blob: 889cf88d3dba6e10c9efa823d10287bc1eee9576 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/rhashtable.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/if_pppox.h>
#include <linux/ppp_defs.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ip6_route.h>
#include <net/neighbour.h>
#include <net/netfilter/nf_flow_table.h>
#include <net/netfilter/nf_conntrack_acct.h>
/* For layer 4 checksum field offset. */
#include <linux/tcp.h>
#include <linux/udp.h>
static int nf_flow_state_check(struct flow_offload *flow, int proto,
struct sk_buff *skb, unsigned int thoff)
{
struct tcphdr *tcph;
if (proto != IPPROTO_TCP)
return 0;
tcph = (void *)(skb_network_header(skb) + thoff);
if (unlikely(tcph->fin || tcph->rst)) {
flow_offload_teardown(flow);
return -1;
}
return 0;
}
static void nf_flow_nat_ip_tcp(struct sk_buff *skb, unsigned int thoff,
__be32 addr, __be32 new_addr)
{
struct tcphdr *tcph;
tcph = (void *)(skb_network_header(skb) + thoff);
inet_proto_csum_replace4(&tcph->check, skb, addr, new_addr, true);
}
static void nf_flow_nat_ip_udp(struct sk_buff *skb, unsigned int thoff,
__be32 addr, __be32 new_addr)
{
struct udphdr *udph;
udph = (void *)(skb_network_header(skb) + thoff);
if (udph->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace4(&udph->check, skb, addr,
new_addr, true);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
}
}
static void nf_flow_nat_ip_l4proto(struct sk_buff *skb, struct iphdr *iph,
unsigned int thoff, __be32 addr,
__be32 new_addr)
{
switch (iph->protocol) {
case IPPROTO_TCP:
nf_flow_nat_ip_tcp(skb, thoff, addr, new_addr);
break;
case IPPROTO_UDP:
nf_flow_nat_ip_udp(skb, thoff, addr, new_addr);
break;
}
}
static void nf_flow_snat_ip(const struct flow_offload *flow,
struct sk_buff *skb, struct iphdr *iph,
unsigned int thoff, enum flow_offload_tuple_dir dir)
{
__be32 addr, new_addr;
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
addr = iph->saddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.dst_v4.s_addr;
iph->saddr = new_addr;
break;
case FLOW_OFFLOAD_DIR_REPLY:
addr = iph->daddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.src_v4.s_addr;
iph->daddr = new_addr;
break;
}
csum_replace4(&iph->check, addr, new_addr);
nf_flow_nat_ip_l4proto(skb, iph, thoff, addr, new_addr);
}
static void nf_flow_dnat_ip(const struct flow_offload *flow,
struct sk_buff *skb, struct iphdr *iph,
unsigned int thoff, enum flow_offload_tuple_dir dir)
{
__be32 addr, new_addr;
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
addr = iph->daddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.src_v4.s_addr;
iph->daddr = new_addr;
break;
case FLOW_OFFLOAD_DIR_REPLY:
addr = iph->saddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.dst_v4.s_addr;
iph->saddr = new_addr;
break;
}
csum_replace4(&iph->check, addr, new_addr);
nf_flow_nat_ip_l4proto(skb, iph, thoff, addr, new_addr);
}
static void nf_flow_nat_ip(const struct flow_offload *flow, struct sk_buff *skb,
unsigned int thoff, enum flow_offload_tuple_dir dir,
struct iphdr *iph)
{
if (test_bit(NF_FLOW_SNAT, &flow->flags)) {
nf_flow_snat_port(flow, skb, thoff, iph->protocol, dir);
nf_flow_snat_ip(flow, skb, iph, thoff, dir);
}
if (test_bit(NF_FLOW_DNAT, &flow->flags)) {
nf_flow_dnat_port(flow, skb, thoff, iph->protocol, dir);
nf_flow_dnat_ip(flow, skb, iph, thoff, dir);
}
}
static bool ip_has_options(unsigned int thoff)
{
return thoff != sizeof(struct iphdr);
}
static void nf_flow_tuple_encap(struct sk_buff *skb,
struct flow_offload_tuple *tuple)
{
struct vlan_ethhdr *veth;
struct pppoe_hdr *phdr;
int i = 0;
if (skb_vlan_tag_present(skb)) {
tuple->encap[i].id = skb_vlan_tag_get(skb);
tuple->encap[i].proto = skb->vlan_proto;
i++;
}
switch (skb->protocol) {
case htons(ETH_P_8021Q):
veth = (struct vlan_ethhdr *)skb_mac_header(skb);
tuple->encap[i].id = ntohs(veth->h_vlan_TCI);
tuple->encap[i].proto = skb->protocol;
break;
case htons(ETH_P_PPP_SES):
phdr = (struct pppoe_hdr *)skb_mac_header(skb);
tuple->encap[i].id = ntohs(phdr->sid);
tuple->encap[i].proto = skb->protocol;
break;
}
}
static int nf_flow_tuple_ip(struct sk_buff *skb, const struct net_device *dev,
struct flow_offload_tuple *tuple, u32 *hdrsize,
u32 offset)
{
struct flow_ports *ports;
unsigned int thoff;
struct iphdr *iph;
if (!pskb_may_pull(skb, sizeof(*iph) + offset))
return -1;
iph = (struct iphdr *)(skb_network_header(skb) + offset);
thoff = (iph->ihl * 4);
if (ip_is_fragment(iph) ||
unlikely(ip_has_options(thoff)))
return -1;
thoff += offset;
switch (iph->protocol) {
case IPPROTO_TCP:
*hdrsize = sizeof(struct tcphdr);
break;
case IPPROTO_UDP:
*hdrsize = sizeof(struct udphdr);
break;
default:
return -1;
}
if (iph->ttl <= 1)
return -1;
if (!pskb_may_pull(skb, thoff + *hdrsize))
return -1;
iph = (struct iphdr *)(skb_network_header(skb) + offset);
ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
tuple->src_v4.s_addr = iph->saddr;
tuple->dst_v4.s_addr = iph->daddr;
tuple->src_port = ports->source;
tuple->dst_port = ports->dest;
tuple->l3proto = AF_INET;
tuple->l4proto = iph->protocol;
tuple->iifidx = dev->ifindex;
nf_flow_tuple_encap(skb, tuple);
return 0;
}
/* Based on ip_exceeds_mtu(). */
static bool nf_flow_exceeds_mtu(const struct sk_buff *skb, unsigned int mtu)
{
if (skb->len <= mtu)
return false;
if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu))
return false;
return true;
}
static unsigned int nf_flow_xmit_xfrm(struct sk_buff *skb,
const struct nf_hook_state *state,
struct dst_entry *dst)
{
skb_orphan(skb);
skb_dst_set_noref(skb, dst);
dst_output(state->net, state->sk, skb);
return NF_STOLEN;
}
static inline __be16 nf_flow_pppoe_proto(const struct sk_buff *skb)
{
__be16 proto;
proto = *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
sizeof(struct pppoe_hdr)));
switch (proto) {
case htons(PPP_IP):
return htons(ETH_P_IP);
case htons(PPP_IPV6):
return htons(ETH_P_IPV6);
}
return 0;
}
static bool nf_flow_skb_encap_protocol(const struct sk_buff *skb, __be16 proto,
u32 *offset)
{
struct vlan_ethhdr *veth;
switch (skb->protocol) {
case htons(ETH_P_8021Q):
veth = (struct vlan_ethhdr *)skb_mac_header(skb);
if (veth->h_vlan_encapsulated_proto == proto) {
*offset += VLAN_HLEN;
return true;
}
break;
case htons(ETH_P_PPP_SES):
if (nf_flow_pppoe_proto(skb) == proto) {
*offset += PPPOE_SES_HLEN;
return true;
}
break;
}
return false;
}
static void nf_flow_encap_pop(struct sk_buff *skb,
struct flow_offload_tuple_rhash *tuplehash)
{
struct vlan_hdr *vlan_hdr;
int i;
for (i = 0; i < tuplehash->tuple.encap_num; i++) {
if (skb_vlan_tag_present(skb)) {
__vlan_hwaccel_clear_tag(skb);
continue;
}
switch (skb->protocol) {
case htons(ETH_P_8021Q):
vlan_hdr = (struct vlan_hdr *)skb->data;
__skb_pull(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vlan_hdr);
skb_reset_network_header(skb);
break;
case htons(ETH_P_PPP_SES):
skb->protocol = nf_flow_pppoe_proto(skb);
skb_pull(skb, PPPOE_SES_HLEN);
skb_reset_network_header(skb);
break;
}
}
}
static unsigned int nf_flow_queue_xmit(struct net *net, struct sk_buff *skb,
const struct flow_offload_tuple_rhash *tuplehash,
unsigned short type)
{
struct net_device *outdev;
outdev = dev_get_by_index_rcu(net, tuplehash->tuple.out.ifidx);
if (!outdev)
return NF_DROP;
skb->dev = outdev;
dev_hard_header(skb, skb->dev, type, tuplehash->tuple.out.h_dest,
tuplehash->tuple.out.h_source, skb->len);
dev_queue_xmit(skb);
return NF_STOLEN;
}
unsigned int
nf_flow_offload_ip_hook(void *priv, struct sk_buff *skb,
const struct nf_hook_state *state)
{
struct flow_offload_tuple_rhash *tuplehash;
struct nf_flowtable *flow_table = priv;
struct flow_offload_tuple tuple = {};
enum flow_offload_tuple_dir dir;
struct flow_offload *flow;
struct net_device *outdev;
u32 hdrsize, offset = 0;
unsigned int thoff, mtu;
struct rtable *rt;
struct iphdr *iph;
__be32 nexthop;
int ret;
if (skb->protocol != htons(ETH_P_IP) &&
!nf_flow_skb_encap_protocol(skb, htons(ETH_P_IP), &offset))
return NF_ACCEPT;
if (nf_flow_tuple_ip(skb, state->in, &tuple, &hdrsize, offset) < 0)
return NF_ACCEPT;
tuplehash = flow_offload_lookup(flow_table, &tuple);
if (tuplehash == NULL)
return NF_ACCEPT;
dir = tuplehash->tuple.dir;
flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
mtu = flow->tuplehash[dir].tuple.mtu + offset;
if (unlikely(nf_flow_exceeds_mtu(skb, mtu)))
return NF_ACCEPT;
iph = (struct iphdr *)(skb_network_header(skb) + offset);
thoff = (iph->ihl * 4) + offset;
if (nf_flow_state_check(flow, iph->protocol, skb, thoff))
return NF_ACCEPT;
if (skb_try_make_writable(skb, thoff + hdrsize))
return NF_DROP;
flow_offload_refresh(flow_table, flow);
nf_flow_encap_pop(skb, tuplehash);
thoff -= offset;
iph = ip_hdr(skb);
nf_flow_nat_ip(flow, skb, thoff, dir, iph);
ip_decrease_ttl(iph);
skb->tstamp = 0;
if (flow_table->flags & NF_FLOWTABLE_COUNTER)
nf_ct_acct_update(flow->ct, tuplehash->tuple.dir, skb->len);
if (unlikely(tuplehash->tuple.xmit_type == FLOW_OFFLOAD_XMIT_XFRM)) {
rt = (struct rtable *)tuplehash->tuple.dst_cache;
memset(skb->cb, 0, sizeof(struct inet_skb_parm));
IPCB(skb)->iif = skb->dev->ifindex;
IPCB(skb)->flags = IPSKB_FORWARDED;
return nf_flow_xmit_xfrm(skb, state, &rt->dst);
}
switch (tuplehash->tuple.xmit_type) {
case FLOW_OFFLOAD_XMIT_NEIGH:
rt = (struct rtable *)tuplehash->tuple.dst_cache;
outdev = rt->dst.dev;
skb->dev = outdev;
nexthop = rt_nexthop(rt, flow->tuplehash[!dir].tuple.src_v4.s_addr);
skb_dst_set_noref(skb, &rt->dst);
neigh_xmit(NEIGH_ARP_TABLE, outdev, &nexthop, skb);
ret = NF_STOLEN;
break;
case FLOW_OFFLOAD_XMIT_DIRECT:
ret = nf_flow_queue_xmit(state->net, skb, tuplehash, ETH_P_IP);
if (ret == NF_DROP)
flow_offload_teardown(flow);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(nf_flow_offload_ip_hook);
static void nf_flow_nat_ipv6_tcp(struct sk_buff *skb, unsigned int thoff,
struct in6_addr *addr,
struct in6_addr *new_addr,
struct ipv6hdr *ip6h)
{
struct tcphdr *tcph;
tcph = (void *)(skb_network_header(skb) + thoff);
inet_proto_csum_replace16(&tcph->check, skb, addr->s6_addr32,
new_addr->s6_addr32, true);
}
static void nf_flow_nat_ipv6_udp(struct sk_buff *skb, unsigned int thoff,
struct in6_addr *addr,
struct in6_addr *new_addr)
{
struct udphdr *udph;
udph = (void *)(skb_network_header(skb) + thoff);
if (udph->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace16(&udph->check, skb, addr->s6_addr32,
new_addr->s6_addr32, true);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
}
}
static void nf_flow_nat_ipv6_l4proto(struct sk_buff *skb, struct ipv6hdr *ip6h,
unsigned int thoff, struct in6_addr *addr,
struct in6_addr *new_addr)
{
switch (ip6h->nexthdr) {
case IPPROTO_TCP:
nf_flow_nat_ipv6_tcp(skb, thoff, addr, new_addr, ip6h);
break;
case IPPROTO_UDP:
nf_flow_nat_ipv6_udp(skb, thoff, addr, new_addr);
break;
}
}
static void nf_flow_snat_ipv6(const struct flow_offload *flow,
struct sk_buff *skb, struct ipv6hdr *ip6h,
unsigned int thoff,
enum flow_offload_tuple_dir dir)
{
struct in6_addr addr, new_addr;
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
addr = ip6h->saddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.dst_v6;
ip6h->saddr = new_addr;
break;
case FLOW_OFFLOAD_DIR_REPLY:
addr = ip6h->daddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.src_v6;
ip6h->daddr = new_addr;
break;
}
nf_flow_nat_ipv6_l4proto(skb, ip6h, thoff, &addr, &new_addr);
}
static void nf_flow_dnat_ipv6(const struct flow_offload *flow,
struct sk_buff *skb, struct ipv6hdr *ip6h,
unsigned int thoff,
enum flow_offload_tuple_dir dir)
{
struct in6_addr addr, new_addr;
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
addr = ip6h->daddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.src_v6;
ip6h->daddr = new_addr;
break;
case FLOW_OFFLOAD_DIR_REPLY:
addr = ip6h->saddr;
new_addr = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.dst_v6;
ip6h->saddr = new_addr;
break;
}
nf_flow_nat_ipv6_l4proto(skb, ip6h, thoff, &addr, &new_addr);
}
static void nf_flow_nat_ipv6(const struct flow_offload *flow,
struct sk_buff *skb,
enum flow_offload_tuple_dir dir,
struct ipv6hdr *ip6h)
{
unsigned int thoff = sizeof(*ip6h);
if (test_bit(NF_FLOW_SNAT, &flow->flags)) {
nf_flow_snat_port(flow, skb, thoff, ip6h->nexthdr, dir);
nf_flow_snat_ipv6(flow, skb, ip6h, thoff, dir);
}
if (test_bit(NF_FLOW_DNAT, &flow->flags)) {
nf_flow_dnat_port(flow, skb, thoff, ip6h->nexthdr, dir);
nf_flow_dnat_ipv6(flow, skb, ip6h, thoff, dir);
}
}
static int nf_flow_tuple_ipv6(struct sk_buff *skb, const struct net_device *dev,
struct flow_offload_tuple *tuple, u32 *hdrsize,
u32 offset)
{
struct flow_ports *ports;
struct ipv6hdr *ip6h;
unsigned int thoff;
thoff = sizeof(*ip6h) + offset;
if (!pskb_may_pull(skb, thoff))
return -1;
ip6h = (struct ipv6hdr *)(skb_network_header(skb) + offset);
switch (ip6h->nexthdr) {
case IPPROTO_TCP:
*hdrsize = sizeof(struct tcphdr);
break;
case IPPROTO_UDP:
*hdrsize = sizeof(struct udphdr);
break;
default:
return -1;
}
if (ip6h->hop_limit <= 1)
return -1;
if (!pskb_may_pull(skb, thoff + *hdrsize))
return -1;
ip6h = (struct ipv6hdr *)(skb_network_header(skb) + offset);
ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
tuple->src_v6 = ip6h->saddr;
tuple->dst_v6 = ip6h->daddr;
tuple->src_port = ports->source;
tuple->dst_port = ports->dest;
tuple->l3proto = AF_INET6;
tuple->l4proto = ip6h->nexthdr;
tuple->iifidx = dev->ifindex;
nf_flow_tuple_encap(skb, tuple);
return 0;
}
unsigned int
nf_flow_offload_ipv6_hook(void *priv, struct sk_buff *skb,
const struct nf_hook_state *state)
{
struct flow_offload_tuple_rhash *tuplehash;
struct nf_flowtable *flow_table = priv;
struct flow_offload_tuple tuple = {};
enum flow_offload_tuple_dir dir;
const struct in6_addr *nexthop;
struct flow_offload *flow;
struct net_device *outdev;
unsigned int thoff, mtu;
u32 hdrsize, offset = 0;
struct ipv6hdr *ip6h;
struct rt6_info *rt;
int ret;
if (skb->protocol != htons(ETH_P_IPV6) &&
!nf_flow_skb_encap_protocol(skb, htons(ETH_P_IPV6), &offset))
return NF_ACCEPT;
if (nf_flow_tuple_ipv6(skb, state->in, &tuple, &hdrsize, offset) < 0)
return NF_ACCEPT;
tuplehash = flow_offload_lookup(flow_table, &tuple);
if (tuplehash == NULL)
return NF_ACCEPT;
dir = tuplehash->tuple.dir;
flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
mtu = flow->tuplehash[dir].tuple.mtu + offset;
if (unlikely(nf_flow_exceeds_mtu(skb, mtu)))
return NF_ACCEPT;
ip6h = (struct ipv6hdr *)(skb_network_header(skb) + offset);
thoff = sizeof(*ip6h) + offset;
if (nf_flow_state_check(flow, ip6h->nexthdr, skb, thoff))
return NF_ACCEPT;
if (skb_try_make_writable(skb, thoff + hdrsize))
return NF_DROP;
flow_offload_refresh(flow_table, flow);
nf_flow_encap_pop(skb, tuplehash);
ip6h = ipv6_hdr(skb);
nf_flow_nat_ipv6(flow, skb, dir, ip6h);
ip6h->hop_limit--;
skb->tstamp = 0;
if (flow_table->flags & NF_FLOWTABLE_COUNTER)
nf_ct_acct_update(flow->ct, tuplehash->tuple.dir, skb->len);
if (unlikely(tuplehash->tuple.xmit_type == FLOW_OFFLOAD_XMIT_XFRM)) {
rt = (struct rt6_info *)tuplehash->tuple.dst_cache;
memset(skb->cb, 0, sizeof(struct inet6_skb_parm));
IP6CB(skb)->iif = skb->dev->ifindex;
IP6CB(skb)->flags = IP6SKB_FORWARDED;
return nf_flow_xmit_xfrm(skb, state, &rt->dst);
}
switch (tuplehash->tuple.xmit_type) {
case FLOW_OFFLOAD_XMIT_NEIGH:
rt = (struct rt6_info *)tuplehash->tuple.dst_cache;
outdev = rt->dst.dev;
skb->dev = outdev;
nexthop = rt6_nexthop(rt, &flow->tuplehash[!dir].tuple.src_v6);
skb_dst_set_noref(skb, &rt->dst);
neigh_xmit(NEIGH_ND_TABLE, outdev, nexthop, skb);
ret = NF_STOLEN;
break;
case FLOW_OFFLOAD_XMIT_DIRECT:
ret = nf_flow_queue_xmit(state->net, skb, tuplehash, ETH_P_IPV6);
if (ret == NF_DROP)
flow_offload_teardown(flow);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(nf_flow_offload_ipv6_hook);