| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_ag.h" |
| #include "xfs_inode.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_icache.h" |
| #include "xfs_trans.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_dir2.h" |
| #include "xfs_health.h" |
| |
| #include <linux/iversion.h> |
| |
| /* |
| * If we are doing readahead on an inode buffer, we might be in log recovery |
| * reading an inode allocation buffer that hasn't yet been replayed, and hence |
| * has not had the inode cores stamped into it. Hence for readahead, the buffer |
| * may be potentially invalid. |
| * |
| * If the readahead buffer is invalid, we need to mark it with an error and |
| * clear the DONE status of the buffer so that a followup read will re-read it |
| * from disk. We don't report the error otherwise to avoid warnings during log |
| * recovery and we don't get unnecessary panics on debug kernels. We use EIO here |
| * because all we want to do is say readahead failed; there is no-one to report |
| * the error to, so this will distinguish it from a non-ra verifier failure. |
| * Changes to this readahead error behaviour also need to be reflected in |
| * xfs_dquot_buf_readahead_verify(). |
| */ |
| static void |
| xfs_inode_buf_verify( |
| struct xfs_buf *bp, |
| bool readahead) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| int i; |
| int ni; |
| |
| /* |
| * Validate the magic number and version of every inode in the buffer |
| */ |
| ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; |
| for (i = 0; i < ni; i++) { |
| struct xfs_dinode *dip; |
| xfs_agino_t unlinked_ino; |
| int di_ok; |
| |
| dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); |
| unlinked_ino = be32_to_cpu(dip->di_next_unlinked); |
| di_ok = xfs_verify_magic16(bp, dip->di_magic) && |
| xfs_dinode_good_version(mp, dip->di_version) && |
| xfs_verify_agino_or_null(bp->b_pag, unlinked_ino); |
| if (unlikely(XFS_TEST_ERROR(!di_ok, mp, |
| XFS_ERRTAG_ITOBP_INOTOBP))) { |
| if (readahead) { |
| bp->b_flags &= ~XBF_DONE; |
| xfs_buf_ioerror(bp, -EIO); |
| return; |
| } |
| |
| #ifdef DEBUG |
| xfs_alert(mp, |
| "bad inode magic/vsn daddr %lld #%d (magic=%x)", |
| (unsigned long long)xfs_buf_daddr(bp), i, |
| be16_to_cpu(dip->di_magic)); |
| #endif |
| xfs_buf_verifier_error(bp, -EFSCORRUPTED, |
| __func__, dip, sizeof(*dip), |
| NULL); |
| return; |
| } |
| } |
| } |
| |
| |
| static void |
| xfs_inode_buf_read_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_inode_buf_verify(bp, false); |
| } |
| |
| static void |
| xfs_inode_buf_readahead_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_inode_buf_verify(bp, true); |
| } |
| |
| static void |
| xfs_inode_buf_write_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_inode_buf_verify(bp, false); |
| } |
| |
| const struct xfs_buf_ops xfs_inode_buf_ops = { |
| .name = "xfs_inode", |
| .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC), |
| cpu_to_be16(XFS_DINODE_MAGIC) }, |
| .verify_read = xfs_inode_buf_read_verify, |
| .verify_write = xfs_inode_buf_write_verify, |
| }; |
| |
| const struct xfs_buf_ops xfs_inode_buf_ra_ops = { |
| .name = "xfs_inode_ra", |
| .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC), |
| cpu_to_be16(XFS_DINODE_MAGIC) }, |
| .verify_read = xfs_inode_buf_readahead_verify, |
| .verify_write = xfs_inode_buf_write_verify, |
| }; |
| |
| |
| /* |
| * This routine is called to map an inode to the buffer containing the on-disk |
| * version of the inode. It returns a pointer to the buffer containing the |
| * on-disk inode in the bpp parameter. |
| */ |
| int |
| xfs_imap_to_bp( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_imap *imap, |
| struct xfs_buf **bpp) |
| { |
| int error; |
| |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, |
| imap->im_len, XBF_UNMAPPED, bpp, &xfs_inode_buf_ops); |
| if (xfs_metadata_is_sick(error)) |
| xfs_agno_mark_sick(mp, xfs_daddr_to_agno(mp, imap->im_blkno), |
| XFS_SICK_AG_INODES); |
| return error; |
| } |
| |
| static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts) |
| { |
| struct timespec64 tv; |
| uint32_t n; |
| |
| tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n)); |
| tv.tv_nsec = n; |
| |
| return tv; |
| } |
| |
| /* Convert an ondisk timestamp to an incore timestamp. */ |
| struct timespec64 |
| xfs_inode_from_disk_ts( |
| struct xfs_dinode *dip, |
| const xfs_timestamp_t ts) |
| { |
| struct timespec64 tv; |
| struct xfs_legacy_timestamp *lts; |
| |
| if (xfs_dinode_has_bigtime(dip)) |
| return xfs_inode_decode_bigtime(be64_to_cpu(ts)); |
| |
| lts = (struct xfs_legacy_timestamp *)&ts; |
| tv.tv_sec = (int)be32_to_cpu(lts->t_sec); |
| tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec); |
| |
| return tv; |
| } |
| |
| int |
| xfs_inode_from_disk( |
| struct xfs_inode *ip, |
| struct xfs_dinode *from) |
| { |
| struct inode *inode = VFS_I(ip); |
| int error; |
| xfs_failaddr_t fa; |
| |
| ASSERT(ip->i_cowfp == NULL); |
| |
| fa = xfs_dinode_verify(ip->i_mount, ip->i_ino, from); |
| if (fa) { |
| xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", from, |
| sizeof(*from), fa); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * First get the permanent information that is needed to allocate an |
| * inode. If the inode is unused, mode is zero and we shouldn't mess |
| * with the uninitialized part of it. |
| */ |
| if (!xfs_has_v3inodes(ip->i_mount)) |
| ip->i_flushiter = be16_to_cpu(from->di_flushiter); |
| inode->i_generation = be32_to_cpu(from->di_gen); |
| inode->i_mode = be16_to_cpu(from->di_mode); |
| if (!inode->i_mode) |
| return 0; |
| |
| /* |
| * Convert v1 inodes immediately to v2 inode format as this is the |
| * minimum inode version format we support in the rest of the code. |
| * They will also be unconditionally written back to disk as v2 inodes. |
| */ |
| if (unlikely(from->di_version == 1)) { |
| set_nlink(inode, be16_to_cpu(from->di_onlink)); |
| ip->i_projid = 0; |
| } else { |
| set_nlink(inode, be32_to_cpu(from->di_nlink)); |
| ip->i_projid = (prid_t)be16_to_cpu(from->di_projid_hi) << 16 | |
| be16_to_cpu(from->di_projid_lo); |
| } |
| |
| i_uid_write(inode, be32_to_cpu(from->di_uid)); |
| i_gid_write(inode, be32_to_cpu(from->di_gid)); |
| |
| /* |
| * Time is signed, so need to convert to signed 32 bit before |
| * storing in inode timestamp which may be 64 bit. Otherwise |
| * a time before epoch is converted to a time long after epoch |
| * on 64 bit systems. |
| */ |
| inode_set_atime_to_ts(inode, |
| xfs_inode_from_disk_ts(from, from->di_atime)); |
| inode_set_mtime_to_ts(inode, |
| xfs_inode_from_disk_ts(from, from->di_mtime)); |
| inode_set_ctime_to_ts(inode, |
| xfs_inode_from_disk_ts(from, from->di_ctime)); |
| |
| ip->i_disk_size = be64_to_cpu(from->di_size); |
| ip->i_nblocks = be64_to_cpu(from->di_nblocks); |
| ip->i_extsize = be32_to_cpu(from->di_extsize); |
| ip->i_forkoff = from->di_forkoff; |
| ip->i_diflags = be16_to_cpu(from->di_flags); |
| ip->i_next_unlinked = be32_to_cpu(from->di_next_unlinked); |
| |
| if (from->di_dmevmask || from->di_dmstate) |
| xfs_iflags_set(ip, XFS_IPRESERVE_DM_FIELDS); |
| |
| if (xfs_has_v3inodes(ip->i_mount)) { |
| inode_set_iversion_queried(inode, |
| be64_to_cpu(from->di_changecount)); |
| ip->i_crtime = xfs_inode_from_disk_ts(from, from->di_crtime); |
| ip->i_diflags2 = be64_to_cpu(from->di_flags2); |
| ip->i_cowextsize = be32_to_cpu(from->di_cowextsize); |
| } |
| |
| error = xfs_iformat_data_fork(ip, from); |
| if (error) |
| return error; |
| if (from->di_forkoff) { |
| error = xfs_iformat_attr_fork(ip, from); |
| if (error) |
| goto out_destroy_data_fork; |
| } |
| if (xfs_is_reflink_inode(ip)) |
| xfs_ifork_init_cow(ip); |
| return 0; |
| |
| out_destroy_data_fork: |
| xfs_idestroy_fork(&ip->i_df); |
| return error; |
| } |
| |
| /* Convert an incore timestamp to an ondisk timestamp. */ |
| static inline xfs_timestamp_t |
| xfs_inode_to_disk_ts( |
| struct xfs_inode *ip, |
| const struct timespec64 tv) |
| { |
| struct xfs_legacy_timestamp *lts; |
| xfs_timestamp_t ts; |
| |
| if (xfs_inode_has_bigtime(ip)) |
| return cpu_to_be64(xfs_inode_encode_bigtime(tv)); |
| |
| lts = (struct xfs_legacy_timestamp *)&ts; |
| lts->t_sec = cpu_to_be32(tv.tv_sec); |
| lts->t_nsec = cpu_to_be32(tv.tv_nsec); |
| |
| return ts; |
| } |
| |
| static inline void |
| xfs_inode_to_disk_iext_counters( |
| struct xfs_inode *ip, |
| struct xfs_dinode *to) |
| { |
| if (xfs_inode_has_large_extent_counts(ip)) { |
| to->di_big_nextents = cpu_to_be64(xfs_ifork_nextents(&ip->i_df)); |
| to->di_big_anextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_af)); |
| /* |
| * We might be upgrading the inode to use larger extent counters |
| * than was previously used. Hence zero the unused field. |
| */ |
| to->di_nrext64_pad = cpu_to_be16(0); |
| } else { |
| to->di_nextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_df)); |
| to->di_anextents = cpu_to_be16(xfs_ifork_nextents(&ip->i_af)); |
| } |
| } |
| |
| void |
| xfs_inode_to_disk( |
| struct xfs_inode *ip, |
| struct xfs_dinode *to, |
| xfs_lsn_t lsn) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); |
| to->di_onlink = 0; |
| |
| to->di_format = xfs_ifork_format(&ip->i_df); |
| to->di_uid = cpu_to_be32(i_uid_read(inode)); |
| to->di_gid = cpu_to_be32(i_gid_read(inode)); |
| to->di_projid_lo = cpu_to_be16(ip->i_projid & 0xffff); |
| to->di_projid_hi = cpu_to_be16(ip->i_projid >> 16); |
| |
| to->di_atime = xfs_inode_to_disk_ts(ip, inode_get_atime(inode)); |
| to->di_mtime = xfs_inode_to_disk_ts(ip, inode_get_mtime(inode)); |
| to->di_ctime = xfs_inode_to_disk_ts(ip, inode_get_ctime(inode)); |
| to->di_nlink = cpu_to_be32(inode->i_nlink); |
| to->di_gen = cpu_to_be32(inode->i_generation); |
| to->di_mode = cpu_to_be16(inode->i_mode); |
| |
| to->di_size = cpu_to_be64(ip->i_disk_size); |
| to->di_nblocks = cpu_to_be64(ip->i_nblocks); |
| to->di_extsize = cpu_to_be32(ip->i_extsize); |
| to->di_forkoff = ip->i_forkoff; |
| to->di_aformat = xfs_ifork_format(&ip->i_af); |
| to->di_flags = cpu_to_be16(ip->i_diflags); |
| |
| if (xfs_has_v3inodes(ip->i_mount)) { |
| to->di_version = 3; |
| to->di_changecount = cpu_to_be64(inode_peek_iversion(inode)); |
| to->di_crtime = xfs_inode_to_disk_ts(ip, ip->i_crtime); |
| to->di_flags2 = cpu_to_be64(ip->i_diflags2); |
| to->di_cowextsize = cpu_to_be32(ip->i_cowextsize); |
| to->di_ino = cpu_to_be64(ip->i_ino); |
| to->di_lsn = cpu_to_be64(lsn); |
| memset(to->di_pad2, 0, sizeof(to->di_pad2)); |
| uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); |
| to->di_v3_pad = 0; |
| } else { |
| to->di_version = 2; |
| to->di_flushiter = cpu_to_be16(ip->i_flushiter); |
| memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); |
| } |
| |
| xfs_inode_to_disk_iext_counters(ip, to); |
| } |
| |
| static xfs_failaddr_t |
| xfs_dinode_verify_fork( |
| struct xfs_dinode *dip, |
| struct xfs_mount *mp, |
| int whichfork) |
| { |
| xfs_extnum_t di_nextents; |
| xfs_extnum_t max_extents; |
| mode_t mode = be16_to_cpu(dip->di_mode); |
| uint32_t fork_size = XFS_DFORK_SIZE(dip, mp, whichfork); |
| uint32_t fork_format = XFS_DFORK_FORMAT(dip, whichfork); |
| |
| di_nextents = xfs_dfork_nextents(dip, whichfork); |
| |
| /* |
| * For fork types that can contain local data, check that the fork |
| * format matches the size of local data contained within the fork. |
| */ |
| if (whichfork == XFS_DATA_FORK) { |
| /* |
| * A directory small enough to fit in the inode must be stored |
| * in local format. The directory sf <-> extents conversion |
| * code updates the directory size accordingly. Directories |
| * being truncated have zero size and are not subject to this |
| * check. |
| */ |
| if (S_ISDIR(mode)) { |
| if (dip->di_size && |
| be64_to_cpu(dip->di_size) <= fork_size && |
| fork_format != XFS_DINODE_FMT_LOCAL) |
| return __this_address; |
| } |
| |
| /* |
| * A symlink with a target small enough to fit in the inode can |
| * be stored in extents format if xattrs were added (thus |
| * converting the data fork from shortform to remote format) |
| * and then removed. |
| */ |
| if (S_ISLNK(mode)) { |
| if (be64_to_cpu(dip->di_size) <= fork_size && |
| fork_format != XFS_DINODE_FMT_EXTENTS && |
| fork_format != XFS_DINODE_FMT_LOCAL) |
| return __this_address; |
| } |
| |
| /* |
| * For all types, check that when the size says the fork should |
| * be in extent or btree format, the inode isn't claiming to be |
| * in local format. |
| */ |
| if (be64_to_cpu(dip->di_size) > fork_size && |
| fork_format == XFS_DINODE_FMT_LOCAL) |
| return __this_address; |
| } |
| |
| switch (fork_format) { |
| case XFS_DINODE_FMT_LOCAL: |
| /* |
| * No local regular files yet. |
| */ |
| if (S_ISREG(mode) && whichfork == XFS_DATA_FORK) |
| return __this_address; |
| if (di_nextents) |
| return __this_address; |
| break; |
| case XFS_DINODE_FMT_EXTENTS: |
| if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork)) |
| return __this_address; |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| max_extents = xfs_iext_max_nextents( |
| xfs_dinode_has_large_extent_counts(dip), |
| whichfork); |
| if (di_nextents > max_extents) |
| return __this_address; |
| break; |
| default: |
| return __this_address; |
| } |
| return NULL; |
| } |
| |
| static xfs_failaddr_t |
| xfs_dinode_verify_forkoff( |
| struct xfs_dinode *dip, |
| struct xfs_mount *mp) |
| { |
| if (!dip->di_forkoff) |
| return NULL; |
| |
| switch (dip->di_format) { |
| case XFS_DINODE_FMT_DEV: |
| if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3)) |
| return __this_address; |
| break; |
| case XFS_DINODE_FMT_LOCAL: /* fall through ... */ |
| case XFS_DINODE_FMT_EXTENTS: /* fall through ... */ |
| case XFS_DINODE_FMT_BTREE: |
| if (dip->di_forkoff >= (XFS_LITINO(mp) >> 3)) |
| return __this_address; |
| break; |
| default: |
| return __this_address; |
| } |
| return NULL; |
| } |
| |
| static xfs_failaddr_t |
| xfs_dinode_verify_nrext64( |
| struct xfs_mount *mp, |
| struct xfs_dinode *dip) |
| { |
| if (xfs_dinode_has_large_extent_counts(dip)) { |
| if (!xfs_has_large_extent_counts(mp)) |
| return __this_address; |
| if (dip->di_nrext64_pad != 0) |
| return __this_address; |
| } else if (dip->di_version >= 3) { |
| if (dip->di_v3_pad != 0) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| xfs_failaddr_t |
| xfs_dinode_verify( |
| struct xfs_mount *mp, |
| xfs_ino_t ino, |
| struct xfs_dinode *dip) |
| { |
| xfs_failaddr_t fa; |
| uint16_t mode; |
| uint16_t flags; |
| uint64_t flags2; |
| uint64_t di_size; |
| xfs_extnum_t nextents; |
| xfs_extnum_t naextents; |
| xfs_filblks_t nblocks; |
| |
| if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) |
| return __this_address; |
| |
| /* Verify v3 integrity information first */ |
| if (dip->di_version >= 3) { |
| if (!xfs_has_v3inodes(mp)) |
| return __this_address; |
| if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, |
| XFS_DINODE_CRC_OFF)) |
| return __this_address; |
| if (be64_to_cpu(dip->di_ino) != ino) |
| return __this_address; |
| if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid)) |
| return __this_address; |
| } |
| |
| if (dip->di_version > 1) { |
| if (dip->di_onlink) |
| return __this_address; |
| } else { |
| if (dip->di_nlink) |
| return __this_address; |
| } |
| |
| /* don't allow invalid i_size */ |
| di_size = be64_to_cpu(dip->di_size); |
| if (di_size & (1ULL << 63)) |
| return __this_address; |
| |
| mode = be16_to_cpu(dip->di_mode); |
| if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN) |
| return __this_address; |
| |
| /* |
| * No zero-length symlinks/dirs unless they're unlinked and hence being |
| * inactivated. |
| */ |
| if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) { |
| if (dip->di_version > 1) { |
| if (dip->di_nlink) |
| return __this_address; |
| } else { |
| if (dip->di_onlink) |
| return __this_address; |
| } |
| } |
| |
| fa = xfs_dinode_verify_nrext64(mp, dip); |
| if (fa) |
| return fa; |
| |
| nextents = xfs_dfork_data_extents(dip); |
| naextents = xfs_dfork_attr_extents(dip); |
| nblocks = be64_to_cpu(dip->di_nblocks); |
| |
| /* Fork checks carried over from xfs_iformat_fork */ |
| if (mode && nextents + naextents > nblocks) |
| return __this_address; |
| |
| if (nextents + naextents == 0 && nblocks != 0) |
| return __this_address; |
| |
| if (S_ISDIR(mode) && nextents > mp->m_dir_geo->max_extents) |
| return __this_address; |
| |
| if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize) |
| return __this_address; |
| |
| flags = be16_to_cpu(dip->di_flags); |
| |
| if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp) |
| return __this_address; |
| |
| /* check for illegal values of forkoff */ |
| fa = xfs_dinode_verify_forkoff(dip, mp); |
| if (fa) |
| return fa; |
| |
| /* Do we have appropriate data fork formats for the mode? */ |
| switch (mode & S_IFMT) { |
| case S_IFIFO: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFSOCK: |
| if (dip->di_format != XFS_DINODE_FMT_DEV) |
| return __this_address; |
| break; |
| case S_IFREG: |
| case S_IFLNK: |
| case S_IFDIR: |
| fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK); |
| if (fa) |
| return fa; |
| break; |
| case 0: |
| /* Uninitialized inode ok. */ |
| break; |
| default: |
| return __this_address; |
| } |
| |
| if (dip->di_forkoff) { |
| fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK); |
| if (fa) |
| return fa; |
| } else { |
| /* |
| * If there is no fork offset, this may be a freshly-made inode |
| * in a new disk cluster, in which case di_aformat is zeroed. |
| * Otherwise, such an inode must be in EXTENTS format; this goes |
| * for freed inodes as well. |
| */ |
| switch (dip->di_aformat) { |
| case 0: |
| case XFS_DINODE_FMT_EXTENTS: |
| break; |
| default: |
| return __this_address; |
| } |
| if (naextents) |
| return __this_address; |
| } |
| |
| /* extent size hint validation */ |
| fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize), |
| mode, flags); |
| if (fa) |
| return fa; |
| |
| /* only version 3 or greater inodes are extensively verified here */ |
| if (dip->di_version < 3) |
| return NULL; |
| |
| flags2 = be64_to_cpu(dip->di_flags2); |
| |
| /* don't allow reflink/cowextsize if we don't have reflink */ |
| if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) && |
| !xfs_has_reflink(mp)) |
| return __this_address; |
| |
| /* only regular files get reflink */ |
| if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG) |
| return __this_address; |
| |
| /* don't let reflink and realtime mix */ |
| if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME)) |
| return __this_address; |
| |
| /* COW extent size hint validation */ |
| fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize), |
| mode, flags, flags2); |
| if (fa) |
| return fa; |
| |
| /* bigtime iflag can only happen on bigtime filesystems */ |
| if (xfs_dinode_has_bigtime(dip) && |
| !xfs_has_bigtime(mp)) |
| return __this_address; |
| |
| return NULL; |
| } |
| |
| void |
| xfs_dinode_calc_crc( |
| struct xfs_mount *mp, |
| struct xfs_dinode *dip) |
| { |
| uint32_t crc; |
| |
| if (dip->di_version < 3) |
| return; |
| |
| ASSERT(xfs_has_crc(mp)); |
| crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize, |
| XFS_DINODE_CRC_OFF); |
| dip->di_crc = xfs_end_cksum(crc); |
| } |
| |
| /* |
| * Validate di_extsize hint. |
| * |
| * 1. Extent size hint is only valid for directories and regular files. |
| * 2. FS_XFLAG_EXTSIZE is only valid for regular files. |
| * 3. FS_XFLAG_EXTSZINHERIT is only valid for directories. |
| * 4. Hint cannot be larger than MAXTEXTLEN. |
| * 5. Can be changed on directories at any time. |
| * 6. Hint value of 0 turns off hints, clears inode flags. |
| * 7. Extent size must be a multiple of the appropriate block size. |
| * For realtime files, this is the rt extent size. |
| * 8. For non-realtime files, the extent size hint must be limited |
| * to half the AG size to avoid alignment extending the extent beyond the |
| * limits of the AG. |
| */ |
| xfs_failaddr_t |
| xfs_inode_validate_extsize( |
| struct xfs_mount *mp, |
| uint32_t extsize, |
| uint16_t mode, |
| uint16_t flags) |
| { |
| bool rt_flag; |
| bool hint_flag; |
| bool inherit_flag; |
| uint32_t extsize_bytes; |
| uint32_t blocksize_bytes; |
| |
| rt_flag = (flags & XFS_DIFLAG_REALTIME); |
| hint_flag = (flags & XFS_DIFLAG_EXTSIZE); |
| inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT); |
| extsize_bytes = XFS_FSB_TO_B(mp, extsize); |
| |
| /* |
| * This comment describes a historic gap in this verifier function. |
| * |
| * For a directory with both RTINHERIT and EXTSZINHERIT flags set, this |
| * function has never checked that the extent size hint is an integer |
| * multiple of the realtime extent size. Since we allow users to set |
| * this combination on non-rt filesystems /and/ to change the rt |
| * extent size when adding a rt device to a filesystem, the net effect |
| * is that users can configure a filesystem anticipating one rt |
| * geometry and change their minds later. Directories do not use the |
| * extent size hint, so this is harmless for them. |
| * |
| * If a directory with a misaligned extent size hint is allowed to |
| * propagate that hint into a new regular realtime file, the result |
| * is that the inode cluster buffer verifier will trigger a corruption |
| * shutdown the next time it is run, because the verifier has always |
| * enforced the alignment rule for regular files. |
| * |
| * Because we allow administrators to set a new rt extent size when |
| * adding a rt section, we cannot add a check to this verifier because |
| * that will result a new source of directory corruption errors when |
| * reading an existing filesystem. Instead, we rely on callers to |
| * decide when alignment checks are appropriate, and fix things up as |
| * needed. |
| */ |
| |
| if (rt_flag) |
| blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); |
| else |
| blocksize_bytes = mp->m_sb.sb_blocksize; |
| |
| if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode))) |
| return __this_address; |
| |
| if (hint_flag && !S_ISREG(mode)) |
| return __this_address; |
| |
| if (inherit_flag && !S_ISDIR(mode)) |
| return __this_address; |
| |
| if ((hint_flag || inherit_flag) && extsize == 0) |
| return __this_address; |
| |
| /* free inodes get flags set to zero but extsize remains */ |
| if (mode && !(hint_flag || inherit_flag) && extsize != 0) |
| return __this_address; |
| |
| if (extsize_bytes % blocksize_bytes) |
| return __this_address; |
| |
| if (extsize > XFS_MAX_BMBT_EXTLEN) |
| return __this_address; |
| |
| if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2) |
| return __this_address; |
| |
| return NULL; |
| } |
| |
| /* |
| * Validate di_cowextsize hint. |
| * |
| * 1. CoW extent size hint can only be set if reflink is enabled on the fs. |
| * The inode does not have to have any shared blocks, but it must be a v3. |
| * 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files; |
| * for a directory, the hint is propagated to new files. |
| * 3. Can be changed on files & directories at any time. |
| * 4. Hint value of 0 turns off hints, clears inode flags. |
| * 5. Extent size must be a multiple of the appropriate block size. |
| * 6. The extent size hint must be limited to half the AG size to avoid |
| * alignment extending the extent beyond the limits of the AG. |
| */ |
| xfs_failaddr_t |
| xfs_inode_validate_cowextsize( |
| struct xfs_mount *mp, |
| uint32_t cowextsize, |
| uint16_t mode, |
| uint16_t flags, |
| uint64_t flags2) |
| { |
| bool rt_flag; |
| bool hint_flag; |
| uint32_t cowextsize_bytes; |
| |
| rt_flag = (flags & XFS_DIFLAG_REALTIME); |
| hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE); |
| cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize); |
| |
| if (hint_flag && !xfs_has_reflink(mp)) |
| return __this_address; |
| |
| if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode))) |
| return __this_address; |
| |
| if (hint_flag && cowextsize == 0) |
| return __this_address; |
| |
| /* free inodes get flags set to zero but cowextsize remains */ |
| if (mode && !hint_flag && cowextsize != 0) |
| return __this_address; |
| |
| if (hint_flag && rt_flag) |
| return __this_address; |
| |
| if (cowextsize_bytes % mp->m_sb.sb_blocksize) |
| return __this_address; |
| |
| if (cowextsize > XFS_MAX_BMBT_EXTLEN) |
| return __this_address; |
| |
| if (cowextsize > mp->m_sb.sb_agblocks / 2) |
| return __this_address; |
| |
| return NULL; |
| } |