dev,
"Get wrong queue-sizes.\n");
return NULL;
}
queue_temp = queue_head + i + (j * queue_num);
queue_temp->cq =
dma_alloc_coherent(&pdev->dev,
sizeof(struct fsl_qdma_format) *
queue_size[i],
&queue_temp->bus_addr,
GFP_KERNEL);
if (!queue_temp->cq)
return NULL;
queue_temp->block_base = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
queue_temp->n_cq = queue_size[i];
queue_temp->id = i;
queue_temp->virt_head = queue_temp->cq;
queue_temp->virt_tail = queue_temp->cq;
/*
* List for queue command buffer
*/
INIT_LIST_HEAD(&queue_temp->comp_used);
spin_lock_init(&queue_temp->queue_lock);
}
}
return queue_head;
}
static struct fsl_qdma_queue
*fsl_qdma_prep_status_queue(struct platform_device *pdev)
{
int ret;
unsigned int status_size;
struct fsl_qdma_queue *status_head;
struct device_node *np = pdev->dev.of_node;
ret = of_property_read_u32(np, "status-sizes", &status_size);
if (ret) {
dev_err(&pdev->dev, "Can't get status-sizes.\n");
return NULL;
}
if (status_size > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX ||
status_size < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) {
dev_err(&pdev->dev, "Get wrong status_size.\n");
return NULL;
}
status_head = devm_kzalloc(&pdev->dev,
sizeof(*status_head), GFP_KERNEL);
if (!status_head)
return NULL;
/*
* Buffer for queue command
*/
status_head->cq = dma_alloc_coherent(&pdev->dev,
sizeof(struct fsl_qdma_format) *
status_size,
&status_head->bus_addr,
GFP_KERNEL);
if (!status_head->cq) {
devm_kfree(&pdev->dev, status_head);
return NULL;
}
status_head->n_cq = status_size;
status_head->virt_head = status_head->cq;
status_head->virt_tail = status_head->cq;
status_head->comp_pool = NULL;
return status_head;
}
static int fsl_qdma_halt(struct fsl_qdma_engine *fsl_qdma)
{
u32 reg;
int i, j, count = FSL_QDMA_HALT_COUNT;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
/* Disable the command queue and wait for idle state. */
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg |= FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
for (i = 0; i < FSL_QDMA_QUEUE_NUM_MAX; i++)
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQMR(i));
}
while (1) {
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DSR);
if (!(reg & FSL_QDMA_DSR_DB))
break;
if (count-- < 0)
return -EBUSY;
udelay(100);
}
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
/* Disable status queue. */
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BSQMR);
/*
* clear the command queue interrupt detect register for
* all queues.
*/
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
}
return 0;
}
static int
fsl_qdma_queue_transfer_complete(struct fsl_qdma_engine *fsl_qdma,
void *block,
int id)
{
bool duplicate;
u32 reg, i, count;
u8 completion_status;
struct fsl_qdma_queue *temp_queue;
struct fsl_qdma_format *status_addr;
struct fsl_qdma_comp *fsl_comp = NULL;
struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue;
struct fsl_qdma_queue *fsl_status = fsl_qdma->status[id];
count = FSL_QDMA_MAX_SIZE;
while (count--) {
duplicate = 0;
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQSR);
if (reg & FSL_QDMA_BSQSR_QE)
return 0;
status_addr = fsl_status->virt_head;
if (qdma_ccdf_get_queue(status_addr) ==
__this_cpu_read(pre.queue) &&
qdma_ccdf_addr_get64(status_addr) ==
__this_cpu_read(pre.addr))
duplicate = 1;
i = qdma_ccdf_get_queue(status_addr) +
id * fsl_qdma->n_queues;
__this_cpu_write(pre.addr, qdma_ccdf_addr_get64(status_addr));
__this_cpu_write(pre.queue, qdma_ccdf_get_queue(status_addr));
temp_queue = fsl_queue + i;
spin_lock(&temp_queue->queue_lock);
if (list_empty(&temp_queue->comp_used)) {
if (!duplicate) {
spin_unlock(&temp_queue->queue_lock);
return -EAGAIN;
}
} else {
fsl_comp = list_first_entry(&temp_queue->comp_used,
struct fsl_qdma_comp, list);
if (fsl_comp->bus_addr + 16 !=
__this_cpu_read(pre.addr)) {
if (!duplicate) {
spin_unlock(&temp_queue->queue_lock);
return -EAGAIN;
}
}
}
if (duplicate) {
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
reg |= FSL_QDMA_BSQMR_DI;
qdma_desc_addr_set64(status_addr, 0x0);
fsl_status->virt_head++;
if (fsl_status->virt_head == fsl_status->cq
+ fsl_status->n_cq)
fsl_status->virt_head = fsl_status->cq;
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
spin_unlock(&temp_queue->queue_lock);
continue;
}
list_del(&fsl_comp->list);
completion_status = qdma_ccdf_get_status(status_addr);
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
reg |= FSL_QDMA_BSQMR_DI;
qdma_desc_addr_set64(status_addr, 0x0);
fsl_status->virt_head++;
if (fsl_status->virt_head == fsl_status->cq + fsl_status->n_cq)
fsl_status->virt_head = fsl_status->cq;
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
spin_unlock(&temp_queue->queue_lock);
/* The completion_status is evaluated here
* (outside of spin lock)
*/
if (completion_status) {
/* A completion error occurred! */
if (completion_status & QDMA_CCDF_STATUS_WTE) {
/* Write transaction error */
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_WRITE_FAILED;
} else if (completion_status & QDMA_CCDF_STATUS_RTE) {
/* Read transaction error */
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_READ_FAILED;
} else {
/* Command/source/destination
* description error
*/
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_ABORTED;
dev_err(fsl_qdma->dma_dev.dev,
"DMA status descriptor error %x\n",
completion_status);
}
}
spin_lock(&fsl_comp->qchan->vchan.lock);
vchan_cookie_complete(&fsl_comp->vdesc);
fsl_comp->qchan->status = DMA_COMPLETE;
spin_unlock(&fsl_comp->qchan->vchan.lock);
}
return 0;
}
static irqreturn_t fsl_qdma_error_handler(int irq, void *dev_id)
{
unsigned int intr;
struct fsl_qdma_engine *fsl_qdma = dev_id;
void __iomem *status = fsl_qdma->status_base;
unsigned int decfdw0r;
unsigned int decfdw1r;
unsigned int decfdw2r;
unsigned int decfdw3r;
intr = qdma_readl(fsl_qdma, status + FSL_QDMA_DEDR);
if (intr) {
decfdw0r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW0R);
decfdw1r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW1R);
decfdw2r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW2R);
decfdw3r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW3R);
dev_err(fsl_qdma->dma_dev.dev,
"DMA transaction error! (%x: %x-%x-%x-%x)\n",
intr, decfdw0r, decfdw1r, decfdw2r, decfdw3r);
}
qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR);
return IRQ_HANDLED;
}
static irqreturn_t fsl_qdma_queue_handler(int irq, void *dev_id)
{
int id;
unsigned int intr, reg;
struct fsl_qdma_engine *fsl_qdma = dev_id;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
id = irq - fsl_qdma->irq_base;
if (id < 0 && id > fsl_qdma->block_number) {
dev_err(fsl_qdma->dma_dev.dev,
"irq %d is wrong irq_base is %d\n",
irq, fsl_qdma->irq_base);
}
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, id);
intr = qdma_readl(fsl_qdma, block + FSL_QDMA_BCQIDR(0));
if ((intr & FSL_QDMA_CQIDR_SQT) != 0)
intr = fsl_qdma_queue_transfer_complete(fsl_qdma, block, id);
if (intr != 0) {
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg |= FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQIER(0));
dev_err(fsl_qdma->dma_dev.dev, "QDMA: status err!\n");
}
/* Clear all detected events and interrupts. */
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
return IRQ_HANDLED;
}
static int
fsl_qdma_irq_init(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int i;
int cpu;
int ret;
char irq_name[20];
fsl_qdma->error_irq =
platform_get_irq_byname(pdev, "qdma-error");
if (fsl_qdma->error_irq < 0)
return fsl_qdma->error_irq;
ret = devm_request_irq(&pdev->dev, fsl_qdma->error_irq,
fsl_qdma_error_handler, 0,
"qDMA error", fsl_qdma);
if (ret) {
dev_err(&pdev->dev, "Can't register qDMA controller IRQ.\n");
return ret;
}
for (i = 0; i < fsl_qdma->block_number; i++) {
sprintf(irq_name, "qdma-queue%d", i);
fsl_qdma->queue_irq[i] =
platform_get_irq_byname(pdev, irq_name);
if (fsl_qdma->queue_irq[i] < 0)
return fsl_qdma->queue_irq[i];
ret = devm_request_irq(&pdev->dev,
fsl_qdma->queue_irq[i],
fsl_qdma_queue_handler,
0,
"qDMA queue",
fsl_qdma);
if (ret) {
dev_err(&pdev->dev,
"Can't register qDMA queue IRQ.\n");
return ret;
}
cpu = i % num_online_cpus();
ret = irq_set_affinity_hint(fsl_qdma->queue_irq[i],
get_cpu_mask(cpu));
if (ret) {
dev_err(&pdev->dev,
"Can't set cpu %d affinity to IRQ %d.\n",
cpu,
fsl_qdma->queue_irq[i]);
return ret;
}
}
return 0;
}
static void fsl_qdma_irq_exit(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int i;
devm_free_irq(&pdev->dev, fsl_qdma->error_irq, fsl_qdma);
for (i = 0; i < fsl_qdma->block_number; i++)
devm_free_irq(&pdev->dev, fsl_qdma->queue_irq[i], fsl_qdma);
}
static int fsl_qdma_reg_init(struct fsl_qdma_engine *fsl_qdma)
{
u32 reg;
int i, j, ret;
struct fsl_qdma_queue *temp;
void __iomem *status = fsl_qdma->status_base;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue;
/* Try to halt the qDMA engine first. */
ret = fsl_qdma_halt(fsl_qdma);
if (ret) {
dev_err(fsl_qdma->dma_dev.dev, "DMA halt failed!");
return ret;
}
for (i = 0; i < fsl_qdma->block_number; i++) {
/*
* Clear the command queue interrupt detect register for
* all queues.
*/
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, i);
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
}
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
for (i = 0; i < fsl_qdma->n_queues; i++) {
temp = fsl_queue + i + (j * fsl_qdma->n_queues);
/*
* Initialize Command Queue registers to
* point to the first
* command descriptor in memory.
* Dequeue Pointer Address Registers
* Enqueue Pointer Address Registers
*/
qdma_writel(fsl_qdma, temp->bus_addr,
block + FSL_QDMA_BCQDPA_SADDR(i));
qdma_writel(fsl_qdma, temp->bus_addr,
block + FSL_QDMA_BCQEPA_SADDR(i));
/* Initialize the queue mode. */
reg = FSL_QDMA_BCQMR_EN;
reg |= FSL_QDMA_BCQMR_CD_THLD(ilog2(temp->n_cq) - 4);
reg |= FSL_QDMA_BCQMR_CQ_SIZE(ilog2(temp->n_cq) - 6);
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BCQMR(i));
}
/*
* Workaround for erratum: ERR010812.
* We must enable XOFF to avoid the enqueue rejection occurs.
* Setting SQCCMR ENTER_WM to 0x20.
*/
qdma_writel(fsl_qdma, FSL_QDMA_SQCCMR_ENTER_WM,
block + FSL_QDMA_SQCCMR);
/*
* Initialize status queue registers to point to the first
* command descriptor in memory.
* Dequeue Pointer Address Registers
* Enqueue Pointer Address Registers
*/
qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr,
block + FSL_QDMA_SQEPAR);
qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr,
block + FSL_QDMA_SQDPAR);
/* Initialize status queue interrupt. */
qdma_writel(fsl_qdma, FSL_QDMA_BCQIER_CQTIE,
block + FSL_QDMA_BCQIER(0));
qdma_writel(fsl_qdma, FSL_QDMA_BSQICR_ICEN |
FSL_QDMA_BSQICR_ICST(5) | 0x8000,
block + FSL_QDMA_BSQICR);
qdma_writel(fsl_qdma, FSL_QDMA_CQIER_MEIE |
FSL_QDMA_CQIER_TEIE,
block + FSL_QDMA_CQIER);
/* Initialize the status queue mode. */
reg = FSL_QDMA_BSQMR_EN;
reg |= FSL_QDMA_BSQMR_CQ_SIZE(ilog2
(fsl_qdma->status[j]->n_cq) - 6);
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
}
/* Initialize controller interrupt register. */
qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR);
qdma_writel(fsl_qdma, FSL_QDMA_DEIER_CLEAR, status + FSL_QDMA_DEIER);
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg &= ~FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
return 0;
}
static struct dma_async_tx_descriptor *
fsl_qdma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst,
dma_addr_t src, size_t len, unsigned long flags)
{
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
fsl_comp = fsl_qdma_request_enqueue_desc(fsl_chan);
if (!fsl_comp)
return NULL;
fsl_qdma_comp_fill_memcpy(fsl_comp, dst, src, len);
return vchan_tx_prep(&fsl_chan->vchan, &fsl_comp->vdesc, flags);
}
static void fsl_qdma_enqueue_desc(struct fsl_qdma_chan *fsl_chan)
{
u32 reg;
struct virt_dma_desc *vdesc;
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
void __iomem *block = fsl_queue->block_base;
reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQSR(fsl_queue->id));
if (reg & (FSL_QDMA_BCQSR_QF | FSL_QDMA_BCQSR_XOFF))
return;
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
list_del(&vdesc->node);
fsl_comp = to_fsl_qdma_comp(vdesc);
memcpy(fsl_queue->virt_head++,
fsl_comp->virt_addr, sizeof(struct fsl_qdma_format));
if (fsl_queue->virt_head == fsl_queue->cq + fsl_queue->n_cq)
fsl_queue->virt_head = fsl_queue->cq;
list_add_tail(&fsl_comp->list, &fsl_queue->comp_used);
barrier();
reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQMR(fsl_queue->id));
reg |= FSL_QDMA_BCQMR_EI;
qdma_writel(fsl_chan->qdma, reg, block + FSL_QDMA_BCQMR(fsl_queue->id));
fsl_chan->status = DMA_IN_PROGRESS;
}
static void fsl_qdma_free_desc(struct virt_dma_desc *vdesc)
{
unsigned long flags;
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_queue *fsl_queue;
fsl_comp = to_fsl_qdma_comp(vdesc);
fsl_queue = fsl_comp->qchan->queue;
spin_lock_irqsave(&fsl_queue->queue_lock, flags);
list_add_tail(&fsl_comp->list, &fsl_queue->comp_free);
spin_unlock_irqrestore(&fsl_queue->queue_lock, flags);
}
static void fsl_qdma_issue_pending(struct dma_chan *chan)
{
unsigned long flags;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
spin_lock_irqsave(&fsl_queue->queue_lock, flags);
spin_lock(&fsl_chan->vchan.lock);
if (vchan_issue_pending(&fsl_chan->vchan))
fsl_qdma_enqueue_desc(fsl_chan);
spin_unlock(&fsl_chan->vchan.lock);
spin_unlock_irqrestore(&fsl_queue->queue_lock, flags);
}
static void fsl_qdma_synchronize(struct dma_chan *chan)
{
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
vchan_synchronize(&fsl_chan->vchan);
}
static int fsl_qdma_terminate_all(struct dma_chan *chan)
{
LIST_HEAD(head);
unsigned long flags;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
static int fsl_qdma_alloc_chan_resources(struct dma_chan *chan)
{
int ret;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma;
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
if (fsl_queue->comp_pool && fsl_queue->desc_pool)
return fsl_qdma->desc_allocated;
INIT_LIST_HEAD(&fsl_queue->comp_free);
/*
* The dma pool for queue command buffer
*/
fsl_queue->comp_pool =
dma_pool_create("comp_pool",
chan->device->dev,
FSL_QDMA_COMMAND_BUFFER_SIZE,
64, 0);
if (!fsl_queue->comp_pool)
return -ENOMEM;
/*
* The dma pool for Descriptor(SD/DD) buffer
*/
fsl_queue->desc_pool =
dma_pool_create("desc_pool",
chan->device->dev,
FSL_QDMA_DESCRIPTOR_BUFFER_SIZE,
32, 0);
if (!fsl_queue->desc_pool)
goto err_desc_pool;
ret = fsl_qdma_pre_request_enqueue_desc(fsl_queue);
if (ret) {
dev_err(chan->device->dev,
"failed to alloc dma buffer for S/G descriptor\n");
goto err_mem;
}
fsl_qdma->desc_allocated++;
return fsl_qdma->desc_allocated;
err_mem:
dma_pool_destroy(fsl_queue->desc_pool);
err_desc_pool:
dma_pool_destroy(fsl_queue->comp_pool);
return -ENOMEM;
}
static int fsl_qdma_probe(struct platform_device *pdev)
{
int ret, i;
int blk_num, blk_off;
u32 len, chans, queues;
struct resource *res;
struct fsl_qdma_chan *fsl_chan;
struct fsl_qdma_engine *fsl_qdma;
struct device_node *np = pdev->dev.of_node;
ret = of_property_read_u32(np, "dma-channels", &chans);
if (ret) {
dev_err(&pdev->dev, "Can't get dma-channels.\n");
return ret;
}
ret = of_property_read_u32(np, "block-offset", &blk_off);
if (ret) {
dev_err(&pdev->dev, "Can't get block-offset.\n");
return ret;
}
ret = of_property_read_u32(np, "block-number", &blk_num);
if (ret) {
dev_err(&pdev->dev, "Can't get block-number.\n");
return ret;
}
blk_num = min_t(int, blk_num, num_online_cpus());
len = sizeof(*fsl_qdma);
fsl_qdma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma)
return -ENOMEM;
len = sizeof(*fsl_chan) * chans;
fsl_qdma->chans = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->chans)
return -ENOMEM;
len = sizeof(struct fsl_qdma_queue *) * blk_num;
fsl_qdma->status = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->status)
return -ENOMEM;
len = sizeof(int) * blk_num;
fsl_qdma->queue_irq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->queue_irq)
return -ENOMEM;
ret = of_property_read_u32(np, "fsl,dma-queues", &queues);
if (ret) {
dev_err(&pdev->dev, "Can't get queues.\n");
return ret;
}
fsl_qdma->desc_allocated = 0;
fsl_qdma->n_chans = chans;
fsl_qdma->n_queues = queues;
fsl_qdma->block_number = blk_num;
fsl_qdma->block_offset = blk_off;
mutex_init(&fsl_qdma->fsl_qdma_mutex);
for (i = 0; i < fsl_qdma->block_number; i++) {
fsl_qdma->status[i] = fsl_qdma_prep_status_queue(pdev);
if (!fsl_qdma->status[i])
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fsl_qdma->ctrl_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_qdma->ctrl_base))
return PTR_ERR(fsl_qdma->ctrl_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
fsl_qdma->status_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_qdma->status_base))
return PTR_ERR(fsl_qdma->status_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
fsl_qdma->block_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_qdma->block_base))
return PTR_ERR(fsl_qdma->block_base);
fsl_qdma->queue = fsl_qdma_alloc_queue_resources(pdev, fsl_qdma);
if (!fsl_qdma->queue)
return -ENOMEM;
ret = fsl_qdma_irq_init(pdev, fsl_qdma);
if (ret)
return ret;
fsl_qdma->irq_base = platform_get_irq_byname(pdev, "qdma-queue0");
if (fsl_qdma->irq_base < 0)
return fsl_qdma->irq_base;
fsl_qdma->feature = of_property_read_bool(np, "big-endian");
INIT_LIST_HEAD(&fsl_qdma->dma_dev.channels);
for (i = 0; i < fsl_qdma->n_chans; i++) {
struct fsl_qdma_chan *fsl_chan = &fsl_qdma->chans[i];
fsl_chan->qdma = fsl_qdma;
fsl_chan->queue = fsl_qdma->queue + i % (fsl_qdma->n_queues *
fsl_qdma->block_number);
fsl_chan->vchan.desc_free = fsl_qdma_free_desc;
vchan_init(&fsl_chan->vchan, &fsl_qdma->dma_dev);
}
dma_cap_set(DMA_MEMCPY, fsl_qdma->dma_dev.cap_mask);
fsl_qdma->dma_dev.dev = &pdev->dev;
fsl_qdma->dma_dev.device_free_chan_resources =
fsl_qdma_free_chan_resources;
fsl_qdma->dma_dev.device_alloc_chan_resources =
fsl_qdma_alloc_chan_resources;
fsl_qdma->dma_dev.device_tx_status = dma_cookie_status;
fsl_qdma->dma_dev.device_prep_dma_memcpy = fsl_qdma_prep_memcpy;
fsl_qdma->dma_dev.device_issue_pending = fsl_qdma_issue_pending;
fsl_qdma->dma_dev.device_synchronize = fsl_qdma_synchronize;
fsl_qdma->dma_dev.device_terminate_all = fsl_qdma_terminate_all;
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
if (ret) {
dev_err(&pdev->dev, "dma_set_mask failure.\n");
return ret;
}
platform_set_drvdata(pdev, fsl_qdma);
ret = dma_async_device_register(&fsl_qdma->dma_dev);
if (ret) {
dev_err(&pdev->dev,
"Can't register NXP Layerscape qDMA engine.\n");
return ret;
}
ret = fsl_qdma_reg_init(fsl_qdma);
if (ret) {
dev_err(&pdev->dev, "Can't Initialize the qDMA engine.\n");
return ret;
}
return 0;
}
static void fsl_qdma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_qdma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
static int fsl_qdma_remove(struct platform_device *pdev)
{
int i;
struct fsl_qdma_queue *status;
struct device_node *np = pdev->dev.of_node;
struct fsl_qdma_engine *fsl_qdma = platform_get_drvdata(pdev);
fsl_qdma_irq_exit(pdev, fsl_qdma);
fsl_qdma_cleanup_vchan(&fsl_qdma->dma_dev);
of_dma_controller_free(np);
dma_async_device_unregister(&fsl_qdma->dma_dev);
for (i = 0; i < fsl_qdma->block_number; i++) {
status = fsl_qdma->status[i];
dma_free_coherent(&pdev->dev, sizeof(struct fsl_qdma_format) *
status->n_cq, status->cq, status->bus_addr);
}
return 0;
}
static const struct of_device_id fsl_qdma_dt_ids[] = {
{ .compatible = "fsl,ls1021a-qdma", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qdma_dt_ids);
static struct platform_driver fsl_qdma_driver = {
.driver = {
.name = "fsl-qdma",
.of_match_table = fsl_qdma_dt_ids,
},
.probe = fsl_qdma_probe,
.remove = fsl_qdma_remove,
};
module_platform_driver(fsl_qdma_driver);
MODULE_ALIAS("platform:fsl-qdma");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("NXP Layerscape qDMA engine driver");