blob: e666ec6a9085a577c92f5e73cefff894922fcb38 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2020 Intel Corporation. All rights reserved. */
#include <linux/platform_device.h>
#include <linux/memregion.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/node.h>
#include <cxl/einj.h>
#include <cxlmem.h>
#include <cxlpci.h>
#include <cxl.h>
#include "core.h"
/**
* DOC: cxl core
*
* The CXL core provides a set of interfaces that can be consumed by CXL aware
* drivers. The interfaces allow for creation, modification, and destruction of
* regions, memory devices, ports, and decoders. CXL aware drivers must register
* with the CXL core via these interfaces in order to be able to participate in
* cross-device interleave coordination. The CXL core also establishes and
* maintains the bridge to the nvdimm subsystem.
*
* CXL core introduces sysfs hierarchy to control the devices that are
* instantiated by the core.
*/
/*
* All changes to the interleave configuration occur with this lock held
* for write.
*/
DECLARE_RWSEM(cxl_region_rwsem);
static DEFINE_IDA(cxl_port_ida);
static DEFINE_XARRAY(cxl_root_buses);
int cxl_num_decoders_committed(struct cxl_port *port)
{
lockdep_assert_held(&cxl_region_rwsem);
return port->commit_end + 1;
}
static ssize_t devtype_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", dev->type->name);
}
static DEVICE_ATTR_RO(devtype);
static int cxl_device_id(const struct device *dev)
{
if (dev->type == &cxl_nvdimm_bridge_type)
return CXL_DEVICE_NVDIMM_BRIDGE;
if (dev->type == &cxl_nvdimm_type)
return CXL_DEVICE_NVDIMM;
if (dev->type == CXL_PMEM_REGION_TYPE())
return CXL_DEVICE_PMEM_REGION;
if (dev->type == CXL_DAX_REGION_TYPE())
return CXL_DEVICE_DAX_REGION;
if (is_cxl_port(dev)) {
if (is_cxl_root(to_cxl_port(dev)))
return CXL_DEVICE_ROOT;
return CXL_DEVICE_PORT;
}
if (is_cxl_memdev(dev))
return CXL_DEVICE_MEMORY_EXPANDER;
if (dev->type == CXL_REGION_TYPE())
return CXL_DEVICE_REGION;
if (dev->type == &cxl_pmu_type)
return CXL_DEVICE_PMU;
return 0;
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, CXL_MODALIAS_FMT "\n", cxl_device_id(dev));
}
static DEVICE_ATTR_RO(modalias);
static struct attribute *cxl_base_attributes[] = {
&dev_attr_devtype.attr,
&dev_attr_modalias.attr,
NULL,
};
struct attribute_group cxl_base_attribute_group = {
.attrs = cxl_base_attributes,
};
static ssize_t start_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cxl_decoder *cxld = to_cxl_decoder(dev);
return sysfs_emit(buf, "%#llx\n", cxld->hpa_range.start);
}
static DEVICE_ATTR_ADMIN_RO(start);
static ssize_t size_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cxl_decoder *cxld = to_cxl_decoder(dev);
return sysfs_emit(buf, "%#llx\n", range_len(&cxld->hpa_range));
}
static DEVICE_ATTR_RO(size);
#define CXL_DECODER_FLAG_ATTR(name, flag) \
static ssize_t name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct cxl_decoder *cxld = to_cxl_decoder(dev); \
\
return sysfs_emit(buf, "%s\n", \
(cxld->flags & (flag)) ? "1" : "0"); \
} \
static DEVICE_ATTR_RO(name)
CXL_DECODER_FLAG_ATTR(cap_pmem, CXL_DECODER_F_PMEM);
CXL_DECODER_FLAG_ATTR(cap_ram, CXL_DECODER_F_RAM);
CXL_DECODER_FLAG_ATTR(cap_type2, CXL_DECODER_F_TYPE2);
CXL_DECODER_FLAG_ATTR(cap_type3, CXL_DECODER_F_TYPE3);
CXL_DECODER_FLAG_ATTR(locked, CXL_DECODER_F_LOCK);
static ssize_t target_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxl_decoder *cxld = to_cxl_decoder(dev);
switch (cxld->target_type) {
case CXL_DECODER_DEVMEM:
return sysfs_emit(buf, "accelerator\n");
case CXL_DECODER_HOSTONLYMEM:
return sysfs_emit(buf, "expander\n");
}
return -ENXIO;
}
static DEVICE_ATTR_RO(target_type);
static ssize_t emit_target_list(struct cxl_switch_decoder *cxlsd, char *buf)
{
struct cxl_decoder *cxld = &cxlsd->cxld;
ssize_t offset = 0;
int i, rc = 0;
for (i = 0; i < cxld->interleave_ways; i++) {
struct cxl_dport *dport = cxlsd->target[i];
struct cxl_dport *next = NULL;
if (!dport)
break;
if (i + 1 < cxld->interleave_ways)
next = cxlsd->target[i + 1];
rc = sysfs_emit_at(buf, offset, "%d%s", dport->port_id,
next ? "," : "");
if (rc < 0)
return rc;
offset += rc;
}
return offset;
}
static ssize_t target_list_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxl_switch_decoder *cxlsd = to_cxl_switch_decoder(dev);
ssize_t offset;
int rc;
guard(rwsem_read)(&cxl_region_rwsem);
rc = emit_target_list(cxlsd, buf);
if (rc < 0)
return rc;
offset = rc;
rc = sysfs_emit_at(buf, offset, "\n");
if (rc < 0)
return rc;
return offset + rc;
}
static DEVICE_ATTR_RO(target_list);
static ssize_t mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
return sysfs_emit(buf, "%s\n", cxl_decoder_mode_name(cxled->mode));
}
static ssize_t mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
enum cxl_decoder_mode mode;
ssize_t rc;
if (sysfs_streq(buf, "pmem"))
mode = CXL_DECODER_PMEM;
else if (sysfs_streq(buf, "ram"))
mode = CXL_DECODER_RAM;
else
return -EINVAL;
rc = cxl_dpa_set_mode(cxled, mode);
if (rc)
return rc;
return len;
}
static DEVICE_ATTR_RW(mode);
static ssize_t dpa_resource_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
guard(rwsem_read)(&cxl_dpa_rwsem);
return sysfs_emit(buf, "%#llx\n", (u64)cxl_dpa_resource_start(cxled));
}
static DEVICE_ATTR_RO(dpa_resource);
static ssize_t dpa_size_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
resource_size_t size = cxl_dpa_size(cxled);
return sysfs_emit(buf, "%pa\n", &size);
}
static ssize_t dpa_size_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
unsigned long long size;
ssize_t rc;
rc = kstrtoull(buf, 0, &size);
if (rc)
return rc;
if (!IS_ALIGNED(size, SZ_256M))
return -EINVAL;
rc = cxl_dpa_free(cxled);
if (rc)
return rc;
if (size == 0)
return len;
rc = cxl_dpa_alloc(cxled, size);
if (rc)
return rc;
return len;
}
static DEVICE_ATTR_RW(dpa_size);
static ssize_t interleave_granularity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxl_decoder *cxld = to_cxl_decoder(dev);
return sysfs_emit(buf, "%d\n", cxld->interleave_granularity);
}
static DEVICE_ATTR_RO(interleave_granularity);
static ssize_t interleave_ways_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxl_decoder *cxld = to_cxl_decoder(dev);
return sysfs_emit(buf, "%d\n", cxld->interleave_ways);
}
static DEVICE_ATTR_RO(interleave_ways);
static ssize_t qos_class_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev);
return sysfs_emit(buf, "%d\n", cxlrd->qos_class);
}
static DEVICE_ATTR_RO(qos_class);
static struct attribute *cxl_decoder_base_attrs[] = {
&dev_attr_start.attr,
&dev_attr_size.attr,
&dev_attr_locked.attr,
&dev_attr_interleave_granularity.attr,
&dev_attr_interleave_ways.attr,
NULL,
};
static struct attribute_group cxl_decoder_base_attribute_group = {
.attrs = cxl_decoder_base_attrs,
};
static struct attribute *cxl_decoder_root_attrs[] = {
&dev_attr_cap_pmem.attr,
&dev_attr_cap_ram.attr,
&dev_attr_cap_type2.attr,
&dev_attr_cap_type3.attr,
&dev_attr_target_list.attr,
&dev_attr_qos_class.attr,
SET_CXL_REGION_ATTR(create_pmem_region)
SET_CXL_REGION_ATTR(create_ram_region)
SET_CXL_REGION_ATTR(delete_region)
NULL,
};
static bool can_create_pmem(struct cxl_root_decoder *cxlrd)
{
unsigned long flags = CXL_DECODER_F_TYPE3 | CXL_DECODER_F_PMEM;
return (cxlrd->cxlsd.cxld.flags & flags) == flags;
}
static bool can_create_ram(struct cxl_root_decoder *cxlrd)
{
unsigned long flags = CXL_DECODER_F_TYPE3 | CXL_DECODER_F_RAM;
return (cxlrd->cxlsd.cxld.flags & flags) == flags;
}
static umode_t cxl_root_decoder_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev);
if (a == CXL_REGION_ATTR(create_pmem_region) && !can_create_pmem(cxlrd))
return 0;
if (a == CXL_REGION_ATTR(create_ram_region) && !can_create_ram(cxlrd))
return 0;
if (a == CXL_REGION_ATTR(delete_region) &&
!(can_create_pmem(cxlrd) || can_create_ram(cxlrd)))
return 0;
return a->mode;
}
static struct attribute_group cxl_decoder_root_attribute_group = {
.attrs = cxl_decoder_root_attrs,
.is_visible = cxl_root_decoder_visible,
};
static const struct attribute_group *cxl_decoder_root_attribute_groups[] = {
&cxl_decoder_root_attribute_group,
&cxl_decoder_base_attribute_group,
&cxl_base_attribute_group,
NULL,
};
static struct attribute *cxl_decoder_switch_attrs[] = {
&dev_attr_target_type.attr,
&dev_attr_target_list.attr,
SET_CXL_REGION_ATTR(region)
NULL,
};
static struct attribute_group cxl_decoder_switch_attribute_group = {
.attrs = cxl_decoder_switch_attrs,
};
static const struct attribute_group *cxl_decoder_switch_attribute_groups[] = {
&cxl_decoder_switch_attribute_group,
&cxl_decoder_base_attribute_group,
&cxl_base_attribute_group,
NULL,
};
static struct attribute *cxl_decoder_endpoint_attrs[] = {
&dev_attr_target_type.attr,
&dev_attr_mode.attr,
&dev_attr_dpa_size.attr,
&dev_attr_dpa_resource.attr,
SET_CXL_REGION_ATTR(region)
NULL,
};
static struct attribute_group cxl_decoder_endpoint_attribute_group = {
.attrs = cxl_decoder_endpoint_attrs,
};
static const struct attribute_group *cxl_decoder_endpoint_attribute_groups[] = {
&cxl_decoder_base_attribute_group,
&cxl_decoder_endpoint_attribute_group,
&cxl_base_attribute_group,
NULL,
};
static void __cxl_decoder_release(struct cxl_decoder *cxld)
{
struct cxl_port *port = to_cxl_port(cxld->dev.parent);
ida_free(&port->decoder_ida, cxld->id);
put_device(&port->dev);
}
static void cxl_endpoint_decoder_release(struct device *dev)
{
struct cxl_endpoint_decoder *cxled = to_cxl_endpoint_decoder(dev);
__cxl_decoder_release(&cxled->cxld);
kfree(cxled);
}
static void cxl_switch_decoder_release(struct device *dev)
{
struct cxl_switch_decoder *cxlsd = to_cxl_switch_decoder(dev);
__cxl_decoder_release(&cxlsd->cxld);
kfree(cxlsd);
}
struct cxl_root_decoder *to_cxl_root_decoder(struct device *dev)
{
if (dev_WARN_ONCE(dev, !is_root_decoder(dev),
"not a cxl_root_decoder device\n"))
return NULL;
return container_of(dev, struct cxl_root_decoder, cxlsd.cxld.dev);
}
EXPORT_SYMBOL_NS_GPL(to_cxl_root_decoder, CXL);
static void cxl_root_decoder_release(struct device *dev)
{
struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev);
if (atomic_read(&cxlrd->region_id) >= 0)
memregion_free(atomic_read(&cxlrd->region_id));
__cxl_decoder_release(&cxlrd->cxlsd.cxld);
kfree(cxlrd);
}
static const struct device_type cxl_decoder_endpoint_type = {
.name = "cxl_decoder_endpoint",
.release = cxl_endpoint_decoder_release,
.groups = cxl_decoder_endpoint_attribute_groups,
};
static const struct device_type cxl_decoder_switch_type = {
.name = "cxl_decoder_switch",
.release = cxl_switch_decoder_release,
.groups = cxl_decoder_switch_attribute_groups,
};
static const struct device_type cxl_decoder_root_type = {
.name = "cxl_decoder_root",
.release = cxl_root_decoder_release,
.groups = cxl_decoder_root_attribute_groups,
};
bool is_endpoint_decoder(struct device *dev)
{
return dev->type == &cxl_decoder_endpoint_type;
}
EXPORT_SYMBOL_NS_GPL(is_endpoint_decoder, CXL);
bool is_root_decoder(struct device *dev)
{
return dev->type == &cxl_decoder_root_type;
}
EXPORT_SYMBOL_NS_GPL(is_root_decoder, CXL);
bool is_switch_decoder(struct device *dev)
{
return is_root_decoder(dev) || dev->type == &cxl_decoder_switch_type;
}
EXPORT_SYMBOL_NS_GPL(is_switch_decoder, CXL);
struct cxl_decoder *to_cxl_decoder(struct device *dev)
{
if (dev_WARN_ONCE(dev,
!is_switch_decoder(dev) && !is_endpoint_decoder(dev),
"not a cxl_decoder device\n"))
return NULL;
return container_of(dev, struct cxl_decoder, dev);
}
EXPORT_SYMBOL_NS_GPL(to_cxl_decoder, CXL);
struct cxl_endpoint_decoder *to_cxl_endpoint_decoder(struct device *dev)
{
if (dev_WARN_ONCE(dev, !is_endpoint_decoder(dev),
"not a cxl_endpoint_decoder device\n"))
return NULL;
return container_of(dev, struct cxl_endpoint_decoder, cxld.dev);
}
EXPORT_SYMBOL_NS_GPL(to_cxl_endpoint_decoder, CXL);
struct cxl_switch_decoder *to_cxl_switch_decoder(struct device *dev)
{
if (dev_WARN_ONCE(dev, !is_switch_decoder(dev),
"not a cxl_switch_decoder device\n"))
return NULL;
return container_of(dev, struct cxl_switch_decoder, cxld.dev);
}
EXPORT_SYMBOL_NS_GPL(to_cxl_switch_decoder, CXL);
static void cxl_ep_release(struct cxl_ep *ep)
{
put_device(ep->ep);
kfree(ep);
}
static void cxl_ep_remove(struct cxl_port *port, struct cxl_ep *ep)
{
if (!ep)
return;
xa_erase(&port->endpoints, (unsigned long) ep->ep);
cxl_ep_release(ep);
}
static void cxl_port_release(struct device *dev)
{
struct cxl_port *port = to_cxl_port(dev);
unsigned long index;
struct cxl_ep *ep;
xa_for_each(&port->endpoints, index, ep)
cxl_ep_remove(port, ep);
xa_destroy(&port->endpoints);
xa_destroy(&port->dports);
xa_destroy(&port->regions);
ida_free(&cxl_port_ida, port->id);
if (is_cxl_root(port))
kfree(to_cxl_root(port));
else
kfree(port);
}
static ssize_t decoders_committed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxl_port *port = to_cxl_port(dev);
int rc;
down_read(&cxl_region_rwsem);
rc = sysfs_emit(buf, "%d\n", cxl_num_decoders_committed(port));
up_read(&cxl_region_rwsem);
return rc;
}
static DEVICE_ATTR_RO(decoders_committed);
static struct attribute *cxl_port_attrs[] = {
&dev_attr_decoders_committed.attr,
NULL,
};
static struct attribute_group cxl_port_attribute_group = {
.attrs = cxl_port_attrs,
};
static const struct attribute_group *cxl_port_attribute_groups[] = {
&cxl_base_attribute_group,
&cxl_port_attribute_group,
NULL,
};
static const struct device_type cxl_port_type = {
.name = "cxl_port",
.release = cxl_port_release,
.groups = cxl_port_attribute_groups,
};
bool is_cxl_port(const struct device *dev)
{
return dev->type == &cxl_port_type;
}
EXPORT_SYMBOL_NS_GPL(is_cxl_port, CXL);
struct cxl_port *to_cxl_port(const struct device *dev)
{
if (dev_WARN_ONCE(dev, dev->type != &cxl_port_type,
"not a cxl_port device\n"))
return NULL;
return container_of(dev, struct cxl_port, dev);
}
EXPORT_SYMBOL_NS_GPL(to_cxl_port, CXL);
static void unregister_port(void *_port)
{
struct cxl_port *port = _port;
struct cxl_port *parent;
struct device *lock_dev;
if (is_cxl_root(port))
parent = NULL;
else
parent = to_cxl_port(port->dev.parent);
/*
* CXL root port's and the first level of ports are unregistered
* under the platform firmware device lock, all other ports are
* unregistered while holding their parent port lock.
*/
if (!parent)
lock_dev = port->uport_dev;
else if (is_cxl_root(parent))
lock_dev = parent->uport_dev;
else
lock_dev = &parent->dev;
device_lock_assert(lock_dev);
port->dead = true;
device_unregister(&port->dev);
}
static void cxl_unlink_uport(void *_port)
{
struct cxl_port *port = _port;
sysfs_remove_link(&port->dev.kobj, "uport");
}
static int devm_cxl_link_uport(struct device *host, struct cxl_port *port)
{
int rc;
rc = sysfs_create_link(&port->dev.kobj, &port->uport_dev->kobj,
"uport");
if (rc)
return rc;
return devm_add_action_or_reset(host, cxl_unlink_uport, port);
}
static void cxl_unlink_parent_dport(void *_port)
{
struct cxl_port *port = _port;
sysfs_remove_link(&port->dev.kobj, "parent_dport");
}
static int devm_cxl_link_parent_dport(struct device *host,
struct cxl_port *port,
struct cxl_dport *parent_dport)
{
int rc;
if (!parent_dport)
return 0;
rc = sysfs_create_link(&port->dev.kobj, &parent_dport->dport_dev->kobj,
"parent_dport");
if (rc)
return rc;
return devm_add_action_or_reset(host, cxl_unlink_parent_dport, port);
}
static struct lock_class_key cxl_port_key;
static struct cxl_port *cxl_port_alloc(struct device *uport_dev,
struct cxl_dport *parent_dport)
{
struct cxl_root *cxl_root __free(kfree) = NULL;
struct cxl_port *port, *_port __free(kfree) = NULL;
struct device *dev;
int rc;
/* No parent_dport, root cxl_port */
if (!parent_dport) {
cxl_root = kzalloc(sizeof(*cxl_root), GFP_KERNEL);
if (!cxl_root)
return ERR_PTR(-ENOMEM);
} else {
_port = kzalloc(sizeof(*port), GFP_KERNEL);
if (!_port)
return ERR_PTR(-ENOMEM);
}
rc = ida_alloc(&cxl_port_ida, GFP_KERNEL);
if (rc < 0)
return ERR_PTR(rc);
if (cxl_root)
port = &no_free_ptr(cxl_root)->port;
else
port = no_free_ptr(_port);
port->id = rc;
port->uport_dev = uport_dev;
/*
* The top-level cxl_port "cxl_root" does not have a cxl_port as
* its parent and it does not have any corresponding component
* registers as its decode is described by a fixed platform
* description.
*/
dev = &port->dev;
if (parent_dport) {
struct cxl_port *parent_port = parent_dport->port;
struct cxl_port *iter;
dev->parent = &parent_port->dev;
port->depth = parent_port->depth + 1;
port->parent_dport = parent_dport;
/*
* walk to the host bridge, or the first ancestor that knows
* the host bridge
*/
iter = port;
while (!iter->host_bridge &&
!is_cxl_root(to_cxl_port(iter->dev.parent)))
iter = to_cxl_port(iter->dev.parent);
if (iter->host_bridge)
port->host_bridge = iter->host_bridge;
else if (parent_dport->rch)
port->host_bridge = parent_dport->dport_dev;
else
port->host_bridge = iter->uport_dev;
dev_dbg(uport_dev, "host-bridge: %s\n",
dev_name(port->host_bridge));
} else
dev->parent = uport_dev;
ida_init(&port->decoder_ida);
port->hdm_end = -1;
port->commit_end = -1;
xa_init(&port->dports);
xa_init(&port->endpoints);
xa_init(&port->regions);
device_initialize(dev);
lockdep_set_class_and_subclass(&dev->mutex, &cxl_port_key, port->depth);
device_set_pm_not_required(dev);
dev->bus = &cxl_bus_type;
dev->type = &cxl_port_type;
return port;
}
static int cxl_setup_comp_regs(struct device *host, struct cxl_register_map *map,
resource_size_t component_reg_phys)
{
*map = (struct cxl_register_map) {
.host = host,
.reg_type = CXL_REGLOC_RBI_EMPTY,
.resource = component_reg_phys,
};
if (component_reg_phys == CXL_RESOURCE_NONE)
return 0;
map->reg_type = CXL_REGLOC_RBI_COMPONENT;
map->max_size = CXL_COMPONENT_REG_BLOCK_SIZE;
return cxl_setup_regs(map);
}
static int cxl_port_setup_regs(struct cxl_port *port,
resource_size_t component_reg_phys)
{
if (dev_is_platform(port->uport_dev))
return 0;
return cxl_setup_comp_regs(&port->dev, &port->reg_map,
component_reg_phys);
}
static int cxl_dport_setup_regs(struct device *host, struct cxl_dport *dport,
resource_size_t component_reg_phys)
{
int rc;
if (dev_is_platform(dport->dport_dev))
return 0;
/*
* use @dport->dport_dev for the context for error messages during
* register probing, and fixup @host after the fact, since @host may be
* NULL.
*/
rc = cxl_setup_comp_regs(dport->dport_dev, &dport->reg_map,
component_reg_phys);
dport->reg_map.host = host;
return rc;
}
DEFINE_SHOW_ATTRIBUTE(einj_cxl_available_error_type);
static int cxl_einj_inject(void *data, u64 type)
{
struct cxl_dport *dport = data;
if (dport->rch)
return einj_cxl_inject_rch_error(dport->rcrb.base, type);
return einj_cxl_inject_error(to_pci_dev(dport->dport_dev), type);
}
DEFINE_DEBUGFS_ATTRIBUTE(cxl_einj_inject_fops, NULL, cxl_einj_inject,
"0x%llx\n");
static void cxl_debugfs_create_dport_dir(struct cxl_dport *dport)
{
struct dentry *dir;
if (!einj_cxl_is_initialized())
return;
/*
* dport_dev needs to be a PCIe port for CXL 2.0+ ports because
* EINJ expects a dport SBDF to be specified for 2.0 error injection.
*/
if (!dport->rch && !dev_is_pci(dport->dport_dev))
return;
dir = cxl_debugfs_create_dir(dev_name(dport->dport_dev));
debugfs_create_file("einj_inject", 0200, dir, dport,
&cxl_einj_inject_fops);
}
static int cxl_port_add(struct cxl_port *port,
resource_size_t component_reg_phys,
struct cxl_dport *parent_dport)
{
struct device *dev __free(put_device) = &port->dev;
int rc;
if (is_cxl_memdev(port->uport_dev)) {
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
rc = dev_set_name(dev, "endpoint%d", port->id);
if (rc)
return rc;
/*
* The endpoint driver already enumerated the component and RAS
* registers. Reuse that enumeration while prepping them to be
* mapped by the cxl_port driver.
*/
port->reg_map = cxlds->reg_map;
port->reg_map.host = &port->dev;
cxlmd->endpoint = port;
} else if (parent_dport) {
rc = dev_set_name(dev, "port%d", port->id);
if (rc)
return rc;
rc = cxl_port_setup_regs(port, component_reg_phys);
if (rc)
return rc;
} else {
rc = dev_set_name(dev, "root%d", port->id);
if (rc)
return rc;
}
rc = device_add(dev);
if (rc)
return rc;
/* Inhibit the cleanup function invoked */
dev = NULL;
return 0;
}
static struct cxl_port *__devm_cxl_add_port(struct device *host,
struct device *uport_dev,
resource_size_t component_reg_phys,
struct cxl_dport *parent_dport)
{
struct cxl_port *port;
int rc;
port = cxl_port_alloc(uport_dev, parent_dport);
if (IS_ERR(port))
return port;
rc = cxl_port_add(port, component_reg_phys, parent_dport);
if (rc)
return ERR_PTR(rc);
rc = devm_add_action_or_reset(host, unregister_port, port);
if (rc)
return ERR_PTR(rc);
rc = devm_cxl_link_uport(host, port);
if (rc)
return ERR_PTR(rc);
rc = devm_cxl_link_parent_dport(host, port, parent_dport);
if (rc)
return ERR_PTR(rc);
if (parent_dport && dev_is_pci(uport_dev))
port->pci_latency = cxl_pci_get_latency(to_pci_dev(uport_dev));
return port;
}
/**
* devm_cxl_add_port - register a cxl_port in CXL memory decode hierarchy
* @host: host device for devm operations
* @uport_dev: "physical" device implementing this upstream port
* @component_reg_phys: (optional) for configurable cxl_port instances
* @parent_dport: next hop up in the CXL memory decode hierarchy
*/
struct cxl_port *devm_cxl_add_port(struct device *host,
struct device *uport_dev,
resource_size_t component_reg_phys,
struct cxl_dport *parent_dport)
{
struct cxl_port *port, *parent_port;
port = __devm_cxl_add_port(host, uport_dev, component_reg_phys,
parent_dport);
parent_port = parent_dport ? parent_dport->port : NULL;
if (IS_ERR(port)) {
dev_dbg(uport_dev, "Failed to add%s%s%s: %ld\n",
parent_port ? " port to " : "",
parent_port ? dev_name(&parent_port->dev) : "",
parent_port ? "" : " root port",
PTR_ERR(port));
} else {
dev_dbg(uport_dev, "%s added%s%s%s\n",
dev_name(&port->dev),
parent_port ? " to " : "",
parent_port ? dev_name(&parent_port->dev) : "",
parent_port ? "" : " (root port)");
}
return port;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_add_port, CXL);
struct cxl_root *devm_cxl_add_root(struct device *host,
const struct cxl_root_ops *ops)
{
struct cxl_root *cxl_root;
struct cxl_port *port;
port = devm_cxl_add_port(host, host, CXL_RESOURCE_NONE, NULL);
if (IS_ERR(port))
return ERR_CAST(port);
cxl_root = to_cxl_root(port);
cxl_root->ops = ops;
return cxl_root;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_add_root, CXL);
struct pci_bus *cxl_port_to_pci_bus(struct cxl_port *port)
{
/* There is no pci_bus associated with a CXL platform-root port */
if (is_cxl_root(port))
return NULL;
if (dev_is_pci(port->uport_dev)) {
struct pci_dev *pdev = to_pci_dev(port->uport_dev);
return pdev->subordinate;
}
return xa_load(&cxl_root_buses, (unsigned long)port->uport_dev);
}
EXPORT_SYMBOL_NS_GPL(cxl_port_to_pci_bus, CXL);
static void unregister_pci_bus(void *uport_dev)
{
xa_erase(&cxl_root_buses, (unsigned long)uport_dev);
}
int devm_cxl_register_pci_bus(struct device *host, struct device *uport_dev,
struct pci_bus *bus)
{
int rc;
if (dev_is_pci(uport_dev))
return -EINVAL;
rc = xa_insert(&cxl_root_buses, (unsigned long)uport_dev, bus,
GFP_KERNEL);
if (rc)
return rc;
return devm_add_action_or_reset(host, unregister_pci_bus, uport_dev);
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_register_pci_bus, CXL);
static bool dev_is_cxl_root_child(struct device *dev)
{
struct cxl_port *port, *parent;
if (!is_cxl_port(dev))
return false;
port = to_cxl_port(dev);
if (is_cxl_root(port))
return false;
parent = to_cxl_port(port->dev.parent);
if (is_cxl_root(parent))
return true;
return false;
}
struct cxl_root *find_cxl_root(struct cxl_port *port)
{
struct cxl_port *iter = port;
while (iter && !is_cxl_root(iter))
iter = to_cxl_port(iter->dev.parent);
if (!iter)
return NULL;
get_device(&iter->dev);
return to_cxl_root(iter);
}
EXPORT_SYMBOL_NS_GPL(find_cxl_root, CXL);
void put_cxl_root(struct cxl_root *cxl_root)
{
if (!cxl_root)
return;
put_device(&cxl_root->port.dev);
}
EXPORT_SYMBOL_NS_GPL(put_cxl_root, CXL);
static struct cxl_dport *find_dport(struct cxl_port *port, int id)
{
struct cxl_dport *dport;
unsigned long index;
device_lock_assert(&port->dev);
xa_for_each(&port->dports, index, dport)
if (dport->port_id == id)
return dport;
return NULL;
}
static int add_dport(struct cxl_port *port, struct cxl_dport *dport)
{
struct cxl_dport *dup;
int rc;
device_lock_assert(&port->dev);
dup = find_dport(port, dport->port_id);
if (dup) {
dev_err(&port->dev,
"unable to add dport%d-%s non-unique port id (%s)\n",
dport->port_id, dev_name(dport->dport_dev),
dev_name(dup->dport_dev));
return -EBUSY;
}
rc = xa_insert(&port->dports, (unsigned long)dport->dport_dev, dport,
GFP_KERNEL);
if (rc)
return rc;
port->nr_dports++;
return 0;
}
/*
* Since root-level CXL dports cannot be enumerated by PCI they are not
* enumerated by the common port driver that acquires the port lock over
* dport add/remove. Instead, root dports are manually added by a
* platform driver and cond_cxl_root_lock() is used to take the missing
* port lock in that case.
*/
static void cond_cxl_root_lock(struct cxl_port *port)
{
if (is_cxl_root(port))
device_lock(&port->dev);
}
static void cond_cxl_root_unlock(struct cxl_port *port)
{
if (is_cxl_root(port))
device_unlock(&port->dev);
}
static void cxl_dport_remove(void *data)
{
struct cxl_dport *dport = data;
struct cxl_port *port = dport->port;
xa_erase(&port->dports, (unsigned long) dport->dport_dev);
put_device(dport->dport_dev);
}
static void cxl_dport_unlink(void *data)
{
struct cxl_dport *dport = data;
struct cxl_port *port = dport->port;
char link_name[CXL_TARGET_STRLEN];
sprintf(link_name, "dport%d", dport->port_id);
sysfs_remove_link(&port->dev.kobj, link_name);
}
static struct cxl_dport *
__devm_cxl_add_dport(struct cxl_port *port, struct device *dport_dev,
int port_id, resource_size_t component_reg_phys,
resource_size_t rcrb)
{
char link_name[CXL_TARGET_STRLEN];
struct cxl_dport *dport;
struct device *host;
int rc;
if (is_cxl_root(port))
host = port->uport_dev;
else
host = &port->dev;
if (!host->driver) {
dev_WARN_ONCE(&port->dev, 1, "dport:%s bad devm context\n",
dev_name(dport_dev));
return ERR_PTR(-ENXIO);
}
if (snprintf(link_name, CXL_TARGET_STRLEN, "dport%d", port_id) >=
CXL_TARGET_STRLEN)
return ERR_PTR(-EINVAL);
dport = devm_kzalloc(host, sizeof(*dport), GFP_KERNEL);
if (!dport)
return ERR_PTR(-ENOMEM);
dport->dport_dev = dport_dev;
dport->port_id = port_id;
dport->port = port;
if (rcrb == CXL_RESOURCE_NONE) {
rc = cxl_dport_setup_regs(&port->dev, dport,
component_reg_phys);
if (rc)
return ERR_PTR(rc);
} else {
dport->rcrb.base = rcrb;
component_reg_phys = __rcrb_to_component(dport_dev, &dport->rcrb,
CXL_RCRB_DOWNSTREAM);
if (component_reg_phys == CXL_RESOURCE_NONE) {
dev_warn(dport_dev, "Invalid Component Registers in RCRB");
return ERR_PTR(-ENXIO);
}
/*
* RCH @dport is not ready to map until associated with its
* memdev
*/
rc = cxl_dport_setup_regs(NULL, dport, component_reg_phys);
if (rc)
return ERR_PTR(rc);
dport->rch = true;
}
if (component_reg_phys != CXL_RESOURCE_NONE)
dev_dbg(dport_dev, "Component Registers found for dport: %pa\n",
&component_reg_phys);
cond_cxl_root_lock(port);
rc = add_dport(port, dport);
cond_cxl_root_unlock(port);
if (rc)
return ERR_PTR(rc);
get_device(dport_dev);
rc = devm_add_action_or_reset(host, cxl_dport_remove, dport);
if (rc)
return ERR_PTR(rc);
rc = sysfs_create_link(&port->dev.kobj, &dport_dev->kobj, link_name);
if (rc)
return ERR_PTR(rc);
rc = devm_add_action_or_reset(host, cxl_dport_unlink, dport);
if (rc)
return ERR_PTR(rc);
if (dev_is_pci(dport_dev))
dport->link_latency = cxl_pci_get_latency(to_pci_dev(dport_dev));
cxl_debugfs_create_dport_dir(dport);
return dport;
}
/**
* devm_cxl_add_dport - append VH downstream port data to a cxl_port
* @port: the cxl_port that references this dport
* @dport_dev: firmware or PCI device representing the dport
* @port_id: identifier for this dport in a decoder's target list
* @component_reg_phys: optional location of CXL component registers
*
* Note that dports are appended to the devm release action's of the
* either the port's host (for root ports), or the port itself (for
* switch ports)
*/
struct cxl_dport *devm_cxl_add_dport(struct cxl_port *port,
struct device *dport_dev, int port_id,
resource_size_t component_reg_phys)
{
struct cxl_dport *dport;
dport = __devm_cxl_add_dport(port, dport_dev, port_id,
component_reg_phys, CXL_RESOURCE_NONE);
if (IS_ERR(dport)) {
dev_dbg(dport_dev, "failed to add dport to %s: %ld\n",
dev_name(&port->dev), PTR_ERR(dport));
} else {
dev_dbg(dport_dev, "dport added to %s\n",
dev_name(&port->dev));
}
return dport;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_add_dport, CXL);
/**
* devm_cxl_add_rch_dport - append RCH downstream port data to a cxl_port
* @port: the cxl_port that references this dport
* @dport_dev: firmware or PCI device representing the dport
* @port_id: identifier for this dport in a decoder's target list
* @rcrb: mandatory location of a Root Complex Register Block
*
* See CXL 3.0 9.11.8 CXL Devices Attached to an RCH
*/
struct cxl_dport *devm_cxl_add_rch_dport(struct cxl_port *port,
struct device *dport_dev, int port_id,
resource_size_t rcrb)
{
struct cxl_dport *dport;
if (rcrb == CXL_RESOURCE_NONE) {
dev_dbg(&port->dev, "failed to add RCH dport, missing RCRB\n");
return ERR_PTR(-EINVAL);
}
dport = __devm_cxl_add_dport(port, dport_dev, port_id,
CXL_RESOURCE_NONE, rcrb);
if (IS_ERR(dport)) {
dev_dbg(dport_dev, "failed to add RCH dport to %s: %ld\n",
dev_name(&port->dev), PTR_ERR(dport));
} else {
dev_dbg(dport_dev, "RCH dport added to %s\n",
dev_name(&port->dev));
}
return dport;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_add_rch_dport, CXL);
static int add_ep(struct cxl_ep *new)
{
struct cxl_port *port = new->dport->port;
guard(device)(&port->dev);
if (port->dead)
return -ENXIO;
return xa_insert(&port->endpoints, (unsigned long)new->ep,
new, GFP_KERNEL);
}
/**
* cxl_add_ep - register an endpoint's interest in a port
* @dport: the dport that routes to @ep_dev
* @ep_dev: device representing the endpoint
*
* Intermediate CXL ports are scanned based on the arrival of endpoints.
* When those endpoints depart the port can be destroyed once all
* endpoints that care about that port have been removed.
*/
static int cxl_add_ep(struct cxl_dport *dport, struct device *ep_dev)
{
struct cxl_ep *ep;
int rc;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->ep = get_device(ep_dev);
ep->dport = dport;
rc = add_ep(ep);
if (rc)
cxl_ep_release(ep);
return rc;
}
struct cxl_find_port_ctx {
const struct device *dport_dev;
const struct cxl_port *parent_port;
struct cxl_dport **dport;
};
static int match_port_by_dport(struct device *dev, const void *data)
{
const struct cxl_find_port_ctx *ctx = data;
struct cxl_dport *dport;
struct cxl_port *port;
if (!is_cxl_port(dev))
return 0;
if (ctx->parent_port && dev->parent != &ctx->parent_port->dev)
return 0;
port = to_cxl_port(dev);
dport = cxl_find_dport_by_dev(port, ctx->dport_dev);
if (ctx->dport)
*ctx->dport = dport;
return dport != NULL;
}
static struct cxl_port *__find_cxl_port(struct cxl_find_port_ctx *ctx)
{
struct device *dev;
if (!ctx->dport_dev)
return NULL;
dev = bus_find_device(&cxl_bus_type, NULL, ctx, match_port_by_dport);
if (dev)
return to_cxl_port(dev);
return NULL;
}
static struct cxl_port *find_cxl_port(struct device *dport_dev,
struct cxl_dport **dport)
{
struct cxl_find_port_ctx ctx = {
.dport_dev = dport_dev,
.dport = dport,
};
struct cxl_port *port;
port = __find_cxl_port(&ctx);
return port;
}
static struct cxl_port *find_cxl_port_at(struct cxl_port *parent_port,
struct device *dport_dev,
struct cxl_dport **dport)
{
struct cxl_find_port_ctx ctx = {
.dport_dev = dport_dev,
.parent_port = parent_port,
.dport = dport,
};
struct cxl_port *port;
port = __find_cxl_port(&ctx);
return port;
}
/*
* All users of grandparent() are using it to walk PCIe-like switch port
* hierarchy. A PCIe switch is comprised of a bridge device representing the
* upstream switch port and N bridges representing downstream switch ports. When
* bridges stack the grand-parent of a downstream switch port is another
* downstream switch port in the immediate ancestor switch.
*/
static struct device *grandparent(struct device *dev)
{
if (dev && dev->parent)
return dev->parent->parent;
return NULL;
}
static struct device *endpoint_host(struct cxl_port *endpoint)
{
struct cxl_port *port = to_cxl_port(endpoint->dev.parent);
if (is_cxl_root(port))
return port->uport_dev;
return &port->dev;
}
static void delete_endpoint(void *data)
{
struct cxl_memdev *cxlmd = data;
struct cxl_port *endpoint = cxlmd->endpoint;
struct device *host = endpoint_host(endpoint);
scoped_guard(device, host) {
if (host->driver && !endpoint->dead) {
devm_release_action(host, cxl_unlink_parent_dport, endpoint);
devm_release_action(host, cxl_unlink_uport, endpoint);
devm_release_action(host, unregister_port, endpoint);
}
cxlmd->endpoint = NULL;
}
put_device(&endpoint->dev);
put_device(host);
}
int cxl_endpoint_autoremove(struct cxl_memdev *cxlmd, struct cxl_port *endpoint)
{
struct device *host = endpoint_host(endpoint);
struct device *dev = &cxlmd->dev;
get_device(host);
get_device(&endpoint->dev);
cxlmd->depth = endpoint->depth;
return devm_add_action_or_reset(dev, delete_endpoint, cxlmd);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_autoremove, CXL);
/*
* The natural end of life of a non-root 'cxl_port' is when its parent port goes
* through a ->remove() event ("top-down" unregistration). The unnatural trigger
* for a port to be unregistered is when all memdevs beneath that port have gone
* through ->remove(). This "bottom-up" removal selectively removes individual
* child ports manually. This depends on devm_cxl_add_port() to not change is
* devm action registration order, and for dports to have already been
* destroyed by reap_dports().
*/
static void delete_switch_port(struct cxl_port *port)
{
devm_release_action(port->dev.parent, cxl_unlink_parent_dport, port);
devm_release_action(port->dev.parent, cxl_unlink_uport, port);
devm_release_action(port->dev.parent, unregister_port, port);
}
static void reap_dports(struct cxl_port *port)
{
struct cxl_dport *dport;
unsigned long index;
device_lock_assert(&port->dev);
xa_for_each(&port->dports, index, dport) {
devm_release_action(&port->dev, cxl_dport_unlink, dport);
devm_release_action(&port->dev, cxl_dport_remove, dport);
devm_kfree(&port->dev, dport);
}
}
struct detach_ctx {
struct cxl_memdev *cxlmd;
int depth;
};
static int port_has_memdev(struct device *dev, const void *data)
{
const struct detach_ctx *ctx = data;
struct cxl_port *port;
if (!is_cxl_port(dev))
return 0;
port = to_cxl_port(dev);
if (port->depth != ctx->depth)
return 0;
return !!cxl_ep_load(port, ctx->cxlmd);
}
static void cxl_detach_ep(void *data)
{
struct cxl_memdev *cxlmd = data;
for (int i = cxlmd->depth - 1; i >= 1; i--) {
struct cxl_port *port, *parent_port;
struct detach_ctx ctx = {
.cxlmd = cxlmd,
.depth = i,
};
struct cxl_ep *ep;
bool died = false;
struct device *dev __free(put_device) =
bus_find_device(&cxl_bus_type, NULL, &ctx, port_has_memdev);
if (!dev)
continue;
port = to_cxl_port(dev);
parent_port = to_cxl_port(port->dev.parent);
device_lock(&parent_port->dev);
device_lock(&port->dev);
ep = cxl_ep_load(port, cxlmd);
dev_dbg(&cxlmd->dev, "disconnect %s from %s\n",
ep ? dev_name(ep->ep) : "", dev_name(&port->dev));
cxl_ep_remove(port, ep);
if (ep && !port->dead && xa_empty(&port->endpoints) &&
!is_cxl_root(parent_port) && parent_port->dev.driver) {
/*
* This was the last ep attached to a dynamically
* enumerated port. Block new cxl_add_ep() and garbage
* collect the port.
*/
died = true;
port->dead = true;
reap_dports(port);
}
device_unlock(&port->dev);
if (died) {
dev_dbg(&cxlmd->dev, "delete %s\n",
dev_name(&port->dev));
delete_switch_port(port);
}
device_unlock(&parent_port->dev);
}
}
static resource_size_t find_component_registers(struct device *dev)
{
struct cxl_register_map map;
struct pci_dev *pdev;
/*
* Theoretically, CXL component registers can be hosted on a
* non-PCI device, in practice, only cxl_test hits this case.
*/
if (!dev_is_pci(dev))
return CXL_RESOURCE_NONE;
pdev = to_pci_dev(dev);
cxl_find_regblock(pdev, CXL_REGLOC_RBI_COMPONENT, &map);
return map.resource;
}
static int add_port_attach_ep(struct cxl_memdev *cxlmd,
struct device *uport_dev,
struct device *dport_dev)
{
struct device *dparent = grandparent(dport_dev);
struct cxl_dport *dport, *parent_dport;
resource_size_t component_reg_phys;
int rc;
if (!dparent) {
/*
* The iteration reached the topology root without finding the
* CXL-root 'cxl_port' on a previous iteration, fail for now to
* be re-probed after platform driver attaches.
*/
dev_dbg(&cxlmd->dev, "%s is a root dport\n",
dev_name(dport_dev));
return -ENXIO;
}
struct cxl_port *parent_port __free(put_cxl_port) =
find_cxl_port(dparent, &parent_dport);
if (!parent_port) {
/* iterate to create this parent_port */
return -EAGAIN;
}
/*
* Definition with __free() here to keep the sequence of
* dereferencing the device of the port before the parent_port releasing.
*/
struct cxl_port *port __free(put_cxl_port) = NULL;
scoped_guard(device, &parent_port->dev) {
if (!parent_port->dev.driver) {
dev_warn(&cxlmd->dev,
"port %s:%s disabled, failed to enumerate CXL.mem\n",
dev_name(&parent_port->dev), dev_name(uport_dev));
return -ENXIO;
}
port = find_cxl_port_at(parent_port, dport_dev, &dport);
if (!port) {
component_reg_phys = find_component_registers(uport_dev);
port = devm_cxl_add_port(&parent_port->dev, uport_dev,
component_reg_phys, parent_dport);
if (IS_ERR(port))
return PTR_ERR(port);
/* retry find to pick up the new dport information */
port = find_cxl_port_at(parent_port, dport_dev, &dport);
if (!port)
return -ENXIO;
}
}
dev_dbg(&cxlmd->dev, "add to new port %s:%s\n",
dev_name(&port->dev), dev_name(port->uport_dev));
rc = cxl_add_ep(dport, &cxlmd->dev);
if (rc == -EBUSY) {
/*
* "can't" happen, but this error code means
* something to the caller, so translate it.
*/
rc = -ENXIO;
}
return rc;
}
int devm_cxl_enumerate_ports(struct cxl_memdev *cxlmd)
{
struct device *dev = &cxlmd->dev;
struct device *iter;
int rc;
/*
* Skip intermediate port enumeration in the RCH case, there
* are no ports in between a host bridge and an endpoint.
*/
if (cxlmd->cxlds->rcd)
return 0;
rc = devm_add_action_or_reset(&cxlmd->dev, cxl_detach_ep, cxlmd);
if (rc)
return rc;
/*
* Scan for and add all cxl_ports in this device's ancestry.
* Repeat until no more ports are added. Abort if a port add
* attempt fails.
*/
retry:
for (iter = dev; iter; iter = grandparent(iter)) {
struct device *dport_dev = grandparent(iter);
struct device *uport_dev;
struct cxl_dport *dport;
/*
* The terminal "grandparent" in PCI is NULL and @platform_bus
* for platform devices
*/
if (!dport_dev || dport_dev == &platform_bus)
return 0;
uport_dev = dport_dev->parent;
if (!uport_dev) {
dev_warn(dev, "at %s no parent for dport: %s\n",
dev_name(iter), dev_name(dport_dev));
return -ENXIO;
}
dev_dbg(dev, "scan: iter: %s dport_dev: %s parent: %s\n",
dev_name(iter), dev_name(dport_dev),
dev_name(uport_dev));
struct cxl_port *port __free(put_cxl_port) =
find_cxl_port(dport_dev, &dport);
if (port) {
dev_dbg(&cxlmd->dev,
"found already registered port %s:%s\n",
dev_name(&port->dev),
dev_name(port->uport_dev));
rc = cxl_add_ep(dport, &cxlmd->dev);
/*
* If the endpoint already exists in the port's list,
* that's ok, it was added on a previous pass.
* Otherwise, retry in add_port_attach_ep() after taking
* the parent_port lock as the current port may be being
* reaped.
*/
if (rc && rc != -EBUSY)
return rc;
/* Any more ports to add between this one and the root? */
if (!dev_is_cxl_root_child(&port->dev))
continue;
return 0;
}
rc = add_port_attach_ep(cxlmd, uport_dev, dport_dev);
/* port missing, try to add parent */
if (rc == -EAGAIN)
continue;
/* failed to add ep or port */
if (rc)
return rc;
/* port added, new descendants possible, start over */
goto retry;
}
return 0;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_enumerate_ports, CXL);
struct cxl_port *cxl_pci_find_port(struct pci_dev *pdev,
struct cxl_dport **dport)
{
return find_cxl_port(pdev->dev.parent, dport);
}
EXPORT_SYMBOL_NS_GPL(cxl_pci_find_port, CXL);
struct cxl_port *cxl_mem_find_port(struct cxl_memdev *cxlmd,
struct cxl_dport **dport)
{
return find_cxl_port(grandparent(&cxlmd->dev), dport);
}
EXPORT_SYMBOL_NS_GPL(cxl_mem_find_port, CXL);
static int decoder_populate_targets(struct cxl_switch_decoder *cxlsd,
struct cxl_port *port, int *target_map)
{
int i;
if (!target_map)
return 0;
device_lock_assert(&port->dev);
if (xa_empty(&port->dports))
return -EINVAL;
guard(rwsem_write)(&cxl_region_rwsem);
for (i = 0; i < cxlsd->cxld.interleave_ways; i++) {
struct cxl_dport *dport = find_dport(port, target_map[i]);
if (!dport)
return -ENXIO;
cxlsd->target[i] = dport;
}
return 0;
}
static struct lock_class_key cxl_decoder_key;
/**
* cxl_decoder_init - Common decoder setup / initialization
* @port: owning port of this decoder
* @cxld: common decoder properties to initialize
*
* A port may contain one or more decoders. Each of those decoders
* enable some address space for CXL.mem utilization. A decoder is
* expected to be configured by the caller before registering via
* cxl_decoder_add()
*/
static int cxl_decoder_init(struct cxl_port *port, struct cxl_decoder *cxld)
{
struct device *dev;
int rc;
rc = ida_alloc(&port->decoder_ida, GFP_KERNEL);
if (rc < 0)
return rc;
/* need parent to stick around to release the id */
get_device(&port->dev);
cxld->id = rc;
dev = &cxld->dev;
device_initialize(dev);
lockdep_set_class(&dev->mutex, &cxl_decoder_key);
device_set_pm_not_required(dev);
dev->parent = &port->dev;
dev->bus = &cxl_bus_type;
/* Pre initialize an "empty" decoder */
cxld->interleave_ways = 1;
cxld->interleave_granularity = PAGE_SIZE;
cxld->target_type = CXL_DECODER_HOSTONLYMEM;
cxld->hpa_range = (struct range) {
.start = 0,
.end = -1,
};
return 0;
}
static int cxl_switch_decoder_init(struct cxl_port *port,
struct cxl_switch_decoder *cxlsd,
int nr_targets)
{
if (nr_targets > CXL_DECODER_MAX_INTERLEAVE)
return -EINVAL;
cxlsd->nr_targets = nr_targets;
return cxl_decoder_init(port, &cxlsd->cxld);
}
/**
* cxl_root_decoder_alloc - Allocate a root level decoder
* @port: owning CXL root of this decoder
* @nr_targets: static number of downstream targets
*
* Return: A new cxl decoder to be registered by cxl_decoder_add(). A
* 'CXL root' decoder is one that decodes from a top-level / static platform
* firmware description of CXL resources into a CXL standard decode
* topology.
*/
struct cxl_root_decoder *cxl_root_decoder_alloc(struct cxl_port *port,
unsigned int nr_targets)
{
struct cxl_root_decoder *cxlrd;
struct cxl_switch_decoder *cxlsd;
struct cxl_decoder *cxld;
int rc;
if (!is_cxl_root(port))
return ERR_PTR(-EINVAL);
cxlrd = kzalloc(struct_size(cxlrd, cxlsd.target, nr_targets),
GFP_KERNEL);
if (!cxlrd)
return ERR_PTR(-ENOMEM);
cxlsd = &cxlrd->cxlsd;
rc = cxl_switch_decoder_init(port, cxlsd, nr_targets);
if (rc) {
kfree(cxlrd);
return ERR_PTR(rc);
}
mutex_init(&cxlrd->range_lock);
cxld = &cxlsd->cxld;
cxld->dev.type = &cxl_decoder_root_type;
/*
* cxl_root_decoder_release() special cases negative ids to
* detect memregion_alloc() failures.
*/
atomic_set(&cxlrd->region_id, -1);
rc = memregion_alloc(GFP_KERNEL);
if (rc < 0) {
put_device(&cxld->dev);
return ERR_PTR(rc);
}
atomic_set(&cxlrd->region_id, rc);
cxlrd->qos_class = CXL_QOS_CLASS_INVALID;
return cxlrd;
}
EXPORT_SYMBOL_NS_GPL(cxl_root_decoder_alloc, CXL);
/**
* cxl_switch_decoder_alloc - Allocate a switch level decoder
* @port: owning CXL switch port of this decoder
* @nr_targets: max number of dynamically addressable downstream targets
*
* Return: A new cxl decoder to be registered by cxl_decoder_add(). A
* 'switch' decoder is any decoder that can be enumerated by PCIe
* topology and the HDM Decoder Capability. This includes the decoders
* that sit between Switch Upstream Ports / Switch Downstream Ports and
* Host Bridges / Root Ports.
*/
struct cxl_switch_decoder *cxl_switch_decoder_alloc(struct cxl_port *port,
unsigned int nr_targets)
{
struct cxl_switch_decoder *cxlsd;
struct cxl_decoder *cxld;
int rc;
if (is_cxl_root(port) || is_cxl_endpoint(port))
return ERR_PTR(-EINVAL);
cxlsd = kzalloc(struct_size(cxlsd, target, nr_targets), GFP_KERNEL);
if (!cxlsd)
return ERR_PTR(-ENOMEM);
rc = cxl_switch_decoder_init(port, cxlsd, nr_targets);
if (rc) {
kfree(cxlsd);
return ERR_PTR(rc);
}
cxld = &cxlsd->cxld;
cxld->dev.type = &cxl_decoder_switch_type;
return cxlsd;
}
EXPORT_SYMBOL_NS_GPL(cxl_switch_decoder_alloc, CXL);
/**
* cxl_endpoint_decoder_alloc - Allocate an endpoint decoder
* @port: owning port of this decoder
*
* Return: A new cxl decoder to be registered by cxl_decoder_add()
*/
struct cxl_endpoint_decoder *cxl_endpoint_decoder_alloc(struct cxl_port *port)
{
struct cxl_endpoint_decoder *cxled;
struct cxl_decoder *cxld;
int rc;
if (!is_cxl_endpoint(port))
return ERR_PTR(-EINVAL);
cxled = kzalloc(sizeof(*cxled), GFP_KERNEL);
if (!cxled)
return ERR_PTR(-ENOMEM);
cxled->pos = -1;
cxld = &cxled->cxld;
rc = cxl_decoder_init(port, cxld);
if (rc) {
kfree(cxled);
return ERR_PTR(rc);
}
cxld->dev.type = &cxl_decoder_endpoint_type;
return cxled;
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_decoder_alloc, CXL);
/**
* cxl_decoder_add_locked - Add a decoder with targets
* @cxld: The cxl decoder allocated by cxl_<type>_decoder_alloc()
* @target_map: A list of downstream ports that this decoder can direct memory
* traffic to. These numbers should correspond with the port number
* in the PCIe Link Capabilities structure.
*
* Certain types of decoders may not have any targets. The main example of this
* is an endpoint device. A more awkward example is a hostbridge whose root
* ports get hot added (technically possible, though unlikely).
*
* This is the locked variant of cxl_decoder_add().
*
* Context: Process context. Expects the device lock of the port that owns the
* @cxld to be held.
*
* Return: Negative error code if the decoder wasn't properly configured; else
* returns 0.
*/
int cxl_decoder_add_locked(struct cxl_decoder *cxld, int *target_map)
{
struct cxl_port *port;
struct device *dev;
int rc;
if (WARN_ON_ONCE(!cxld))
return -EINVAL;
if (WARN_ON_ONCE(IS_ERR(cxld)))
return PTR_ERR(cxld);
if (cxld->interleave_ways < 1)
return -EINVAL;
dev = &cxld->dev;
port = to_cxl_port(cxld->dev.parent);
if (!is_endpoint_decoder(dev)) {
struct cxl_switch_decoder *cxlsd = to_cxl_switch_decoder(dev);
rc = decoder_populate_targets(cxlsd, port, target_map);
if (rc && (cxld->flags & CXL_DECODER_F_ENABLE)) {
dev_err(&port->dev,
"Failed to populate active decoder targets\n");
return rc;
}
}
rc = dev_set_name(dev, "decoder%d.%d", port->id, cxld->id);
if (rc)
return rc;
return device_add(dev);
}
EXPORT_SYMBOL_NS_GPL(cxl_decoder_add_locked, CXL);
/**
* cxl_decoder_add - Add a decoder with targets
* @cxld: The cxl decoder allocated by cxl_<type>_decoder_alloc()
* @target_map: A list of downstream ports that this decoder can direct memory
* traffic to. These numbers should correspond with the port number
* in the PCIe Link Capabilities structure.
*
* This is the unlocked variant of cxl_decoder_add_locked().
* See cxl_decoder_add_locked().
*
* Context: Process context. Takes and releases the device lock of the port that
* owns the @cxld.
*/
int cxl_decoder_add(struct cxl_decoder *cxld, int *target_map)
{
struct cxl_port *port;
if (WARN_ON_ONCE(!cxld))
return -EINVAL;
if (WARN_ON_ONCE(IS_ERR(cxld)))
return PTR_ERR(cxld);
port = to_cxl_port(cxld->dev.parent);
guard(device)(&port->dev);
return cxl_decoder_add_locked(cxld, target_map);
}
EXPORT_SYMBOL_NS_GPL(cxl_decoder_add, CXL);
static void cxld_unregister(void *dev)
{
struct cxl_endpoint_decoder *cxled;
if (is_endpoint_decoder(dev)) {
cxled = to_cxl_endpoint_decoder(dev);
cxl_decoder_kill_region(cxled);
}
device_unregister(dev);
}
int cxl_decoder_autoremove(struct device *host, struct cxl_decoder *cxld)
{
return devm_add_action_or_reset(host, cxld_unregister, &cxld->dev);
}
EXPORT_SYMBOL_NS_GPL(cxl_decoder_autoremove, CXL);
/**
* __cxl_driver_register - register a driver for the cxl bus
* @cxl_drv: cxl driver structure to attach
* @owner: owning module/driver
* @modname: KBUILD_MODNAME for parent driver
*/
int __cxl_driver_register(struct cxl_driver *cxl_drv, struct module *owner,
const char *modname)
{
if (!cxl_drv->probe) {
pr_debug("%s ->probe() must be specified\n", modname);
return -EINVAL;
}
if (!cxl_drv->name) {
pr_debug("%s ->name must be specified\n", modname);
return -EINVAL;
}
if (!cxl_drv->id) {
pr_debug("%s ->id must be specified\n", modname);
return -EINVAL;
}
cxl_drv->drv.bus = &cxl_bus_type;
cxl_drv->drv.owner = owner;
cxl_drv->drv.mod_name = modname;
cxl_drv->drv.name = cxl_drv->name;
return driver_register(&cxl_drv->drv);
}
EXPORT_SYMBOL_NS_GPL(__cxl_driver_register, CXL);
void cxl_driver_unregister(struct cxl_driver *cxl_drv)
{
driver_unregister(&cxl_drv->drv);
}
EXPORT_SYMBOL_NS_GPL(cxl_driver_unregister, CXL);
static int cxl_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
return add_uevent_var(env, "MODALIAS=" CXL_MODALIAS_FMT,
cxl_device_id(dev));
}
static int cxl_bus_match(struct device *dev, const struct device_driver *drv)
{
return cxl_device_id(dev) == to_cxl_drv(drv)->id;
}
static int cxl_bus_probe(struct device *dev)
{
int rc;
rc = to_cxl_drv(dev->driver)->probe(dev);
dev_dbg(dev, "probe: %d\n", rc);
return rc;
}
static void cxl_bus_remove(struct device *dev)
{
struct cxl_driver *cxl_drv = to_cxl_drv(dev->driver);
if (cxl_drv->remove)
cxl_drv->remove(dev);
}
static struct workqueue_struct *cxl_bus_wq;
static void cxl_bus_rescan_queue(struct work_struct *w)
{
int rc = bus_rescan_devices(&cxl_bus_type);
pr_debug("CXL bus rescan result: %d\n", rc);
}
void cxl_bus_rescan(void)
{
static DECLARE_WORK(rescan_work, cxl_bus_rescan_queue);
queue_work(cxl_bus_wq, &rescan_work);
}
EXPORT_SYMBOL_NS_GPL(cxl_bus_rescan, CXL);
void cxl_bus_drain(void)
{
drain_workqueue(cxl_bus_wq);
}
EXPORT_SYMBOL_NS_GPL(cxl_bus_drain, CXL);
bool schedule_cxl_memdev_detach(struct cxl_memdev *cxlmd)
{
return queue_work(cxl_bus_wq, &cxlmd->detach_work);
}
EXPORT_SYMBOL_NS_GPL(schedule_cxl_memdev_detach, CXL);
static void add_latency(struct access_coordinate *c, long latency)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
c[i].write_latency += latency;
c[i].read_latency += latency;
}
}
static bool coordinates_valid(struct access_coordinate *c)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
if (c[i].read_bandwidth && c[i].write_bandwidth &&
c[i].read_latency && c[i].write_latency)
continue;
return false;
}
return true;
}
static void set_min_bandwidth(struct access_coordinate *c, unsigned int bw)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
c[i].write_bandwidth = min(c[i].write_bandwidth, bw);
c[i].read_bandwidth = min(c[i].read_bandwidth, bw);
}
}
static void set_access_coordinates(struct access_coordinate *out,
struct access_coordinate *in)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
out[i] = in[i];
}
static bool parent_port_is_cxl_root(struct cxl_port *port)
{
return is_cxl_root(to_cxl_port(port->dev.parent));
}
/**
* cxl_endpoint_get_perf_coordinates - Retrieve performance numbers stored in dports
* of CXL path
* @port: endpoint cxl_port
* @coord: output performance data
*
* Return: errno on failure, 0 on success.
*/
int cxl_endpoint_get_perf_coordinates(struct cxl_port *port,
struct access_coordinate *coord)
{
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
struct access_coordinate c[] = {
{
.read_bandwidth = UINT_MAX,
.write_bandwidth = UINT_MAX,
},
{
.read_bandwidth = UINT_MAX,
.write_bandwidth = UINT_MAX,
},
};
struct cxl_port *iter = port;
struct cxl_dport *dport;
struct pci_dev *pdev;
struct device *dev;
unsigned int bw;
bool is_cxl_root;
if (!is_cxl_endpoint(port))
return -EINVAL;
/*
* Skip calculation for RCD. Expectation is HMAT already covers RCD case
* since RCH does not support hotplug.
*/
if (cxlmd->cxlds->rcd)
return 0;
/*
* Exit the loop when the parent port of the current iter port is cxl
* root. The iterative loop starts at the endpoint and gathers the
* latency of the CXL link from the current device/port to the connected
* downstream port each iteration.
*/
do {
dport = iter->parent_dport;
iter = to_cxl_port(iter->dev.parent);
is_cxl_root = parent_port_is_cxl_root(iter);
/*
* There's no valid access_coordinate for a root port since RPs do not
* have CDAT and therefore needs to be skipped.
*/
if (!is_cxl_root) {
if (!coordinates_valid(dport->coord))
return -EINVAL;
cxl_coordinates_combine(c, c, dport->coord);
}
add_latency(c, dport->link_latency);
} while (!is_cxl_root);
dport = iter->parent_dport;
/* Retrieve HB coords */
if (!coordinates_valid(dport->coord))
return -EINVAL;
cxl_coordinates_combine(c, c, dport->coord);
dev = port->uport_dev->parent;
if (!dev_is_pci(dev))
return -ENODEV;
/* Get the calculated PCI paths bandwidth */
pdev = to_pci_dev(dev);
bw = pcie_bandwidth_available(pdev, NULL, NULL, NULL);
if (bw == 0)
return -ENXIO;
bw /= BITS_PER_BYTE;
set_min_bandwidth(c, bw);
set_access_coordinates(coord, c);
return 0;
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_get_perf_coordinates, CXL);
int cxl_port_get_switch_dport_bandwidth(struct cxl_port *port,
struct access_coordinate *c)
{
struct cxl_dport *dport = port->parent_dport;
/* Check this port is connected to a switch DSP and not an RP */
if (parent_port_is_cxl_root(to_cxl_port(port->dev.parent)))
return -ENODEV;
if (!coordinates_valid(dport->coord))
return -EINVAL;
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
c[i].read_bandwidth = dport->coord[i].read_bandwidth;
c[i].write_bandwidth = dport->coord[i].write_bandwidth;
}
return 0;
}
/* for user tooling to ensure port disable work has completed */
static ssize_t flush_store(const struct bus_type *bus, const char *buf, size_t count)
{
if (sysfs_streq(buf, "1")) {
flush_workqueue(cxl_bus_wq);
return count;
}
return -EINVAL;
}
static BUS_ATTR_WO(flush);
static struct attribute *cxl_bus_attributes[] = {
&bus_attr_flush.attr,
NULL,
};
static struct attribute_group cxl_bus_attribute_group = {
.attrs = cxl_bus_attributes,
};
static const struct attribute_group *cxl_bus_attribute_groups[] = {
&cxl_bus_attribute_group,
NULL,
};
struct bus_type cxl_bus_type = {
.name = "cxl",
.uevent = cxl_bus_uevent,
.match = cxl_bus_match,
.probe = cxl_bus_probe,
.remove = cxl_bus_remove,
.bus_groups = cxl_bus_attribute_groups,
};
EXPORT_SYMBOL_NS_GPL(cxl_bus_type, CXL);
static struct dentry *cxl_debugfs;
struct dentry *cxl_debugfs_create_dir(const char *dir)
{
return debugfs_create_dir(dir, cxl_debugfs);
}
EXPORT_SYMBOL_NS_GPL(cxl_debugfs_create_dir, CXL);
static __init int cxl_core_init(void)
{
int rc;
cxl_debugfs = debugfs_create_dir("cxl", NULL);
if (einj_cxl_is_initialized())
debugfs_create_file("einj_types", 0400, cxl_debugfs, NULL,
&einj_cxl_available_error_type_fops);
cxl_mbox_init();
rc = cxl_memdev_init();
if (rc)
return rc;
cxl_bus_wq = alloc_ordered_workqueue("cxl_port", 0);
if (!cxl_bus_wq) {
rc = -ENOMEM;
goto err_wq;
}
rc = bus_register(&cxl_bus_type);
if (rc)
goto err_bus;
rc = cxl_region_init();
if (rc)
goto err_region;
return 0;
err_region:
bus_unregister(&cxl_bus_type);
err_bus:
destroy_workqueue(cxl_bus_wq);
err_wq:
cxl_memdev_exit();
return rc;
}
static void cxl_core_exit(void)
{
cxl_region_exit();
bus_unregister(&cxl_bus_type);
destroy_workqueue(cxl_bus_wq);
cxl_memdev_exit();
debugfs_remove_recursive(cxl_debugfs);
}
subsys_initcall(cxl_core_init);
module_exit(cxl_core_exit);
MODULE_DESCRIPTION("CXL: Core Compute Express Link support");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(CXL);