| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * intel_pstate.c: Native P state management for Intel processors |
| * |
| * (C) Copyright 2012 Intel Corporation |
| * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/module.h> |
| #include <linux/ktime.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/slab.h> |
| #include <linux/sched/cpufreq.h> |
| #include <linux/sched/smt.h> |
| #include <linux/list.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/acpi.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pm_qos.h> |
| #include <linux/bitfield.h> |
| #include <trace/events/power.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/div64.h> |
| #include <asm/msr.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/cpufeature.h> |
| #include <asm/intel-family.h> |
| #include "../drivers/thermal/intel/thermal_interrupt.h" |
| |
| #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) |
| |
| #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 |
| #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 |
| #define INTEL_CPUFREQ_TRANSITION_DELAY 500 |
| |
| #ifdef CONFIG_ACPI |
| #include <acpi/processor.h> |
| #include <acpi/cppc_acpi.h> |
| #endif |
| |
| #define FRAC_BITS 8 |
| #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) |
| #define fp_toint(X) ((X) >> FRAC_BITS) |
| |
| #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) |
| |
| #define EXT_BITS 6 |
| #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) |
| #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) |
| #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) |
| |
| static inline int32_t mul_fp(int32_t x, int32_t y) |
| { |
| return ((int64_t)x * (int64_t)y) >> FRAC_BITS; |
| } |
| |
| static inline int32_t div_fp(s64 x, s64 y) |
| { |
| return div64_s64((int64_t)x << FRAC_BITS, y); |
| } |
| |
| static inline int ceiling_fp(int32_t x) |
| { |
| int mask, ret; |
| |
| ret = fp_toint(x); |
| mask = (1 << FRAC_BITS) - 1; |
| if (x & mask) |
| ret += 1; |
| return ret; |
| } |
| |
| static inline u64 mul_ext_fp(u64 x, u64 y) |
| { |
| return (x * y) >> EXT_FRAC_BITS; |
| } |
| |
| static inline u64 div_ext_fp(u64 x, u64 y) |
| { |
| return div64_u64(x << EXT_FRAC_BITS, y); |
| } |
| |
| /** |
| * struct sample - Store performance sample |
| * @core_avg_perf: Ratio of APERF/MPERF which is the actual average |
| * performance during last sample period |
| * @busy_scaled: Scaled busy value which is used to calculate next |
| * P state. This can be different than core_avg_perf |
| * to account for cpu idle period |
| * @aperf: Difference of actual performance frequency clock count |
| * read from APERF MSR between last and current sample |
| * @mperf: Difference of maximum performance frequency clock count |
| * read from MPERF MSR between last and current sample |
| * @tsc: Difference of time stamp counter between last and |
| * current sample |
| * @time: Current time from scheduler |
| * |
| * This structure is used in the cpudata structure to store performance sample |
| * data for choosing next P State. |
| */ |
| struct sample { |
| int32_t core_avg_perf; |
| int32_t busy_scaled; |
| u64 aperf; |
| u64 mperf; |
| u64 tsc; |
| u64 time; |
| }; |
| |
| /** |
| * struct pstate_data - Store P state data |
| * @current_pstate: Current requested P state |
| * @min_pstate: Min P state possible for this platform |
| * @max_pstate: Max P state possible for this platform |
| * @max_pstate_physical:This is physical Max P state for a processor |
| * This can be higher than the max_pstate which can |
| * be limited by platform thermal design power limits |
| * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor |
| * @scaling: Scaling factor between performance and frequency |
| * @turbo_pstate: Max Turbo P state possible for this platform |
| * @min_freq: @min_pstate frequency in cpufreq units |
| * @max_freq: @max_pstate frequency in cpufreq units |
| * @turbo_freq: @turbo_pstate frequency in cpufreq units |
| * |
| * Stores the per cpu model P state limits and current P state. |
| */ |
| struct pstate_data { |
| int current_pstate; |
| int min_pstate; |
| int max_pstate; |
| int max_pstate_physical; |
| int perf_ctl_scaling; |
| int scaling; |
| int turbo_pstate; |
| unsigned int min_freq; |
| unsigned int max_freq; |
| unsigned int turbo_freq; |
| }; |
| |
| /** |
| * struct vid_data - Stores voltage information data |
| * @min: VID data for this platform corresponding to |
| * the lowest P state |
| * @max: VID data corresponding to the highest P State. |
| * @turbo: VID data for turbo P state |
| * @ratio: Ratio of (vid max - vid min) / |
| * (max P state - Min P State) |
| * |
| * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) |
| * This data is used in Atom platforms, where in addition to target P state, |
| * the voltage data needs to be specified to select next P State. |
| */ |
| struct vid_data { |
| int min; |
| int max; |
| int turbo; |
| int32_t ratio; |
| }; |
| |
| /** |
| * struct global_params - Global parameters, mostly tunable via sysfs. |
| * @no_turbo: Whether or not to use turbo P-states. |
| * @turbo_disabled: Whether or not turbo P-states are available at all, |
| * based on the MSR_IA32_MISC_ENABLE value and whether or |
| * not the maximum reported turbo P-state is different from |
| * the maximum reported non-turbo one. |
| * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo |
| * P-state capacity. |
| * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo |
| * P-state capacity. |
| */ |
| struct global_params { |
| bool no_turbo; |
| bool turbo_disabled; |
| int max_perf_pct; |
| int min_perf_pct; |
| }; |
| |
| /** |
| * struct cpudata - Per CPU instance data storage |
| * @cpu: CPU number for this instance data |
| * @policy: CPUFreq policy value |
| * @update_util: CPUFreq utility callback information |
| * @update_util_set: CPUFreq utility callback is set |
| * @iowait_boost: iowait-related boost fraction |
| * @last_update: Time of the last update. |
| * @pstate: Stores P state limits for this CPU |
| * @vid: Stores VID limits for this CPU |
| * @last_sample_time: Last Sample time |
| * @aperf_mperf_shift: APERF vs MPERF counting frequency difference |
| * @prev_aperf: Last APERF value read from APERF MSR |
| * @prev_mperf: Last MPERF value read from MPERF MSR |
| * @prev_tsc: Last timestamp counter (TSC) value |
| * @sample: Storage for storing last Sample data |
| * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios |
| * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios |
| * @acpi_perf_data: Stores ACPI perf information read from _PSS |
| * @valid_pss_table: Set to true for valid ACPI _PSS entries found |
| * @epp_powersave: Last saved HWP energy performance preference |
| * (EPP) or energy performance bias (EPB), |
| * when policy switched to performance |
| * @epp_policy: Last saved policy used to set EPP/EPB |
| * @epp_default: Power on default HWP energy performance |
| * preference/bias |
| * @epp_cached: Cached HWP energy-performance preference value |
| * @hwp_req_cached: Cached value of the last HWP Request MSR |
| * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR |
| * @last_io_update: Last time when IO wake flag was set |
| * @capacity_perf: Highest perf used for scale invariance |
| * @sched_flags: Store scheduler flags for possible cross CPU update |
| * @hwp_boost_min: Last HWP boosted min performance |
| * @suspended: Whether or not the driver has been suspended. |
| * @hwp_notify_work: workqueue for HWP notifications. |
| * |
| * This structure stores per CPU instance data for all CPUs. |
| */ |
| struct cpudata { |
| int cpu; |
| |
| unsigned int policy; |
| struct update_util_data update_util; |
| bool update_util_set; |
| |
| struct pstate_data pstate; |
| struct vid_data vid; |
| |
| u64 last_update; |
| u64 last_sample_time; |
| u64 aperf_mperf_shift; |
| u64 prev_aperf; |
| u64 prev_mperf; |
| u64 prev_tsc; |
| struct sample sample; |
| int32_t min_perf_ratio; |
| int32_t max_perf_ratio; |
| #ifdef CONFIG_ACPI |
| struct acpi_processor_performance acpi_perf_data; |
| bool valid_pss_table; |
| #endif |
| unsigned int iowait_boost; |
| s16 epp_powersave; |
| s16 epp_policy; |
| s16 epp_default; |
| s16 epp_cached; |
| u64 hwp_req_cached; |
| u64 hwp_cap_cached; |
| u64 last_io_update; |
| unsigned int capacity_perf; |
| unsigned int sched_flags; |
| u32 hwp_boost_min; |
| bool suspended; |
| struct delayed_work hwp_notify_work; |
| }; |
| |
| static struct cpudata **all_cpu_data; |
| |
| /** |
| * struct pstate_funcs - Per CPU model specific callbacks |
| * @get_max: Callback to get maximum non turbo effective P state |
| * @get_max_physical: Callback to get maximum non turbo physical P state |
| * @get_min: Callback to get minimum P state |
| * @get_turbo: Callback to get turbo P state |
| * @get_scaling: Callback to get frequency scaling factor |
| * @get_cpu_scaling: Get frequency scaling factor for a given cpu |
| * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference |
| * @get_val: Callback to convert P state to actual MSR write value |
| * @get_vid: Callback to get VID data for Atom platforms |
| * |
| * Core and Atom CPU models have different way to get P State limits. This |
| * structure is used to store those callbacks. |
| */ |
| struct pstate_funcs { |
| int (*get_max)(int cpu); |
| int (*get_max_physical)(int cpu); |
| int (*get_min)(int cpu); |
| int (*get_turbo)(int cpu); |
| int (*get_scaling)(void); |
| int (*get_cpu_scaling)(int cpu); |
| int (*get_aperf_mperf_shift)(void); |
| u64 (*get_val)(struct cpudata*, int pstate); |
| void (*get_vid)(struct cpudata *); |
| }; |
| |
| static struct pstate_funcs pstate_funcs __read_mostly; |
| |
| static bool hwp_active __ro_after_init; |
| static int hwp_mode_bdw __ro_after_init; |
| static bool per_cpu_limits __ro_after_init; |
| static bool hwp_forced __ro_after_init; |
| static bool hwp_boost __read_mostly; |
| static bool hwp_is_hybrid; |
| |
| static struct cpufreq_driver *intel_pstate_driver __read_mostly; |
| |
| #define HYBRID_SCALING_FACTOR 78741 |
| #define HYBRID_SCALING_FACTOR_MTL 80000 |
| #define HYBRID_SCALING_FACTOR_LNL 86957 |
| |
| static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR; |
| |
| static inline int core_get_scaling(void) |
| { |
| return 100000; |
| } |
| |
| #ifdef CONFIG_ACPI |
| static bool acpi_ppc; |
| #endif |
| |
| static struct global_params global; |
| |
| static DEFINE_MUTEX(intel_pstate_driver_lock); |
| static DEFINE_MUTEX(intel_pstate_limits_lock); |
| |
| #ifdef CONFIG_ACPI |
| |
| static bool intel_pstate_acpi_pm_profile_server(void) |
| { |
| if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || |
| acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) |
| return true; |
| |
| return false; |
| } |
| |
| static bool intel_pstate_get_ppc_enable_status(void) |
| { |
| if (intel_pstate_acpi_pm_profile_server()) |
| return true; |
| |
| return acpi_ppc; |
| } |
| |
| #ifdef CONFIG_ACPI_CPPC_LIB |
| |
| /* The work item is needed to avoid CPU hotplug locking issues */ |
| static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) |
| { |
| sched_set_itmt_support(); |
| } |
| |
| static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); |
| |
| #define CPPC_MAX_PERF U8_MAX |
| |
| static void intel_pstate_set_itmt_prio(int cpu) |
| { |
| struct cppc_perf_caps cppc_perf; |
| static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; |
| int ret; |
| |
| ret = cppc_get_perf_caps(cpu, &cppc_perf); |
| /* |
| * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0]. |
| * |
| * Also, on some systems with overclocking enabled, CPPC.highest_perf is |
| * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT. |
| * Fall back to MSR_HWP_CAPABILITIES then too. |
| */ |
| if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF) |
| cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); |
| |
| /* |
| * The priorities can be set regardless of whether or not |
| * sched_set_itmt_support(true) has been called and it is valid to |
| * update them at any time after it has been called. |
| */ |
| sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); |
| |
| if (max_highest_perf <= min_highest_perf) { |
| if (cppc_perf.highest_perf > max_highest_perf) |
| max_highest_perf = cppc_perf.highest_perf; |
| |
| if (cppc_perf.highest_perf < min_highest_perf) |
| min_highest_perf = cppc_perf.highest_perf; |
| |
| if (max_highest_perf > min_highest_perf) { |
| /* |
| * This code can be run during CPU online under the |
| * CPU hotplug locks, so sched_set_itmt_support() |
| * cannot be called from here. Queue up a work item |
| * to invoke it. |
| */ |
| schedule_work(&sched_itmt_work); |
| } |
| } |
| } |
| |
| static int intel_pstate_get_cppc_guaranteed(int cpu) |
| { |
| struct cppc_perf_caps cppc_perf; |
| int ret; |
| |
| ret = cppc_get_perf_caps(cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| if (cppc_perf.guaranteed_perf) |
| return cppc_perf.guaranteed_perf; |
| |
| return cppc_perf.nominal_perf; |
| } |
| |
| static int intel_pstate_cppc_get_scaling(int cpu) |
| { |
| struct cppc_perf_caps cppc_perf; |
| int ret; |
| |
| ret = cppc_get_perf_caps(cpu, &cppc_perf); |
| |
| /* |
| * If the nominal frequency and the nominal performance are not |
| * zero and the ratio between them is not 100, return the hybrid |
| * scaling factor. |
| */ |
| if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && |
| cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) |
| return hybrid_scaling_factor; |
| |
| return core_get_scaling(); |
| } |
| |
| #else /* CONFIG_ACPI_CPPC_LIB */ |
| static inline void intel_pstate_set_itmt_prio(int cpu) |
| { |
| } |
| #endif /* CONFIG_ACPI_CPPC_LIB */ |
| |
| static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| int ret; |
| int i; |
| |
| if (hwp_active) { |
| intel_pstate_set_itmt_prio(policy->cpu); |
| return; |
| } |
| |
| if (!intel_pstate_get_ppc_enable_status()) |
| return; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| ret = acpi_processor_register_performance(&cpu->acpi_perf_data, |
| policy->cpu); |
| if (ret) |
| return; |
| |
| /* |
| * Check if the control value in _PSS is for PERF_CTL MSR, which should |
| * guarantee that the states returned by it map to the states in our |
| * list directly. |
| */ |
| if (cpu->acpi_perf_data.control_register.space_id != |
| ACPI_ADR_SPACE_FIXED_HARDWARE) |
| goto err; |
| |
| /* |
| * If there is only one entry _PSS, simply ignore _PSS and continue as |
| * usual without taking _PSS into account |
| */ |
| if (cpu->acpi_perf_data.state_count < 2) |
| goto err; |
| |
| pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); |
| for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { |
| pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", |
| (i == cpu->acpi_perf_data.state ? '*' : ' '), i, |
| (u32) cpu->acpi_perf_data.states[i].core_frequency, |
| (u32) cpu->acpi_perf_data.states[i].power, |
| (u32) cpu->acpi_perf_data.states[i].control); |
| } |
| |
| cpu->valid_pss_table = true; |
| pr_debug("_PPC limits will be enforced\n"); |
| |
| return; |
| |
| err: |
| cpu->valid_pss_table = false; |
| acpi_processor_unregister_performance(policy->cpu); |
| } |
| |
| static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| if (!cpu->valid_pss_table) |
| return; |
| |
| acpi_processor_unregister_performance(policy->cpu); |
| } |
| #else /* CONFIG_ACPI */ |
| static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) |
| { |
| } |
| |
| static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) |
| { |
| } |
| |
| static inline bool intel_pstate_acpi_pm_profile_server(void) |
| { |
| return false; |
| } |
| #endif /* CONFIG_ACPI */ |
| |
| #ifndef CONFIG_ACPI_CPPC_LIB |
| static inline int intel_pstate_get_cppc_guaranteed(int cpu) |
| { |
| return -ENOTSUPP; |
| } |
| |
| static int intel_pstate_cppc_get_scaling(int cpu) |
| { |
| return core_get_scaling(); |
| } |
| #endif /* CONFIG_ACPI_CPPC_LIB */ |
| |
| static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, |
| unsigned int relation) |
| { |
| if (freq == cpu->pstate.turbo_freq) |
| return cpu->pstate.turbo_pstate; |
| |
| if (freq == cpu->pstate.max_freq) |
| return cpu->pstate.max_pstate; |
| |
| switch (relation) { |
| case CPUFREQ_RELATION_H: |
| return freq / cpu->pstate.scaling; |
| case CPUFREQ_RELATION_C: |
| return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); |
| } |
| |
| return DIV_ROUND_UP(freq, cpu->pstate.scaling); |
| } |
| |
| static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) |
| { |
| return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); |
| } |
| |
| /** |
| * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. |
| * @cpu: Target CPU. |
| * |
| * On hybrid processors, HWP may expose more performance levels than there are |
| * P-states accessible through the PERF_CTL interface. If that happens, the |
| * scaling factor between HWP performance levels and CPU frequency will be less |
| * than the scaling factor between P-state values and CPU frequency. |
| * |
| * In that case, adjust the CPU parameters used in computations accordingly. |
| */ |
| static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) |
| { |
| int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; |
| int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; |
| int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); |
| int scaling = cpu->pstate.scaling; |
| int freq; |
| |
| pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); |
| pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); |
| pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); |
| pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); |
| pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); |
| pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); |
| |
| cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, |
| perf_ctl_scaling); |
| cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, |
| perf_ctl_scaling); |
| |
| freq = perf_ctl_max_phys * perf_ctl_scaling; |
| cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); |
| |
| freq = cpu->pstate.min_pstate * perf_ctl_scaling; |
| cpu->pstate.min_freq = freq; |
| /* |
| * Cast the min P-state value retrieved via pstate_funcs.get_min() to |
| * the effective range of HWP performance levels. |
| */ |
| cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); |
| } |
| |
| static bool turbo_is_disabled(void) |
| { |
| u64 misc_en; |
| |
| rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); |
| |
| return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); |
| } |
| |
| static int min_perf_pct_min(void) |
| { |
| struct cpudata *cpu = all_cpu_data[0]; |
| int turbo_pstate = cpu->pstate.turbo_pstate; |
| |
| return turbo_pstate ? |
| (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; |
| } |
| |
| static s16 intel_pstate_get_epb(struct cpudata *cpu_data) |
| { |
| u64 epb; |
| int ret; |
| |
| if (!boot_cpu_has(X86_FEATURE_EPB)) |
| return -ENXIO; |
| |
| ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); |
| if (ret) |
| return (s16)ret; |
| |
| return (s16)(epb & 0x0f); |
| } |
| |
| static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) |
| { |
| s16 epp; |
| |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { |
| /* |
| * When hwp_req_data is 0, means that caller didn't read |
| * MSR_HWP_REQUEST, so need to read and get EPP. |
| */ |
| if (!hwp_req_data) { |
| epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, |
| &hwp_req_data); |
| if (epp) |
| return epp; |
| } |
| epp = (hwp_req_data >> 24) & 0xff; |
| } else { |
| /* When there is no EPP present, HWP uses EPB settings */ |
| epp = intel_pstate_get_epb(cpu_data); |
| } |
| |
| return epp; |
| } |
| |
| static int intel_pstate_set_epb(int cpu, s16 pref) |
| { |
| u64 epb; |
| int ret; |
| |
| if (!boot_cpu_has(X86_FEATURE_EPB)) |
| return -ENXIO; |
| |
| ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); |
| if (ret) |
| return ret; |
| |
| epb = (epb & ~0x0f) | pref; |
| wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); |
| |
| return 0; |
| } |
| |
| /* |
| * EPP/EPB display strings corresponding to EPP index in the |
| * energy_perf_strings[] |
| * index String |
| *------------------------------------- |
| * 0 default |
| * 1 performance |
| * 2 balance_performance |
| * 3 balance_power |
| * 4 power |
| */ |
| |
| enum energy_perf_value_index { |
| EPP_INDEX_DEFAULT = 0, |
| EPP_INDEX_PERFORMANCE, |
| EPP_INDEX_BALANCE_PERFORMANCE, |
| EPP_INDEX_BALANCE_POWERSAVE, |
| EPP_INDEX_POWERSAVE, |
| }; |
| |
| static const char * const energy_perf_strings[] = { |
| [EPP_INDEX_DEFAULT] = "default", |
| [EPP_INDEX_PERFORMANCE] = "performance", |
| [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", |
| [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", |
| [EPP_INDEX_POWERSAVE] = "power", |
| NULL |
| }; |
| static unsigned int epp_values[] = { |
| [EPP_INDEX_DEFAULT] = 0, /* Unused index */ |
| [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, |
| [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, |
| [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, |
| [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, |
| }; |
| |
| static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) |
| { |
| s16 epp; |
| int index = -EINVAL; |
| |
| *raw_epp = 0; |
| epp = intel_pstate_get_epp(cpu_data, 0); |
| if (epp < 0) |
| return epp; |
| |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { |
| if (epp == epp_values[EPP_INDEX_PERFORMANCE]) |
| return EPP_INDEX_PERFORMANCE; |
| if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) |
| return EPP_INDEX_BALANCE_PERFORMANCE; |
| if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) |
| return EPP_INDEX_BALANCE_POWERSAVE; |
| if (epp == epp_values[EPP_INDEX_POWERSAVE]) |
| return EPP_INDEX_POWERSAVE; |
| *raw_epp = epp; |
| return 0; |
| } else if (boot_cpu_has(X86_FEATURE_EPB)) { |
| /* |
| * Range: |
| * 0x00-0x03 : Performance |
| * 0x04-0x07 : Balance performance |
| * 0x08-0x0B : Balance power |
| * 0x0C-0x0F : Power |
| * The EPB is a 4 bit value, but our ranges restrict the |
| * value which can be set. Here only using top two bits |
| * effectively. |
| */ |
| index = (epp >> 2) + 1; |
| } |
| |
| return index; |
| } |
| |
| static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) |
| { |
| int ret; |
| |
| /* |
| * Use the cached HWP Request MSR value, because in the active mode the |
| * register itself may be updated by intel_pstate_hwp_boost_up() or |
| * intel_pstate_hwp_boost_down() at any time. |
| */ |
| u64 value = READ_ONCE(cpu->hwp_req_cached); |
| |
| value &= ~GENMASK_ULL(31, 24); |
| value |= (u64)epp << 24; |
| /* |
| * The only other updater of hwp_req_cached in the active mode, |
| * intel_pstate_hwp_set(), is called under the same lock as this |
| * function, so it cannot run in parallel with the update below. |
| */ |
| WRITE_ONCE(cpu->hwp_req_cached, value); |
| ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); |
| if (!ret) |
| cpu->epp_cached = epp; |
| |
| return ret; |
| } |
| |
| static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, |
| int pref_index, bool use_raw, |
| u32 raw_epp) |
| { |
| int epp = -EINVAL; |
| int ret; |
| |
| if (!pref_index) |
| epp = cpu_data->epp_default; |
| |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { |
| if (use_raw) |
| epp = raw_epp; |
| else if (epp == -EINVAL) |
| epp = epp_values[pref_index]; |
| |
| /* |
| * To avoid confusion, refuse to set EPP to any values different |
| * from 0 (performance) if the current policy is "performance", |
| * because those values would be overridden. |
| */ |
| if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) |
| return -EBUSY; |
| |
| ret = intel_pstate_set_epp(cpu_data, epp); |
| } else { |
| if (epp == -EINVAL) |
| epp = (pref_index - 1) << 2; |
| ret = intel_pstate_set_epb(cpu_data->cpu, epp); |
| } |
| |
| return ret; |
| } |
| |
| static ssize_t show_energy_performance_available_preferences( |
| struct cpufreq_policy *policy, char *buf) |
| { |
| int i = 0; |
| int ret = 0; |
| |
| while (energy_perf_strings[i] != NULL) |
| ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); |
| |
| ret += sprintf(&buf[ret], "\n"); |
| |
| return ret; |
| } |
| |
| cpufreq_freq_attr_ro(energy_performance_available_preferences); |
| |
| static struct cpufreq_driver intel_pstate; |
| |
| static ssize_t store_energy_performance_preference( |
| struct cpufreq_policy *policy, const char *buf, size_t count) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| char str_preference[21]; |
| bool raw = false; |
| ssize_t ret; |
| u32 epp = 0; |
| |
| ret = sscanf(buf, "%20s", str_preference); |
| if (ret != 1) |
| return -EINVAL; |
| |
| ret = match_string(energy_perf_strings, -1, str_preference); |
| if (ret < 0) { |
| if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) |
| return ret; |
| |
| ret = kstrtouint(buf, 10, &epp); |
| if (ret) |
| return ret; |
| |
| if (epp > 255) |
| return -EINVAL; |
| |
| raw = true; |
| } |
| |
| /* |
| * This function runs with the policy R/W semaphore held, which |
| * guarantees that the driver pointer will not change while it is |
| * running. |
| */ |
| if (!intel_pstate_driver) |
| return -EAGAIN; |
| |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| if (intel_pstate_driver == &intel_pstate) { |
| ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); |
| } else { |
| /* |
| * In the passive mode the governor needs to be stopped on the |
| * target CPU before the EPP update and restarted after it, |
| * which is super-heavy-weight, so make sure it is worth doing |
| * upfront. |
| */ |
| if (!raw) |
| epp = ret ? epp_values[ret] : cpu->epp_default; |
| |
| if (cpu->epp_cached != epp) { |
| int err; |
| |
| cpufreq_stop_governor(policy); |
| ret = intel_pstate_set_epp(cpu, epp); |
| err = cpufreq_start_governor(policy); |
| if (!ret) |
| ret = err; |
| } else { |
| ret = 0; |
| } |
| } |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| |
| return ret ?: count; |
| } |
| |
| static ssize_t show_energy_performance_preference( |
| struct cpufreq_policy *policy, char *buf) |
| { |
| struct cpudata *cpu_data = all_cpu_data[policy->cpu]; |
| int preference, raw_epp; |
| |
| preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); |
| if (preference < 0) |
| return preference; |
| |
| if (raw_epp) |
| return sprintf(buf, "%d\n", raw_epp); |
| else |
| return sprintf(buf, "%s\n", energy_perf_strings[preference]); |
| } |
| |
| cpufreq_freq_attr_rw(energy_performance_preference); |
| |
| static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| int ratio, freq; |
| |
| ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); |
| if (ratio <= 0) { |
| u64 cap; |
| |
| rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); |
| ratio = HWP_GUARANTEED_PERF(cap); |
| } |
| |
| freq = ratio * cpu->pstate.scaling; |
| if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) |
| freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); |
| |
| return sprintf(buf, "%d\n", freq); |
| } |
| |
| cpufreq_freq_attr_ro(base_frequency); |
| |
| static struct freq_attr *hwp_cpufreq_attrs[] = { |
| &energy_performance_preference, |
| &energy_performance_available_preferences, |
| &base_frequency, |
| NULL, |
| }; |
| |
| static struct cpudata *hybrid_max_perf_cpu __read_mostly; |
| /* |
| * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata, |
| * and the x86 arch scale-invariance information from concurrent updates. |
| */ |
| static DEFINE_MUTEX(hybrid_capacity_lock); |
| |
| static void hybrid_set_cpu_capacity(struct cpudata *cpu) |
| { |
| arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf, |
| hybrid_max_perf_cpu->capacity_perf, |
| cpu->capacity_perf, |
| cpu->pstate.max_pstate_physical); |
| |
| pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu, |
| cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf, |
| cpu->pstate.max_pstate_physical); |
| } |
| |
| static void hybrid_clear_cpu_capacity(unsigned int cpunum) |
| { |
| arch_set_cpu_capacity(cpunum, 1, 1, 1, 1); |
| } |
| |
| static void hybrid_get_capacity_perf(struct cpudata *cpu) |
| { |
| if (READ_ONCE(global.no_turbo)) { |
| cpu->capacity_perf = cpu->pstate.max_pstate_physical; |
| return; |
| } |
| |
| cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); |
| } |
| |
| static void hybrid_set_capacity_of_cpus(void) |
| { |
| int cpunum; |
| |
| for_each_online_cpu(cpunum) { |
| struct cpudata *cpu = all_cpu_data[cpunum]; |
| |
| if (cpu) |
| hybrid_set_cpu_capacity(cpu); |
| } |
| } |
| |
| static void hybrid_update_cpu_capacity_scaling(void) |
| { |
| struct cpudata *max_perf_cpu = NULL; |
| unsigned int max_cap_perf = 0; |
| int cpunum; |
| |
| for_each_online_cpu(cpunum) { |
| struct cpudata *cpu = all_cpu_data[cpunum]; |
| |
| if (!cpu) |
| continue; |
| |
| /* |
| * During initialization, CPU performance at full capacity needs |
| * to be determined. |
| */ |
| if (!hybrid_max_perf_cpu) |
| hybrid_get_capacity_perf(cpu); |
| |
| /* |
| * If hybrid_max_perf_cpu is not NULL at this point, it is |
| * being replaced, so don't take it into account when looking |
| * for the new one. |
| */ |
| if (cpu == hybrid_max_perf_cpu) |
| continue; |
| |
| if (cpu->capacity_perf > max_cap_perf) { |
| max_cap_perf = cpu->capacity_perf; |
| max_perf_cpu = cpu; |
| } |
| } |
| |
| if (max_perf_cpu) { |
| hybrid_max_perf_cpu = max_perf_cpu; |
| hybrid_set_capacity_of_cpus(); |
| } else { |
| pr_info("Found no CPUs with nonzero maximum performance\n"); |
| /* Revert to the flat CPU capacity structure. */ |
| for_each_online_cpu(cpunum) |
| hybrid_clear_cpu_capacity(cpunum); |
| } |
| } |
| |
| static void __hybrid_refresh_cpu_capacity_scaling(void) |
| { |
| hybrid_max_perf_cpu = NULL; |
| hybrid_update_cpu_capacity_scaling(); |
| } |
| |
| static void hybrid_refresh_cpu_capacity_scaling(void) |
| { |
| guard(mutex)(&hybrid_capacity_lock); |
| |
| __hybrid_refresh_cpu_capacity_scaling(); |
| } |
| |
| static void hybrid_init_cpu_capacity_scaling(bool refresh) |
| { |
| /* |
| * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity |
| * scaling has been enabled already and the driver is just changing the |
| * operation mode. |
| */ |
| if (refresh) { |
| hybrid_refresh_cpu_capacity_scaling(); |
| return; |
| } |
| |
| /* |
| * On hybrid systems, use asym capacity instead of ITMT, but because |
| * the capacity of SMT threads is not deterministic even approximately, |
| * do not do that when SMT is in use. |
| */ |
| if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) { |
| hybrid_refresh_cpu_capacity_scaling(); |
| /* |
| * Disabling ITMT causes sched domains to be rebuilt to disable asym |
| * packing and enable asym capacity. |
| */ |
| sched_clear_itmt_support(); |
| } |
| } |
| |
| static bool hybrid_clear_max_perf_cpu(void) |
| { |
| bool ret; |
| |
| guard(mutex)(&hybrid_capacity_lock); |
| |
| ret = !!hybrid_max_perf_cpu; |
| hybrid_max_perf_cpu = NULL; |
| |
| return ret; |
| } |
| |
| static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) |
| { |
| u64 cap; |
| |
| rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); |
| WRITE_ONCE(cpu->hwp_cap_cached, cap); |
| cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); |
| cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); |
| } |
| |
| static void intel_pstate_get_hwp_cap(struct cpudata *cpu) |
| { |
| int scaling = cpu->pstate.scaling; |
| |
| __intel_pstate_get_hwp_cap(cpu); |
| |
| cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; |
| cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; |
| if (scaling != cpu->pstate.perf_ctl_scaling) { |
| int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; |
| |
| cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, |
| perf_ctl_scaling); |
| cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, |
| perf_ctl_scaling); |
| } |
| } |
| |
| static void hybrid_update_capacity(struct cpudata *cpu) |
| { |
| unsigned int max_cap_perf; |
| |
| mutex_lock(&hybrid_capacity_lock); |
| |
| if (!hybrid_max_perf_cpu) |
| goto unlock; |
| |
| /* |
| * The maximum performance of the CPU may have changed, but assume |
| * that the performance of the other CPUs has not changed. |
| */ |
| max_cap_perf = hybrid_max_perf_cpu->capacity_perf; |
| |
| intel_pstate_get_hwp_cap(cpu); |
| |
| hybrid_get_capacity_perf(cpu); |
| /* Should hybrid_max_perf_cpu be replaced by this CPU? */ |
| if (cpu->capacity_perf > max_cap_perf) { |
| hybrid_max_perf_cpu = cpu; |
| hybrid_set_capacity_of_cpus(); |
| goto unlock; |
| } |
| |
| /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */ |
| if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) { |
| hybrid_update_cpu_capacity_scaling(); |
| goto unlock; |
| } |
| |
| hybrid_set_cpu_capacity(cpu); |
| |
| unlock: |
| mutex_unlock(&hybrid_capacity_lock); |
| } |
| |
| static void intel_pstate_hwp_set(unsigned int cpu) |
| { |
| struct cpudata *cpu_data = all_cpu_data[cpu]; |
| int max, min; |
| u64 value; |
| s16 epp; |
| |
| max = cpu_data->max_perf_ratio; |
| min = cpu_data->min_perf_ratio; |
| |
| if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) |
| min = max; |
| |
| rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); |
| |
| value &= ~HWP_MIN_PERF(~0L); |
| value |= HWP_MIN_PERF(min); |
| |
| value &= ~HWP_MAX_PERF(~0L); |
| value |= HWP_MAX_PERF(max); |
| |
| if (cpu_data->epp_policy == cpu_data->policy) |
| goto skip_epp; |
| |
| cpu_data->epp_policy = cpu_data->policy; |
| |
| if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { |
| epp = intel_pstate_get_epp(cpu_data, value); |
| cpu_data->epp_powersave = epp; |
| /* If EPP read was failed, then don't try to write */ |
| if (epp < 0) |
| goto skip_epp; |
| |
| epp = 0; |
| } else { |
| /* skip setting EPP, when saved value is invalid */ |
| if (cpu_data->epp_powersave < 0) |
| goto skip_epp; |
| |
| /* |
| * No need to restore EPP when it is not zero. This |
| * means: |
| * - Policy is not changed |
| * - user has manually changed |
| * - Error reading EPB |
| */ |
| epp = intel_pstate_get_epp(cpu_data, value); |
| if (epp) |
| goto skip_epp; |
| |
| epp = cpu_data->epp_powersave; |
| } |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { |
| value &= ~GENMASK_ULL(31, 24); |
| value |= (u64)epp << 24; |
| } else { |
| intel_pstate_set_epb(cpu, epp); |
| } |
| skip_epp: |
| WRITE_ONCE(cpu_data->hwp_req_cached, value); |
| wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); |
| } |
| |
| static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); |
| |
| static void intel_pstate_hwp_offline(struct cpudata *cpu) |
| { |
| u64 value = READ_ONCE(cpu->hwp_req_cached); |
| int min_perf; |
| |
| intel_pstate_disable_hwp_interrupt(cpu); |
| |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { |
| /* |
| * In case the EPP has been set to "performance" by the |
| * active mode "performance" scaling algorithm, replace that |
| * temporary value with the cached EPP one. |
| */ |
| value &= ~GENMASK_ULL(31, 24); |
| value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); |
| /* |
| * However, make sure that EPP will be set to "performance" when |
| * the CPU is brought back online again and the "performance" |
| * scaling algorithm is still in effect. |
| */ |
| cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; |
| } |
| |
| /* |
| * Clear the desired perf field in the cached HWP request value to |
| * prevent nonzero desired values from being leaked into the active |
| * mode. |
| */ |
| value &= ~HWP_DESIRED_PERF(~0L); |
| WRITE_ONCE(cpu->hwp_req_cached, value); |
| |
| value &= ~GENMASK_ULL(31, 0); |
| min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); |
| |
| /* Set hwp_max = hwp_min */ |
| value |= HWP_MAX_PERF(min_perf); |
| value |= HWP_MIN_PERF(min_perf); |
| |
| /* Set EPP to min */ |
| if (boot_cpu_has(X86_FEATURE_HWP_EPP)) |
| value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); |
| |
| wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); |
| |
| mutex_lock(&hybrid_capacity_lock); |
| |
| if (!hybrid_max_perf_cpu) { |
| mutex_unlock(&hybrid_capacity_lock); |
| |
| return; |
| } |
| |
| if (hybrid_max_perf_cpu == cpu) |
| hybrid_update_cpu_capacity_scaling(); |
| |
| mutex_unlock(&hybrid_capacity_lock); |
| |
| /* Reset the capacity of the CPU going offline to the initial value. */ |
| hybrid_clear_cpu_capacity(cpu->cpu); |
| } |
| |
| #define POWER_CTL_EE_ENABLE 1 |
| #define POWER_CTL_EE_DISABLE 2 |
| |
| static int power_ctl_ee_state; |
| |
| static void set_power_ctl_ee_state(bool input) |
| { |
| u64 power_ctl; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| rdmsrl(MSR_IA32_POWER_CTL, power_ctl); |
| if (input) { |
| power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); |
| power_ctl_ee_state = POWER_CTL_EE_ENABLE; |
| } else { |
| power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); |
| power_ctl_ee_state = POWER_CTL_EE_DISABLE; |
| } |
| wrmsrl(MSR_IA32_POWER_CTL, power_ctl); |
| mutex_unlock(&intel_pstate_driver_lock); |
| } |
| |
| static void intel_pstate_hwp_enable(struct cpudata *cpudata); |
| |
| static void intel_pstate_hwp_reenable(struct cpudata *cpu) |
| { |
| intel_pstate_hwp_enable(cpu); |
| wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); |
| } |
| |
| static int intel_pstate_suspend(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| pr_debug("CPU %d suspending\n", cpu->cpu); |
| |
| cpu->suspended = true; |
| |
| /* disable HWP interrupt and cancel any pending work */ |
| intel_pstate_disable_hwp_interrupt(cpu); |
| |
| return 0; |
| } |
| |
| static int intel_pstate_resume(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| pr_debug("CPU %d resuming\n", cpu->cpu); |
| |
| /* Only restore if the system default is changed */ |
| if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) |
| set_power_ctl_ee_state(true); |
| else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) |
| set_power_ctl_ee_state(false); |
| |
| if (cpu->suspended && hwp_active) { |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| /* Re-enable HWP, because "online" has not done that. */ |
| intel_pstate_hwp_reenable(cpu); |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| } |
| |
| cpu->suspended = false; |
| |
| return 0; |
| } |
| |
| static void intel_pstate_update_policies(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| cpufreq_update_policy(cpu); |
| } |
| |
| static void __intel_pstate_update_max_freq(struct cpudata *cpudata, |
| struct cpufreq_policy *policy) |
| { |
| if (hwp_active) |
| intel_pstate_get_hwp_cap(cpudata); |
| |
| policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? |
| cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; |
| |
| refresh_frequency_limits(policy); |
| } |
| |
| static void intel_pstate_update_limits(unsigned int cpu) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); |
| struct cpudata *cpudata; |
| |
| if (!policy) |
| return; |
| |
| cpudata = all_cpu_data[cpu]; |
| |
| __intel_pstate_update_max_freq(cpudata, policy); |
| |
| /* Prevent the driver from being unregistered now. */ |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| cpufreq_cpu_release(policy); |
| |
| hybrid_update_capacity(cpudata); |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| } |
| |
| static void intel_pstate_update_limits_for_all(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); |
| |
| if (!policy) |
| continue; |
| |
| __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); |
| |
| cpufreq_cpu_release(policy); |
| } |
| |
| mutex_lock(&hybrid_capacity_lock); |
| |
| if (hybrid_max_perf_cpu) |
| __hybrid_refresh_cpu_capacity_scaling(); |
| |
| mutex_unlock(&hybrid_capacity_lock); |
| } |
| |
| /************************** sysfs begin ************************/ |
| #define show_one(file_name, object) \ |
| static ssize_t show_##file_name \ |
| (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "%u\n", global.object); \ |
| } |
| |
| static ssize_t intel_pstate_show_status(char *buf); |
| static int intel_pstate_update_status(const char *buf, size_t size); |
| |
| static ssize_t show_status(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| ret = intel_pstate_show_status(buf); |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| char *p = memchr(buf, '\n', count); |
| int ret; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| ret = intel_pstate_update_status(buf, p ? p - buf : count); |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return ret < 0 ? ret : count; |
| } |
| |
| static ssize_t show_turbo_pct(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| struct cpudata *cpu; |
| int total, no_turbo, turbo_pct; |
| uint32_t turbo_fp; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| mutex_unlock(&intel_pstate_driver_lock); |
| return -EAGAIN; |
| } |
| |
| cpu = all_cpu_data[0]; |
| |
| total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; |
| turbo_fp = div_fp(no_turbo, total); |
| turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return sprintf(buf, "%u\n", turbo_pct); |
| } |
| |
| static ssize_t show_num_pstates(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| struct cpudata *cpu; |
| int total; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| mutex_unlock(&intel_pstate_driver_lock); |
| return -EAGAIN; |
| } |
| |
| cpu = all_cpu_data[0]; |
| total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return sprintf(buf, "%u\n", total); |
| } |
| |
| static ssize_t show_no_turbo(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| mutex_unlock(&intel_pstate_driver_lock); |
| return -EAGAIN; |
| } |
| |
| ret = sprintf(buf, "%u\n", global.no_turbo); |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| bool no_turbo; |
| |
| if (sscanf(buf, "%u", &input) != 1) |
| return -EINVAL; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| count = -EAGAIN; |
| goto unlock_driver; |
| } |
| |
| no_turbo = !!clamp_t(int, input, 0, 1); |
| |
| WRITE_ONCE(global.turbo_disabled, turbo_is_disabled()); |
| if (global.turbo_disabled && !no_turbo) { |
| pr_notice("Turbo disabled by BIOS or unavailable on processor\n"); |
| count = -EPERM; |
| if (global.no_turbo) |
| goto unlock_driver; |
| else |
| no_turbo = 1; |
| } |
| |
| if (no_turbo == global.no_turbo) { |
| goto unlock_driver; |
| } |
| |
| WRITE_ONCE(global.no_turbo, no_turbo); |
| |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| if (no_turbo) { |
| struct cpudata *cpu = all_cpu_data[0]; |
| int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; |
| |
| /* Squash the global minimum into the permitted range. */ |
| if (global.min_perf_pct > pct) |
| global.min_perf_pct = pct; |
| } |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| |
| intel_pstate_update_limits_for_all(); |
| arch_set_max_freq_ratio(no_turbo); |
| |
| unlock_driver: |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return count; |
| } |
| |
| static void update_qos_request(enum freq_qos_req_type type) |
| { |
| struct freq_qos_request *req; |
| struct cpufreq_policy *policy; |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct cpudata *cpu = all_cpu_data[i]; |
| unsigned int freq, perf_pct; |
| |
| policy = cpufreq_cpu_get(i); |
| if (!policy) |
| continue; |
| |
| req = policy->driver_data; |
| cpufreq_cpu_put(policy); |
| |
| if (!req) |
| continue; |
| |
| if (hwp_active) |
| intel_pstate_get_hwp_cap(cpu); |
| |
| if (type == FREQ_QOS_MIN) { |
| perf_pct = global.min_perf_pct; |
| } else { |
| req++; |
| perf_pct = global.max_perf_pct; |
| } |
| |
| freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); |
| |
| if (freq_qos_update_request(req, freq) < 0) |
| pr_warn("Failed to update freq constraint: CPU%d\n", i); |
| } |
| } |
| |
| static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| mutex_unlock(&intel_pstate_driver_lock); |
| return -EAGAIN; |
| } |
| |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| |
| if (intel_pstate_driver == &intel_pstate) |
| intel_pstate_update_policies(); |
| else |
| update_qos_request(FREQ_QOS_MAX); |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return count; |
| } |
| |
| static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| |
| if (!intel_pstate_driver) { |
| mutex_unlock(&intel_pstate_driver_lock); |
| return -EAGAIN; |
| } |
| |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| global.min_perf_pct = clamp_t(int, input, |
| min_perf_pct_min(), global.max_perf_pct); |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| |
| if (intel_pstate_driver == &intel_pstate) |
| intel_pstate_update_policies(); |
| else |
| update_qos_request(FREQ_QOS_MIN); |
| |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return count; |
| } |
| |
| static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%u\n", hwp_boost); |
| } |
| |
| static ssize_t store_hwp_dynamic_boost(struct kobject *a, |
| struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = kstrtouint(buf, 10, &input); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| hwp_boost = !!input; |
| intel_pstate_update_policies(); |
| mutex_unlock(&intel_pstate_driver_lock); |
| |
| return count; |
| } |
| |
| static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, |
| char *buf) |
| { |
| u64 power_ctl; |
| int enable; |
| |
| rdmsrl(MSR_IA32_POWER_CTL, power_ctl); |
| enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); |
| return sprintf(buf, "%d\n", !enable); |
| } |
| |
| static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, |
| const char *buf, size_t count) |
| { |
| bool input; |
| int ret; |
| |
| ret = kstrtobool(buf, &input); |
| if (ret) |
| return ret; |
| |
| set_power_ctl_ee_state(input); |
| |
| return count; |
| } |
| |
| show_one(max_perf_pct, max_perf_pct); |
| show_one(min_perf_pct, min_perf_pct); |
| |
| define_one_global_rw(status); |
| define_one_global_rw(no_turbo); |
| define_one_global_rw(max_perf_pct); |
| define_one_global_rw(min_perf_pct); |
| define_one_global_ro(turbo_pct); |
| define_one_global_ro(num_pstates); |
| define_one_global_rw(hwp_dynamic_boost); |
| define_one_global_rw(energy_efficiency); |
| |
| static struct attribute *intel_pstate_attributes[] = { |
| &status.attr, |
| &no_turbo.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group intel_pstate_attr_group = { |
| .attrs = intel_pstate_attributes, |
| }; |
| |
| static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; |
| |
| static struct kobject *intel_pstate_kobject; |
| |
| static void __init intel_pstate_sysfs_expose_params(void) |
| { |
| struct device *dev_root = bus_get_dev_root(&cpu_subsys); |
| int rc; |
| |
| if (dev_root) { |
| intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); |
| put_device(dev_root); |
| } |
| if (WARN_ON(!intel_pstate_kobject)) |
| return; |
| |
| rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); |
| if (WARN_ON(rc)) |
| return; |
| |
| if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { |
| rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); |
| WARN_ON(rc); |
| |
| rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); |
| WARN_ON(rc); |
| } |
| |
| /* |
| * If per cpu limits are enforced there are no global limits, so |
| * return without creating max/min_perf_pct attributes |
| */ |
| if (per_cpu_limits) |
| return; |
| |
| rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); |
| WARN_ON(rc); |
| |
| rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); |
| WARN_ON(rc); |
| |
| if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { |
| rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); |
| WARN_ON(rc); |
| } |
| } |
| |
| static void __init intel_pstate_sysfs_remove(void) |
| { |
| if (!intel_pstate_kobject) |
| return; |
| |
| sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); |
| |
| if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { |
| sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); |
| sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); |
| } |
| |
| if (!per_cpu_limits) { |
| sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); |
| sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); |
| |
| if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) |
| sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); |
| } |
| |
| kobject_put(intel_pstate_kobject); |
| } |
| |
| static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) |
| { |
| int rc; |
| |
| if (!hwp_active) |
| return; |
| |
| rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); |
| WARN_ON_ONCE(rc); |
| } |
| |
| static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) |
| { |
| if (!hwp_active) |
| return; |
| |
| sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); |
| } |
| |
| /************************** sysfs end ************************/ |
| |
| static void intel_pstate_notify_work(struct work_struct *work) |
| { |
| struct cpudata *cpudata = |
| container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); |
| struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); |
| |
| if (policy) { |
| __intel_pstate_update_max_freq(cpudata, policy); |
| |
| cpufreq_cpu_release(policy); |
| |
| /* |
| * The driver will not be unregistered while this function is |
| * running, so update the capacity without acquiring the driver |
| * lock. |
| */ |
| hybrid_update_capacity(cpudata); |
| } |
| |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); |
| } |
| |
| static DEFINE_RAW_SPINLOCK(hwp_notify_lock); |
| static cpumask_t hwp_intr_enable_mask; |
| |
| #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0) |
| #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3) |
| |
| void notify_hwp_interrupt(void) |
| { |
| unsigned int this_cpu = smp_processor_id(); |
| u64 value, status_mask; |
| unsigned long flags; |
| |
| if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) |
| return; |
| |
| status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS; |
| if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) |
| status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS; |
| |
| rdmsrl_safe(MSR_HWP_STATUS, &value); |
| if (!(value & status_mask)) |
| return; |
| |
| raw_spin_lock_irqsave(&hwp_notify_lock, flags); |
| |
| if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) |
| goto ack_intr; |
| |
| schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work, |
| msecs_to_jiffies(10)); |
| |
| raw_spin_unlock_irqrestore(&hwp_notify_lock, flags); |
| |
| return; |
| |
| ack_intr: |
| wrmsrl_safe(MSR_HWP_STATUS, 0); |
| raw_spin_unlock_irqrestore(&hwp_notify_lock, flags); |
| } |
| |
| static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) |
| { |
| bool cancel_work; |
| |
| if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) |
| return; |
| |
| /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); |
| |
| raw_spin_lock_irq(&hwp_notify_lock); |
| cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask); |
| raw_spin_unlock_irq(&hwp_notify_lock); |
| |
| if (cancel_work) |
| cancel_delayed_work_sync(&cpudata->hwp_notify_work); |
| } |
| |
| #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0) |
| #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2) |
| |
| static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) |
| { |
| /* Enable HWP notification interrupt for performance change */ |
| if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { |
| u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ; |
| |
| raw_spin_lock_irq(&hwp_notify_lock); |
| INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); |
| cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); |
| raw_spin_unlock_irq(&hwp_notify_lock); |
| |
| if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) |
| interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ; |
| |
| /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask); |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); |
| } |
| } |
| |
| static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) |
| { |
| cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); |
| |
| /* |
| * If the EPP is set by firmware, which means that firmware enabled HWP |
| * - Is equal or less than 0x80 (default balance_perf EPP) |
| * - But less performance oriented than performance EPP |
| * then use this as new balance_perf EPP. |
| */ |
| if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && |
| cpudata->epp_default > HWP_EPP_PERFORMANCE) { |
| epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; |
| return; |
| } |
| |
| /* |
| * If this CPU gen doesn't call for change in balance_perf |
| * EPP return. |
| */ |
| if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) |
| return; |
| |
| /* |
| * Use hard coded value per gen to update the balance_perf |
| * and default EPP. |
| */ |
| cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; |
| intel_pstate_set_epp(cpudata, cpudata->epp_default); |
| } |
| |
| static void intel_pstate_hwp_enable(struct cpudata *cpudata) |
| { |
| /* First disable HWP notification interrupt till we activate again */ |
| if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); |
| |
| wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); |
| |
| intel_pstate_enable_hwp_interrupt(cpudata); |
| |
| if (cpudata->epp_default >= 0) |
| return; |
| |
| intel_pstate_update_epp_defaults(cpudata); |
| } |
| |
| static int atom_get_min_pstate(int not_used) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_ATOM_CORE_RATIOS, value); |
| return (value >> 8) & 0x7F; |
| } |
| |
| static int atom_get_max_pstate(int not_used) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_ATOM_CORE_RATIOS, value); |
| return (value >> 16) & 0x7F; |
| } |
| |
| static int atom_get_turbo_pstate(int not_used) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); |
| return value & 0x7F; |
| } |
| |
| static u64 atom_get_val(struct cpudata *cpudata, int pstate) |
| { |
| u64 val; |
| int32_t vid_fp; |
| u32 vid; |
| |
| val = (u64)pstate << 8; |
| if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) |
| val |= (u64)1 << 32; |
| |
| vid_fp = cpudata->vid.min + mul_fp( |
| int_tofp(pstate - cpudata->pstate.min_pstate), |
| cpudata->vid.ratio); |
| |
| vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); |
| vid = ceiling_fp(vid_fp); |
| |
| if (pstate > cpudata->pstate.max_pstate) |
| vid = cpudata->vid.turbo; |
| |
| return val | vid; |
| } |
| |
| static int silvermont_get_scaling(void) |
| { |
| u64 value; |
| int i; |
| /* Defined in Table 35-6 from SDM (Sept 2015) */ |
| static int silvermont_freq_table[] = { |
| 83300, 100000, 133300, 116700, 80000}; |
| |
| rdmsrl(MSR_FSB_FREQ, value); |
| i = value & 0x7; |
| WARN_ON(i > 4); |
| |
| return silvermont_freq_table[i]; |
| } |
| |
| static int airmont_get_scaling(void) |
| { |
| u64 value; |
| int i; |
| /* Defined in Table 35-10 from SDM (Sept 2015) */ |
| static int airmont_freq_table[] = { |
| 83300, 100000, 133300, 116700, 80000, |
| 93300, 90000, 88900, 87500}; |
| |
| rdmsrl(MSR_FSB_FREQ, value); |
| i = value & 0xF; |
| WARN_ON(i > 8); |
| |
| return airmont_freq_table[i]; |
| } |
| |
| static void atom_get_vid(struct cpudata *cpudata) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_ATOM_CORE_VIDS, value); |
| cpudata->vid.min = int_tofp((value >> 8) & 0x7f); |
| cpudata->vid.max = int_tofp((value >> 16) & 0x7f); |
| cpudata->vid.ratio = div_fp( |
| cpudata->vid.max - cpudata->vid.min, |
| int_tofp(cpudata->pstate.max_pstate - |
| cpudata->pstate.min_pstate)); |
| |
| rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); |
| cpudata->vid.turbo = value & 0x7f; |
| } |
| |
| static int core_get_min_pstate(int cpu) |
| { |
| u64 value; |
| |
| rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); |
| return (value >> 40) & 0xFF; |
| } |
| |
| static int core_get_max_pstate_physical(int cpu) |
| { |
| u64 value; |
| |
| rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); |
| return (value >> 8) & 0xFF; |
| } |
| |
| static int core_get_tdp_ratio(int cpu, u64 plat_info) |
| { |
| /* Check how many TDP levels present */ |
| if (plat_info & 0x600000000) { |
| u64 tdp_ctrl; |
| u64 tdp_ratio; |
| int tdp_msr; |
| int err; |
| |
| /* Get the TDP level (0, 1, 2) to get ratios */ |
| err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); |
| if (err) |
| return err; |
| |
| /* TDP MSR are continuous starting at 0x648 */ |
| tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); |
| err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); |
| if (err) |
| return err; |
| |
| /* For level 1 and 2, bits[23:16] contain the ratio */ |
| if (tdp_ctrl & 0x03) |
| tdp_ratio >>= 16; |
| |
| tdp_ratio &= 0xff; /* ratios are only 8 bits long */ |
| pr_debug("tdp_ratio %x\n", (int)tdp_ratio); |
| |
| return (int)tdp_ratio; |
| } |
| |
| return -ENXIO; |
| } |
| |
| static int core_get_max_pstate(int cpu) |
| { |
| u64 tar; |
| u64 plat_info; |
| int max_pstate; |
| int tdp_ratio; |
| int err; |
| |
| rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); |
| max_pstate = (plat_info >> 8) & 0xFF; |
| |
| tdp_ratio = core_get_tdp_ratio(cpu, plat_info); |
| if (tdp_ratio <= 0) |
| return max_pstate; |
| |
| if (hwp_active) { |
| /* Turbo activation ratio is not used on HWP platforms */ |
| return tdp_ratio; |
| } |
| |
| err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); |
| if (!err) { |
| int tar_levels; |
| |
| /* Do some sanity checking for safety */ |
| tar_levels = tar & 0xff; |
| if (tdp_ratio - 1 == tar_levels) { |
| max_pstate = tar_levels; |
| pr_debug("max_pstate=TAC %x\n", max_pstate); |
| } |
| } |
| |
| return max_pstate; |
| } |
| |
| static int core_get_turbo_pstate(int cpu) |
| { |
| u64 value; |
| int nont, ret; |
| |
| rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); |
| nont = core_get_max_pstate(cpu); |
| ret = (value) & 255; |
| if (ret <= nont) |
| ret = nont; |
| return ret; |
| } |
| |
| static u64 core_get_val(struct cpudata *cpudata, int pstate) |
| { |
| u64 val; |
| |
| val = (u64)pstate << 8; |
| if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) |
| val |= (u64)1 << 32; |
| |
| return val; |
| } |
| |
| static int knl_get_aperf_mperf_shift(void) |
| { |
| return 10; |
| } |
| |
| static int knl_get_turbo_pstate(int cpu) |
| { |
| u64 value; |
| int nont, ret; |
| |
| rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); |
| nont = core_get_max_pstate(cpu); |
| ret = (((value) >> 8) & 0xFF); |
| if (ret <= nont) |
| ret = nont; |
| return ret; |
| } |
| |
| static void hybrid_get_type(void *data) |
| { |
| u8 *cpu_type = data; |
| |
| *cpu_type = get_this_hybrid_cpu_type(); |
| } |
| |
| static int hwp_get_cpu_scaling(int cpu) |
| { |
| u8 cpu_type = 0; |
| |
| smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); |
| /* P-cores have a smaller perf level-to-freqency scaling factor. */ |
| if (cpu_type == 0x40) |
| return hybrid_scaling_factor; |
| |
| /* Use default core scaling for E-cores */ |
| if (cpu_type == 0x20) |
| return core_get_scaling(); |
| |
| /* |
| * If reached here, this system is either non-hybrid (like Tiger |
| * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with |
| * no E cores (in which case CPUID for hybrid support is 0). |
| * |
| * The CPPC nominal_frequency field is 0 for non-hybrid systems, |
| * so the default core scaling will be used for them. |
| */ |
| return intel_pstate_cppc_get_scaling(cpu); |
| } |
| |
| static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) |
| { |
| trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); |
| cpu->pstate.current_pstate = pstate; |
| /* |
| * Generally, there is no guarantee that this code will always run on |
| * the CPU being updated, so force the register update to run on the |
| * right CPU. |
| */ |
| wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, |
| pstate_funcs.get_val(cpu, pstate)); |
| } |
| |
| static void intel_pstate_set_min_pstate(struct cpudata *cpu) |
| { |
| intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); |
| } |
| |
| static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) |
| { |
| int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); |
| int perf_ctl_scaling = pstate_funcs.get_scaling(); |
| |
| cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); |
| cpu->pstate.max_pstate_physical = perf_ctl_max_phys; |
| cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; |
| |
| if (hwp_active && !hwp_mode_bdw) { |
| __intel_pstate_get_hwp_cap(cpu); |
| |
| if (pstate_funcs.get_cpu_scaling) { |
| cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); |
| if (cpu->pstate.scaling != perf_ctl_scaling) { |
| intel_pstate_hybrid_hwp_adjust(cpu); |
| hwp_is_hybrid = true; |
| } |
| } else { |
| cpu->pstate.scaling = perf_ctl_scaling; |
| } |
| /* |
| * If the CPU is going online for the first time and it was |
| * offline initially, asym capacity scaling needs to be updated. |
| */ |
| hybrid_update_capacity(cpu); |
| } else { |
| cpu->pstate.scaling = perf_ctl_scaling; |
| cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); |
| cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); |
| } |
| |
| if (cpu->pstate.scaling == perf_ctl_scaling) { |
| cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; |
| cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; |
| cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; |
| } |
| |
| if (pstate_funcs.get_aperf_mperf_shift) |
| cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); |
| |
| if (pstate_funcs.get_vid) |
| pstate_funcs.get_vid(cpu); |
| |
| intel_pstate_set_min_pstate(cpu); |
| } |
| |
| /* |
| * Long hold time will keep high perf limits for long time, |
| * which negatively impacts perf/watt for some workloads, |
| * like specpower. 3ms is based on experiements on some |
| * workoads. |
| */ |
| static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; |
| |
| static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) |
| { |
| u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); |
| u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); |
| u32 max_limit = (hwp_req & 0xff00) >> 8; |
| u32 min_limit = (hwp_req & 0xff); |
| u32 boost_level1; |
| |
| /* |
| * Cases to consider (User changes via sysfs or boot time): |
| * If, P0 (Turbo max) = P1 (Guaranteed max) = min: |
| * No boost, return. |
| * If, P0 (Turbo max) > P1 (Guaranteed max) = min: |
| * Should result in one level boost only for P0. |
| * If, P0 (Turbo max) = P1 (Guaranteed max) > min: |
| * Should result in two level boost: |
| * (min + p1)/2 and P1. |
| * If, P0 (Turbo max) > P1 (Guaranteed max) > min: |
| * Should result in three level boost: |
| * (min + p1)/2, P1 and P0. |
| */ |
| |
| /* If max and min are equal or already at max, nothing to boost */ |
| if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) |
| return; |
| |
| if (!cpu->hwp_boost_min) |
| cpu->hwp_boost_min = min_limit; |
| |
| /* level at half way mark between min and guranteed */ |
| boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; |
| |
| if (cpu->hwp_boost_min < boost_level1) |
| cpu->hwp_boost_min = boost_level1; |
| else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) |
| cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); |
| else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && |
| max_limit != HWP_GUARANTEED_PERF(hwp_cap)) |
| cpu->hwp_boost_min = max_limit; |
| else |
| return; |
| |
| hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; |
| wrmsrl(MSR_HWP_REQUEST, hwp_req); |
| cpu->last_update = cpu->sample.time; |
| } |
| |
| static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) |
| { |
| if (cpu->hwp_boost_min) { |
| bool expired; |
| |
| /* Check if we are idle for hold time to boost down */ |
| expired = time_after64(cpu->sample.time, cpu->last_update + |
| hwp_boost_hold_time_ns); |
| if (expired) { |
| wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); |
| cpu->hwp_boost_min = 0; |
| } |
| } |
| cpu->last_update = cpu->sample.time; |
| } |
| |
| static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, |
| u64 time) |
| { |
| cpu->sample.time = time; |
| |
| if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { |
| bool do_io = false; |
| |
| cpu->sched_flags = 0; |
| /* |
| * Set iowait_boost flag and update time. Since IO WAIT flag |
| * is set all the time, we can't just conclude that there is |
| * some IO bound activity is scheduled on this CPU with just |
| * one occurrence. If we receive at least two in two |
| * consecutive ticks, then we treat as boost candidate. |
| */ |
| if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) |
| do_io = true; |
| |
| cpu->last_io_update = time; |
| |
| if (do_io) |
| intel_pstate_hwp_boost_up(cpu); |
| |
| } else { |
| intel_pstate_hwp_boost_down(cpu); |
| } |
| } |
| |
| static inline void intel_pstate_update_util_hwp(struct update_util_data *data, |
| u64 time, unsigned int flags) |
| { |
| struct cpudata *cpu = container_of(data, struct cpudata, update_util); |
| |
| cpu->sched_flags |= flags; |
| |
| if (smp_processor_id() == cpu->cpu) |
| intel_pstate_update_util_hwp_local(cpu, time); |
| } |
| |
| static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) |
| { |
| struct sample *sample = &cpu->sample; |
| |
| sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); |
| } |
| |
| static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) |
| { |
| u64 aperf, mperf; |
| unsigned long flags; |
| u64 tsc; |
| |
| local_irq_save(flags); |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| tsc = rdtsc(); |
| if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { |
| local_irq_restore(flags); |
| return false; |
| } |
| local_irq_restore(flags); |
| |
| cpu->last_sample_time = cpu->sample.time; |
| cpu->sample.time = time; |
| cpu->sample.aperf = aperf; |
| cpu->sample.mperf = mperf; |
| cpu->sample.tsc = tsc; |
| cpu->sample.aperf -= cpu->prev_aperf; |
| cpu->sample.mperf -= cpu->prev_mperf; |
| cpu->sample.tsc -= cpu->prev_tsc; |
| |
| cpu->prev_aperf = aperf; |
| cpu->prev_mperf = mperf; |
| cpu->prev_tsc = tsc; |
| /* |
| * First time this function is invoked in a given cycle, all of the |
| * previous sample data fields are equal to zero or stale and they must |
| * be populated with meaningful numbers for things to work, so assume |
| * that sample.time will always be reset before setting the utilization |
| * update hook and make the caller skip the sample then. |
| */ |
| if (cpu->last_sample_time) { |
| intel_pstate_calc_avg_perf(cpu); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline int32_t get_avg_frequency(struct cpudata *cpu) |
| { |
| return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); |
| } |
| |
| static inline int32_t get_avg_pstate(struct cpudata *cpu) |
| { |
| return mul_ext_fp(cpu->pstate.max_pstate_physical, |
| cpu->sample.core_avg_perf); |
| } |
| |
| static inline int32_t get_target_pstate(struct cpudata *cpu) |
| { |
| struct sample *sample = &cpu->sample; |
| int32_t busy_frac; |
| int target, avg_pstate; |
| |
| busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, |
| sample->tsc); |
| |
| if (busy_frac < cpu->iowait_boost) |
| busy_frac = cpu->iowait_boost; |
| |
| sample->busy_scaled = busy_frac * 100; |
| |
| target = READ_ONCE(global.no_turbo) ? |
| cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; |
| target += target >> 2; |
| target = mul_fp(target, busy_frac); |
| if (target < cpu->pstate.min_pstate) |
| target = cpu->pstate.min_pstate; |
| |
| /* |
| * If the average P-state during the previous cycle was higher than the |
| * current target, add 50% of the difference to the target to reduce |
| * possible performance oscillations and offset possible performance |
| * loss related to moving the workload from one CPU to another within |
| * a package/module. |
| */ |
| avg_pstate = get_avg_pstate(cpu); |
| if (avg_pstate > target) |
| target += (avg_pstate - target) >> 1; |
| |
| return target; |
| } |
| |
| static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) |
| { |
| int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); |
| int max_pstate = max(min_pstate, cpu->max_perf_ratio); |
| |
| return clamp_t(int, pstate, min_pstate, max_pstate); |
| } |
| |
| static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) |
| { |
| if (pstate == cpu->pstate.current_pstate) |
| return; |
| |
| cpu->pstate.current_pstate = pstate; |
| wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); |
| } |
| |
| static void intel_pstate_adjust_pstate(struct cpudata *cpu) |
| { |
| int from = cpu->pstate.current_pstate; |
| struct sample *sample; |
| int target_pstate; |
| |
| target_pstate = get_target_pstate(cpu); |
| target_pstate = intel_pstate_prepare_request(cpu, target_pstate); |
| trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); |
| intel_pstate_update_pstate(cpu, target_pstate); |
| |
| sample = &cpu->sample; |
| trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), |
| fp_toint(sample->busy_scaled), |
| from, |
| cpu->pstate.current_pstate, |
| sample->mperf, |
| sample->aperf, |
| sample->tsc, |
| get_avg_frequency(cpu), |
| fp_toint(cpu->iowait_boost * 100)); |
| } |
| |
| static void intel_pstate_update_util(struct update_util_data *data, u64 time, |
| unsigned int flags) |
| { |
| struct cpudata *cpu = container_of(data, struct cpudata, update_util); |
| u64 delta_ns; |
| |
| /* Don't allow remote callbacks */ |
| if (smp_processor_id() != cpu->cpu) |
| return; |
| |
| delta_ns = time - cpu->last_update; |
| if (flags & SCHED_CPUFREQ_IOWAIT) { |
| /* Start over if the CPU may have been idle. */ |
| if (delta_ns > TICK_NSEC) { |
| cpu->iowait_boost = ONE_EIGHTH_FP; |
| } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { |
| cpu->iowait_boost <<= 1; |
| if (cpu->iowait_boost > int_tofp(1)) |
| cpu->iowait_boost = int_tofp(1); |
| } else { |
| cpu->iowait_boost = ONE_EIGHTH_FP; |
| } |
| } else if (cpu->iowait_boost) { |
| /* Clear iowait_boost if the CPU may have been idle. */ |
| if (delta_ns > TICK_NSEC) |
| cpu->iowait_boost = 0; |
| else |
| cpu->iowait_boost >>= 1; |
| } |
| cpu->last_update = time; |
| delta_ns = time - cpu->sample.time; |
| if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) |
| return; |
| |
| if (intel_pstate_sample(cpu, time)) |
| intel_pstate_adjust_pstate(cpu); |
| } |
| |
| static struct pstate_funcs core_funcs = { |
| .get_max = core_get_max_pstate, |
| .get_max_physical = core_get_max_pstate_physical, |
| .get_min = core_get_min_pstate, |
| .get_turbo = core_get_turbo_pstate, |
| .get_scaling = core_get_scaling, |
| .get_val = core_get_val, |
| }; |
| |
| static const struct pstate_funcs silvermont_funcs = { |
| .get_max = atom_get_max_pstate, |
| .get_max_physical = atom_get_max_pstate, |
| .get_min = atom_get_min_pstate, |
| .get_turbo = atom_get_turbo_pstate, |
| .get_val = atom_get_val, |
| .get_scaling = silvermont_get_scaling, |
| .get_vid = atom_get_vid, |
| }; |
| |
| static const struct pstate_funcs airmont_funcs = { |
| .get_max = atom_get_max_pstate, |
| .get_max_physical = atom_get_max_pstate, |
| .get_min = atom_get_min_pstate, |
| .get_turbo = atom_get_turbo_pstate, |
| .get_val = atom_get_val, |
| .get_scaling = airmont_get_scaling, |
| .get_vid = atom_get_vid, |
| }; |
| |
| static const struct pstate_funcs knl_funcs = { |
| .get_max = core_get_max_pstate, |
| .get_max_physical = core_get_max_pstate_physical, |
| .get_min = core_get_min_pstate, |
| .get_turbo = knl_get_turbo_pstate, |
| .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, |
| .get_scaling = core_get_scaling, |
| .get_val = core_get_val, |
| }; |
| |
| #define X86_MATCH(vfm, policy) \ |
| X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy) |
| |
| static const struct x86_cpu_id intel_pstate_cpu_ids[] = { |
| X86_MATCH(INTEL_SANDYBRIDGE, core_funcs), |
| X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs), |
| X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs), |
| X86_MATCH(INTEL_IVYBRIDGE, core_funcs), |
| X86_MATCH(INTEL_HASWELL, core_funcs), |
| X86_MATCH(INTEL_BROADWELL, core_funcs), |
| X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs), |
| X86_MATCH(INTEL_HASWELL_X, core_funcs), |
| X86_MATCH(INTEL_HASWELL_L, core_funcs), |
| X86_MATCH(INTEL_HASWELL_G, core_funcs), |
| X86_MATCH(INTEL_BROADWELL_G, core_funcs), |
| X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs), |
| X86_MATCH(INTEL_SKYLAKE_L, core_funcs), |
| X86_MATCH(INTEL_BROADWELL_X, core_funcs), |
| X86_MATCH(INTEL_SKYLAKE, core_funcs), |
| X86_MATCH(INTEL_BROADWELL_D, core_funcs), |
| X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs), |
| X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs), |
| X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs), |
| X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs), |
| X86_MATCH(INTEL_SKYLAKE_X, core_funcs), |
| X86_MATCH(INTEL_COMETLAKE, core_funcs), |
| X86_MATCH(INTEL_ICELAKE_X, core_funcs), |
| X86_MATCH(INTEL_TIGERLAKE, core_funcs), |
| X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), |
| X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); |
| |
| #ifdef CONFIG_ACPI |
| static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { |
| X86_MATCH(INTEL_BROADWELL_D, core_funcs), |
| X86_MATCH(INTEL_BROADWELL_X, core_funcs), |
| X86_MATCH(INTEL_SKYLAKE_X, core_funcs), |
| X86_MATCH(INTEL_ICELAKE_X, core_funcs), |
| X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), |
| X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), |
| X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs), |
| X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs), |
| X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs), |
| X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs), |
| {} |
| }; |
| #endif |
| |
| static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { |
| X86_MATCH(INTEL_KABYLAKE, core_funcs), |
| {} |
| }; |
| |
| static int intel_pstate_init_cpu(unsigned int cpunum) |
| { |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[cpunum]; |
| |
| if (!cpu) { |
| cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); |
| if (!cpu) |
| return -ENOMEM; |
| |
| WRITE_ONCE(all_cpu_data[cpunum], cpu); |
| |
| cpu->cpu = cpunum; |
| |
| cpu->epp_default = -EINVAL; |
| |
| if (hwp_active) { |
| intel_pstate_hwp_enable(cpu); |
| |
| if (intel_pstate_acpi_pm_profile_server()) |
| hwp_boost = true; |
| } |
| } else if (hwp_active) { |
| /* |
| * Re-enable HWP in case this happens after a resume from ACPI |
| * S3 if the CPU was offline during the whole system/resume |
| * cycle. |
| */ |
| intel_pstate_hwp_reenable(cpu); |
| } |
| |
| cpu->epp_powersave = -EINVAL; |
| cpu->epp_policy = 0; |
| |
| intel_pstate_get_cpu_pstates(cpu); |
| |
| pr_debug("controlling: cpu %d\n", cpunum); |
| |
| return 0; |
| } |
| |
| static void intel_pstate_set_update_util_hook(unsigned int cpu_num) |
| { |
| struct cpudata *cpu = all_cpu_data[cpu_num]; |
| |
| if (hwp_active && !hwp_boost) |
| return; |
| |
| if (cpu->update_util_set) |
| return; |
| |
| /* Prevent intel_pstate_update_util() from using stale data. */ |
| cpu->sample.time = 0; |
| cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, |
| (hwp_active ? |
| intel_pstate_update_util_hwp : |
| intel_pstate_update_util)); |
| cpu->update_util_set = true; |
| } |
| |
| static void intel_pstate_clear_update_util_hook(unsigned int cpu) |
| { |
| struct cpudata *cpu_data = all_cpu_data[cpu]; |
| |
| if (!cpu_data->update_util_set) |
| return; |
| |
| cpufreq_remove_update_util_hook(cpu); |
| cpu_data->update_util_set = false; |
| synchronize_rcu(); |
| } |
| |
| static int intel_pstate_get_max_freq(struct cpudata *cpu) |
| { |
| return READ_ONCE(global.no_turbo) ? |
| cpu->pstate.max_freq : cpu->pstate.turbo_freq; |
| } |
| |
| static void intel_pstate_update_perf_limits(struct cpudata *cpu, |
| unsigned int policy_min, |
| unsigned int policy_max) |
| { |
| int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; |
| int32_t max_policy_perf, min_policy_perf; |
| |
| max_policy_perf = policy_max / perf_ctl_scaling; |
| if (policy_max == policy_min) { |
| min_policy_perf = max_policy_perf; |
| } else { |
| min_policy_perf = policy_min / perf_ctl_scaling; |
| min_policy_perf = clamp_t(int32_t, min_policy_perf, |
| 0, max_policy_perf); |
| } |
| |
| /* |
| * HWP needs some special consideration, because HWP_REQUEST uses |
| * abstract values to represent performance rather than pure ratios. |
| */ |
| if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { |
| int freq; |
| |
| freq = max_policy_perf * perf_ctl_scaling; |
| max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); |
| freq = min_policy_perf * perf_ctl_scaling; |
| min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); |
| } |
| |
| pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", |
| cpu->cpu, min_policy_perf, max_policy_perf); |
| |
| /* Normalize user input to [min_perf, max_perf] */ |
| if (per_cpu_limits) { |
| cpu->min_perf_ratio = min_policy_perf; |
| cpu->max_perf_ratio = max_policy_perf; |
| } else { |
| int turbo_max = cpu->pstate.turbo_pstate; |
| int32_t global_min, global_max; |
| |
| /* Global limits are in percent of the maximum turbo P-state. */ |
| global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); |
| global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); |
| global_min = clamp_t(int32_t, global_min, 0, global_max); |
| |
| pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, |
| global_min, global_max); |
| |
| cpu->min_perf_ratio = max(min_policy_perf, global_min); |
| cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); |
| cpu->max_perf_ratio = min(max_policy_perf, global_max); |
| cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); |
| |
| /* Make sure min_perf <= max_perf */ |
| cpu->min_perf_ratio = min(cpu->min_perf_ratio, |
| cpu->max_perf_ratio); |
| |
| } |
| pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, |
| cpu->max_perf_ratio, |
| cpu->min_perf_ratio); |
| } |
| |
| static int intel_pstate_set_policy(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| |
| if (!policy->cpuinfo.max_freq) |
| return -ENODEV; |
| |
| pr_debug("set_policy cpuinfo.max %u policy->max %u\n", |
| policy->cpuinfo.max_freq, policy->max); |
| |
| cpu = all_cpu_data[policy->cpu]; |
| cpu->policy = policy->policy; |
| |
| mutex_lock(&intel_pstate_limits_lock); |
| |
| intel_pstate_update_perf_limits(cpu, policy->min, policy->max); |
| |
| if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { |
| int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); |
| |
| /* |
| * NOHZ_FULL CPUs need this as the governor callback may not |
| * be invoked on them. |
| */ |
| intel_pstate_clear_update_util_hook(policy->cpu); |
| intel_pstate_set_pstate(cpu, pstate); |
| } else { |
| intel_pstate_set_update_util_hook(policy->cpu); |
| } |
| |
| if (hwp_active) { |
| /* |
| * When hwp_boost was active before and dynamically it |
| * was turned off, in that case we need to clear the |
| * update util hook. |
| */ |
| if (!hwp_boost) |
| intel_pstate_clear_update_util_hook(policy->cpu); |
| intel_pstate_hwp_set(policy->cpu); |
| } |
| /* |
| * policy->cur is never updated with the intel_pstate driver, but it |
| * is used as a stale frequency value. So, keep it within limits. |
| */ |
| policy->cur = policy->min; |
| |
| mutex_unlock(&intel_pstate_limits_lock); |
| |
| return 0; |
| } |
| |
| static void intel_pstate_adjust_policy_max(struct cpudata *cpu, |
| struct cpufreq_policy_data *policy) |
| { |
| if (!hwp_active && |
| cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && |
| policy->max < policy->cpuinfo.max_freq && |
| policy->max > cpu->pstate.max_freq) { |
| pr_debug("policy->max > max non turbo frequency\n"); |
| policy->max = policy->cpuinfo.max_freq; |
| } |
| } |
| |
| static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, |
| struct cpufreq_policy_data *policy) |
| { |
| int max_freq; |
| |
| if (hwp_active) { |
| intel_pstate_get_hwp_cap(cpu); |
| max_freq = READ_ONCE(global.no_turbo) ? |
| cpu->pstate.max_freq : cpu->pstate.turbo_freq; |
| } else { |
| max_freq = intel_pstate_get_max_freq(cpu); |
| } |
| cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); |
| |
| intel_pstate_adjust_policy_max(cpu, policy); |
| } |
| |
| static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) |
| { |
| intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); |
| |
| return 0; |
| } |
| |
| static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| pr_debug("CPU %d going offline\n", cpu->cpu); |
| |
| if (cpu->suspended) |
| return 0; |
| |
| /* |
| * If the CPU is an SMT thread and it goes offline with the performance |
| * settings different from the minimum, it will prevent its sibling |
| * from getting to lower performance levels, so force the minimum |
| * performance on CPU offline to prevent that from happening. |
| */ |
| if (hwp_active) |
| intel_pstate_hwp_offline(cpu); |
| else |
| intel_pstate_set_min_pstate(cpu); |
| |
| intel_pstate_exit_perf_limits(policy); |
| |
| return 0; |
| } |
| |
| static int intel_pstate_cpu_online(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| pr_debug("CPU %d going online\n", cpu->cpu); |
| |
| intel_pstate_init_acpi_perf_limits(policy); |
| |
| if (hwp_active) { |
| /* |
| * Re-enable HWP and clear the "suspended" flag to let "resume" |
| * know that it need not do that. |
| */ |
| intel_pstate_hwp_reenable(cpu); |
| cpu->suspended = false; |
| |
| hybrid_update_capacity(cpu); |
| } |
| |
| return 0; |
| } |
| |
| static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) |
| { |
| intel_pstate_clear_update_util_hook(policy->cpu); |
| |
| return intel_cpufreq_cpu_offline(policy); |
| } |
| |
| static void intel_pstate_cpu_exit(struct cpufreq_policy *policy) |
| { |
| pr_debug("CPU %d exiting\n", policy->cpu); |
| |
| policy->fast_switch_possible = false; |
| } |
| |
| static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| int rc; |
| |
| rc = intel_pstate_init_cpu(policy->cpu); |
| if (rc) |
| return rc; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| cpu->max_perf_ratio = 0xFF; |
| cpu->min_perf_ratio = 0; |
| |
| /* cpuinfo and default policy values */ |
| policy->cpuinfo.min_freq = cpu->pstate.min_freq; |
| policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? |
| cpu->pstate.max_freq : cpu->pstate.turbo_freq; |
| |
| policy->min = policy->cpuinfo.min_freq; |
| policy->max = policy->cpuinfo.max_freq; |
| |
| intel_pstate_init_acpi_perf_limits(policy); |
| |
| policy->fast_switch_possible = true; |
| |
| return 0; |
| } |
| |
| static int intel_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| int ret = __intel_pstate_cpu_init(policy); |
| |
| if (ret) |
| return ret; |
| |
| /* |
| * Set the policy to powersave to provide a valid fallback value in case |
| * the default cpufreq governor is neither powersave nor performance. |
| */ |
| policy->policy = CPUFREQ_POLICY_POWERSAVE; |
| |
| if (hwp_active) { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| cpu->epp_cached = intel_pstate_get_epp(cpu, 0); |
| } |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver intel_pstate = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = intel_pstate_verify_policy, |
| .setpolicy = intel_pstate_set_policy, |
| .suspend = intel_pstate_suspend, |
| .resume = intel_pstate_resume, |
| .init = intel_pstate_cpu_init, |
| .exit = intel_pstate_cpu_exit, |
| .offline = intel_pstate_cpu_offline, |
| .online = intel_pstate_cpu_online, |
| .update_limits = intel_pstate_update_limits, |
| .name = "intel_pstate", |
| }; |
| |
| static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| |
| intel_pstate_verify_cpu_policy(cpu, policy); |
| intel_pstate_update_perf_limits(cpu, policy->min, policy->max); |
| |
| return 0; |
| } |
| |
| /* Use of trace in passive mode: |
| * |
| * In passive mode the trace core_busy field (also known as the |
| * performance field, and lablelled as such on the graphs; also known as |
| * core_avg_perf) is not needed and so is re-assigned to indicate if the |
| * driver call was via the normal or fast switch path. Various graphs |
| * output from the intel_pstate_tracer.py utility that include core_busy |
| * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, |
| * so we use 10 to indicate the normal path through the driver, and |
| * 90 to indicate the fast switch path through the driver. |
| * The scaled_busy field is not used, and is set to 0. |
| */ |
| |
| #define INTEL_PSTATE_TRACE_TARGET 10 |
| #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 |
| |
| static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) |
| { |
| struct sample *sample; |
| |
| if (!trace_pstate_sample_enabled()) |
| return; |
| |
| if (!intel_pstate_sample(cpu, ktime_get())) |
| return; |
| |
| sample = &cpu->sample; |
| trace_pstate_sample(trace_type, |
| 0, |
| old_pstate, |
| cpu->pstate.current_pstate, |
| sample->mperf, |
| sample->aperf, |
| sample->tsc, |
| get_avg_frequency(cpu), |
| fp_toint(cpu->iowait_boost * 100)); |
| } |
| |
| static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, |
| u32 desired, bool fast_switch) |
| { |
| u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; |
| |
| value &= ~HWP_MIN_PERF(~0L); |
| value |= HWP_MIN_PERF(min); |
| |
| value &= ~HWP_MAX_PERF(~0L); |
| value |= HWP_MAX_PERF(max); |
| |
| value &= ~HWP_DESIRED_PERF(~0L); |
| value |= HWP_DESIRED_PERF(desired); |
| |
| if (value == prev) |
| return; |
| |
| WRITE_ONCE(cpu->hwp_req_cached, value); |
| if (fast_switch) |
| wrmsrl(MSR_HWP_REQUEST, value); |
| else |
| wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); |
| } |
| |
| static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, |
| u32 target_pstate, bool fast_switch) |
| { |
| if (fast_switch) |
| wrmsrl(MSR_IA32_PERF_CTL, |
| pstate_funcs.get_val(cpu, target_pstate)); |
| else |
| wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, |
| pstate_funcs.get_val(cpu, target_pstate)); |
| } |
| |
| static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, |
| int target_pstate, bool fast_switch) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| int old_pstate = cpu->pstate.current_pstate; |
| |
| target_pstate = intel_pstate_prepare_request(cpu, target_pstate); |
| if (hwp_active) { |
| int max_pstate = policy->strict_target ? |
| target_pstate : cpu->max_perf_ratio; |
| |
| intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, |
| fast_switch); |
| } else if (target_pstate != old_pstate) { |
| intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); |
| } |
| |
| cpu->pstate.current_pstate = target_pstate; |
| |
| intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : |
| INTEL_PSTATE_TRACE_TARGET, old_pstate); |
| |
| return target_pstate; |
| } |
| |
| static int intel_cpufreq_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| struct cpufreq_freqs freqs; |
| int target_pstate; |
| |
| freqs.old = policy->cur; |
| freqs.new = target_freq; |
| |
| cpufreq_freq_transition_begin(policy, &freqs); |
| |
| target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); |
| target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); |
| |
| freqs.new = target_pstate * cpu->pstate.scaling; |
| |
| cpufreq_freq_transition_end(policy, &freqs, false); |
| |
| return 0; |
| } |
| |
| static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, |
| unsigned int target_freq) |
| { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| int target_pstate; |
| |
| target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); |
| |
| target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); |
| |
| return target_pstate * cpu->pstate.scaling; |
| } |
| |
| static void intel_cpufreq_adjust_perf(unsigned int cpunum, |
| unsigned long min_perf, |
| unsigned long target_perf, |
| unsigned long capacity) |
| { |
| struct cpudata *cpu = all_cpu_data[cpunum]; |
| u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); |
| int old_pstate = cpu->pstate.current_pstate; |
| int cap_pstate, min_pstate, max_pstate, target_pstate; |
| |
| cap_pstate = READ_ONCE(global.no_turbo) ? |
| HWP_GUARANTEED_PERF(hwp_cap) : |
| HWP_HIGHEST_PERF(hwp_cap); |
| |
| /* Optimization: Avoid unnecessary divisions. */ |
| |
| target_pstate = cap_pstate; |
| if (target_perf < capacity) |
| target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); |
| |
| min_pstate = cap_pstate; |
| if (min_perf < capacity) |
| min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); |
| |
| if (min_pstate < cpu->pstate.min_pstate) |
| min_pstate = cpu->pstate.min_pstate; |
| |
| if (min_pstate < cpu->min_perf_ratio) |
| min_pstate = cpu->min_perf_ratio; |
| |
| if (min_pstate > cpu->max_perf_ratio) |
| min_pstate = cpu->max_perf_ratio; |
| |
| max_pstate = min(cap_pstate, cpu->max_perf_ratio); |
| if (max_pstate < min_pstate) |
| max_pstate = min_pstate; |
| |
| target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); |
| |
| intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); |
| |
| cpu->pstate.current_pstate = target_pstate; |
| intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); |
| } |
| |
| static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| struct freq_qos_request *req; |
| struct cpudata *cpu; |
| struct device *dev; |
| int ret, freq; |
| |
| dev = get_cpu_device(policy->cpu); |
| if (!dev) |
| return -ENODEV; |
| |
| ret = __intel_pstate_cpu_init(policy); |
| if (ret) |
| return ret; |
| |
| policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; |
| /* This reflects the intel_pstate_get_cpu_pstates() setting. */ |
| policy->cur = policy->cpuinfo.min_freq; |
| |
| req = kcalloc(2, sizeof(*req), GFP_KERNEL); |
| if (!req) { |
| ret = -ENOMEM; |
| goto pstate_exit; |
| } |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| if (hwp_active) { |
| u64 value; |
| |
| policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; |
| |
| intel_pstate_get_hwp_cap(cpu); |
| |
| rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); |
| WRITE_ONCE(cpu->hwp_req_cached, value); |
| |
| cpu->epp_cached = intel_pstate_get_epp(cpu, value); |
| } else { |
| policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; |
| } |
| |
| freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); |
| |
| ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, |
| freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); |
| goto free_req; |
| } |
| |
| freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); |
| |
| ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, |
| freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); |
| goto remove_min_req; |
| } |
| |
| policy->driver_data = req; |
| |
| return 0; |
| |
| remove_min_req: |
| freq_qos_remove_request(req); |
| free_req: |
| kfree(req); |
| pstate_exit: |
| intel_pstate_exit_perf_limits(policy); |
| |
| return ret; |
| } |
| |
| static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct freq_qos_request *req; |
| |
| req = policy->driver_data; |
| |
| freq_qos_remove_request(req + 1); |
| freq_qos_remove_request(req); |
| kfree(req); |
| |
| intel_pstate_cpu_exit(policy); |
| } |
| |
| static int intel_cpufreq_suspend(struct cpufreq_policy *policy) |
| { |
| intel_pstate_suspend(policy); |
| |
| if (hwp_active) { |
| struct cpudata *cpu = all_cpu_data[policy->cpu]; |
| u64 value = READ_ONCE(cpu->hwp_req_cached); |
| |
| /* |
| * Clear the desired perf field in MSR_HWP_REQUEST in case |
| * intel_cpufreq_adjust_perf() is in use and the last value |
| * written by it may not be suitable. |
| */ |
| value &= ~HWP_DESIRED_PERF(~0L); |
| wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); |
| WRITE_ONCE(cpu->hwp_req_cached, value); |
| } |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver intel_cpufreq = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = intel_cpufreq_verify_policy, |
| .target = intel_cpufreq_target, |
| .fast_switch = intel_cpufreq_fast_switch, |
| .init = intel_cpufreq_cpu_init, |
| .exit = intel_cpufreq_cpu_exit, |
| .offline = intel_cpufreq_cpu_offline, |
| .online = intel_pstate_cpu_online, |
| .suspend = intel_cpufreq_suspend, |
| .resume = intel_pstate_resume, |
| .update_limits = intel_pstate_update_limits, |
| .name = "intel_cpufreq", |
| }; |
| |
| static struct cpufreq_driver *default_driver; |
| |
| static void intel_pstate_driver_cleanup(void) |
| { |
| unsigned int cpu; |
| |
| cpus_read_lock(); |
| for_each_online_cpu(cpu) { |
| if (all_cpu_data[cpu]) { |
| if (intel_pstate_driver == &intel_pstate) |
| intel_pstate_clear_update_util_hook(cpu); |
| |
| kfree(all_cpu_data[cpu]); |
| WRITE_ONCE(all_cpu_data[cpu], NULL); |
| } |
| } |
| cpus_read_unlock(); |
| |
| intel_pstate_driver = NULL; |
| } |
| |
| static int intel_pstate_register_driver(struct cpufreq_driver *driver) |
| { |
| bool refresh_cpu_cap_scaling; |
| int ret; |
| |
| if (driver == &intel_pstate) |
| intel_pstate_sysfs_expose_hwp_dynamic_boost(); |
| |
| memset(&global, 0, sizeof(global)); |
| global.max_perf_pct = 100; |
| global.turbo_disabled = turbo_is_disabled(); |
| global.no_turbo = global.turbo_disabled; |
| |
| arch_set_max_freq_ratio(global.turbo_disabled); |
| |
| refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu(); |
| |
| intel_pstate_driver = driver; |
| ret = cpufreq_register_driver(intel_pstate_driver); |
| if (ret) { |
| intel_pstate_driver_cleanup(); |
| return ret; |
| } |
| |
| global.min_perf_pct = min_perf_pct_min(); |
| |
| hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling); |
| |
| return 0; |
| } |
| |
| static ssize_t intel_pstate_show_status(char *buf) |
| { |
| if (!intel_pstate_driver) |
| return sprintf(buf, "off\n"); |
| |
| return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? |
| "active" : "passive"); |
| } |
| |
| static int intel_pstate_update_status(const char *buf, size_t size) |
| { |
| if (size == 3 && !strncmp(buf, "off", size)) { |
| if (!intel_pstate_driver) |
| return -EINVAL; |
| |
| if (hwp_active) |
| return -EBUSY; |
| |
| cpufreq_unregister_driver(intel_pstate_driver); |
| intel_pstate_driver_cleanup(); |
| return 0; |
| } |
| |
| if (size == 6 && !strncmp(buf, "active", size)) { |
| if (intel_pstate_driver) { |
| if (intel_pstate_driver == &intel_pstate) |
| return 0; |
| |
| cpufreq_unregister_driver(intel_pstate_driver); |
| } |
| |
| return intel_pstate_register_driver(&intel_pstate); |
| } |
| |
| if (size == 7 && !strncmp(buf, "passive", size)) { |
| if (intel_pstate_driver) { |
| if (intel_pstate_driver == &intel_cpufreq) |
| return 0; |
| |
| cpufreq_unregister_driver(intel_pstate_driver); |
| intel_pstate_sysfs_hide_hwp_dynamic_boost(); |
| } |
| |
| return intel_pstate_register_driver(&intel_cpufreq); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int no_load __initdata; |
| static int no_hwp __initdata; |
| static int hwp_only __initdata; |
| static unsigned int force_load __initdata; |
| |
| static int __init intel_pstate_msrs_not_valid(void) |
| { |
| if (!pstate_funcs.get_max(0) || |
| !pstate_funcs.get_min(0) || |
| !pstate_funcs.get_turbo(0)) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static void __init copy_cpu_funcs(struct pstate_funcs *funcs) |
| { |
| pstate_funcs.get_max = funcs->get_max; |
| pstate_funcs.get_max_physical = funcs->get_max_physical; |
| pstate_funcs.get_min = funcs->get_min; |
| pstate_funcs.get_turbo = funcs->get_turbo; |
| pstate_funcs.get_scaling = funcs->get_scaling; |
| pstate_funcs.get_val = funcs->get_val; |
| pstate_funcs.get_vid = funcs->get_vid; |
| pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; |
| } |
| |
| #ifdef CONFIG_ACPI |
| |
| static bool __init intel_pstate_no_acpi_pss(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| acpi_status status; |
| union acpi_object *pss; |
| struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_processor *pr = per_cpu(processors, i); |
| |
| if (!pr) |
| continue; |
| |
| status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); |
| if (ACPI_FAILURE(status)) |
| continue; |
| |
| pss = buffer.pointer; |
| if (pss && pss->type == ACPI_TYPE_PACKAGE) { |
| kfree(pss); |
| return false; |
| } |
| |
| kfree(pss); |
| } |
| |
| pr_debug("ACPI _PSS not found\n"); |
| return true; |
| } |
| |
| static bool __init intel_pstate_no_acpi_pcch(void) |
| { |
| acpi_status status; |
| acpi_handle handle; |
| |
| status = acpi_get_handle(NULL, "\\_SB", &handle); |
| if (ACPI_FAILURE(status)) |
| goto not_found; |
| |
| if (acpi_has_method(handle, "PCCH")) |
| return false; |
| |
| not_found: |
| pr_debug("ACPI PCCH not found\n"); |
| return true; |
| } |
| |
| static bool __init intel_pstate_has_acpi_ppc(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct acpi_processor *pr = per_cpu(processors, i); |
| |
| if (!pr) |
| continue; |
| if (acpi_has_method(pr->handle, "_PPC")) |
| return true; |
| } |
| pr_debug("ACPI _PPC not found\n"); |
| return false; |
| } |
| |
| enum { |
| PSS, |
| PPC, |
| }; |
| |
| /* Hardware vendor-specific info that has its own power management modes */ |
| static struct acpi_platform_list plat_info[] __initdata = { |
| {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, |
| {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, |
| { } /* End */ |
| }; |
| |
| #define BITMASK_OOB (BIT(8) | BIT(18)) |
| |
| static bool __init intel_pstate_platform_pwr_mgmt_exists(void) |
| { |
| const struct x86_cpu_id *id; |
| u64 misc_pwr; |
| int idx; |
| |
| id = x86_match_cpu(intel_pstate_cpu_oob_ids); |
| if (id) { |
| rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); |
| if (misc_pwr & BITMASK_OOB) { |
| pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); |
| pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); |
| return true; |
| } |
| } |
| |
| idx = acpi_match_platform_list(plat_info); |
| if (idx < 0) |
| return false; |
| |
| switch (plat_info[idx].data) { |
| case PSS: |
| if (!intel_pstate_no_acpi_pss()) |
| return false; |
| |
| return intel_pstate_no_acpi_pcch(); |
| case PPC: |
| return intel_pstate_has_acpi_ppc() && !force_load; |
| } |
| |
| return false; |
| } |
| |
| static void intel_pstate_request_control_from_smm(void) |
| { |
| /* |
| * It may be unsafe to request P-states control from SMM if _PPC support |
| * has not been enabled. |
| */ |
| if (acpi_ppc) |
| acpi_processor_pstate_control(); |
| } |
| #else /* CONFIG_ACPI not enabled */ |
| static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } |
| static inline bool intel_pstate_has_acpi_ppc(void) { return false; } |
| static inline void intel_pstate_request_control_from_smm(void) {} |
| #endif /* CONFIG_ACPI */ |
| |
| #define INTEL_PSTATE_HWP_BROADWELL 0x01 |
| |
| #define X86_MATCH_HWP(vfm, hwp_mode) \ |
| X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode) |
| |
| static const struct x86_cpu_id hwp_support_ids[] __initconst = { |
| X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), |
| X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), |
| X86_MATCH_HWP(INTEL_ANY, 0), |
| {} |
| }; |
| |
| static bool intel_pstate_hwp_is_enabled(void) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_PM_ENABLE, value); |
| return !!(value & 0x1); |
| } |
| |
| #define POWERSAVE_MASK GENMASK(7, 0) |
| #define BALANCE_POWER_MASK GENMASK(15, 8) |
| #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16) |
| #define PERFORMANCE_MASK GENMASK(31, 24) |
| |
| #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \ |
| (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\ |
| FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\ |
| FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\ |
| FIELD_PREP_CONST(PERFORMANCE_MASK, performance)) |
| |
| #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \ |
| (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\ |
| balance_perf, HWP_EPP_PERFORMANCE)) |
| |
| static const struct x86_cpu_id intel_epp_default[] = { |
| /* |
| * Set EPP value as 102, this is the max suggested EPP |
| * which can result in one core turbo frequency for |
| * AlderLake Mobile CPUs. |
| */ |
| X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)), |
| X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), |
| X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), |
| X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, |
| 179, 64, 16)), |
| X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, |
| 179, 64, 16)), |
| {} |
| }; |
| |
| static const struct x86_cpu_id intel_hybrid_scaling_factor[] = { |
| X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL), |
| X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL), |
| X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL), |
| {} |
| }; |
| |
| static int __init intel_pstate_init(void) |
| { |
| static struct cpudata **_all_cpu_data; |
| const struct x86_cpu_id *id; |
| int rc; |
| |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| return -ENODEV; |
| |
| id = x86_match_cpu(hwp_support_ids); |
| if (id) { |
| hwp_forced = intel_pstate_hwp_is_enabled(); |
| |
| if (hwp_forced) |
| pr_info("HWP enabled by BIOS\n"); |
| else if (no_load) |
| return -ENODEV; |
| |
| copy_cpu_funcs(&core_funcs); |
| /* |
| * Avoid enabling HWP for processors without EPP support, |
| * because that means incomplete HWP implementation which is a |
| * corner case and supporting it is generally problematic. |
| * |
| * If HWP is enabled already, though, there is no choice but to |
| * deal with it. |
| */ |
| if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { |
| hwp_active = true; |
| hwp_mode_bdw = id->driver_data; |
| intel_pstate.attr = hwp_cpufreq_attrs; |
| intel_cpufreq.attr = hwp_cpufreq_attrs; |
| intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; |
| intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; |
| if (!default_driver) |
| default_driver = &intel_pstate; |
| |
| pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; |
| |
| goto hwp_cpu_matched; |
| } |
| pr_info("HWP not enabled\n"); |
| } else { |
| if (no_load) |
| return -ENODEV; |
| |
| id = x86_match_cpu(intel_pstate_cpu_ids); |
| if (!id) { |
| pr_info("CPU model not supported\n"); |
| return -ENODEV; |
| } |
| |
| copy_cpu_funcs((struct pstate_funcs *)id->driver_data); |
| } |
| |
| if (intel_pstate_msrs_not_valid()) { |
| pr_info("Invalid MSRs\n"); |
| return -ENODEV; |
| } |
| /* Without HWP start in the passive mode. */ |
| if (!default_driver) |
| default_driver = &intel_cpufreq; |
| |
| hwp_cpu_matched: |
| /* |
| * The Intel pstate driver will be ignored if the platform |
| * firmware has its own power management modes. |
| */ |
| if (intel_pstate_platform_pwr_mgmt_exists()) { |
| pr_info("P-states controlled by the platform\n"); |
| return -ENODEV; |
| } |
| |
| if (!hwp_active && hwp_only) |
| return -ENOTSUPP; |
| |
| pr_info("Intel P-state driver initializing\n"); |
| |
| _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); |
| if (!_all_cpu_data) |
| return -ENOMEM; |
| |
| WRITE_ONCE(all_cpu_data, _all_cpu_data); |
| |
| intel_pstate_request_control_from_smm(); |
| |
| intel_pstate_sysfs_expose_params(); |
| |
| if (hwp_active) { |
| const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default); |
| const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor); |
| |
| if (id) { |
| epp_values[EPP_INDEX_POWERSAVE] = |
| FIELD_GET(POWERSAVE_MASK, id->driver_data); |
| epp_values[EPP_INDEX_BALANCE_POWERSAVE] = |
| FIELD_GET(BALANCE_POWER_MASK, id->driver_data); |
| epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = |
| FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data); |
| epp_values[EPP_INDEX_PERFORMANCE] = |
| FIELD_GET(PERFORMANCE_MASK, id->driver_data); |
| pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n", |
| epp_values[EPP_INDEX_POWERSAVE], |
| epp_values[EPP_INDEX_BALANCE_POWERSAVE], |
| epp_values[EPP_INDEX_BALANCE_PERFORMANCE], |
| epp_values[EPP_INDEX_PERFORMANCE]); |
| } |
| |
| if (hybrid_id) { |
| hybrid_scaling_factor = hybrid_id->driver_data; |
| pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor); |
| } |
| |
| } |
| |
| mutex_lock(&intel_pstate_driver_lock); |
| rc = intel_pstate_register_driver(default_driver); |
| mutex_unlock(&intel_pstate_driver_lock); |
| if (rc) { |
| intel_pstate_sysfs_remove(); |
| return rc; |
| } |
| |
| if (hwp_active) { |
| const struct x86_cpu_id *id; |
| |
| id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); |
| if (id) { |
| set_power_ctl_ee_state(false); |
| pr_info("Disabling energy efficiency optimization\n"); |
| } |
| |
| pr_info("HWP enabled\n"); |
| } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { |
| pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); |
| } |
| |
| return 0; |
| } |
| device_initcall(intel_pstate_init); |
| |
| static int __init intel_pstate_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "disable")) |
| no_load = 1; |
| else if (!strcmp(str, "active")) |
| default_driver = &intel_pstate; |
| else if (!strcmp(str, "passive")) |
| default_driver = &intel_cpufreq; |
| |
| if (!strcmp(str, "no_hwp")) |
| no_hwp = 1; |
| |
| if (!strcmp(str, "force")) |
| force_load = 1; |
| if (!strcmp(str, "hwp_only")) |
| hwp_only = 1; |
| if (!strcmp(str, "per_cpu_perf_limits")) |
| per_cpu_limits = true; |
| |
| #ifdef CONFIG_ACPI |
| if (!strcmp(str, "support_acpi_ppc")) |
| acpi_ppc = true; |
| #endif |
| |
| return 0; |
| } |
| early_param("intel_pstate", intel_pstate_setup); |
| |
| MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); |
| MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); |