| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* Copyright(c) 2018-2019 Realtek Corporation |
| */ |
| |
| #include <linux/devcoredump.h> |
| |
| #include "main.h" |
| #include "regd.h" |
| #include "fw.h" |
| #include "ps.h" |
| #include "sec.h" |
| #include "mac.h" |
| #include "coex.h" |
| #include "phy.h" |
| #include "reg.h" |
| #include "efuse.h" |
| #include "tx.h" |
| #include "debug.h" |
| #include "bf.h" |
| #include "sar.h" |
| #include "sdio.h" |
| |
| bool rtw_disable_lps_deep_mode; |
| EXPORT_SYMBOL(rtw_disable_lps_deep_mode); |
| bool rtw_bf_support = true; |
| unsigned int rtw_debug_mask; |
| EXPORT_SYMBOL(rtw_debug_mask); |
| /* EDCCA is enabled during normal behavior. For debugging purpose in |
| * a noisy environment, it can be disabled via edcca debugfs. Because |
| * all rtw88 devices will probably be affected if environment is noisy, |
| * rtw_edcca_enabled is just declared by driver instead of by device. |
| * So, turning it off will take effect for all rtw88 devices before |
| * there is a tough reason to maintain rtw_edcca_enabled by device. |
| */ |
| bool rtw_edcca_enabled = true; |
| |
| module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644); |
| module_param_named(support_bf, rtw_bf_support, bool, 0644); |
| module_param_named(debug_mask, rtw_debug_mask, uint, 0644); |
| |
| MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS"); |
| MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support"); |
| MODULE_PARM_DESC(debug_mask, "Debugging mask"); |
| |
| static struct ieee80211_channel rtw_channeltable_2g[] = { |
| {.center_freq = 2412, .hw_value = 1,}, |
| {.center_freq = 2417, .hw_value = 2,}, |
| {.center_freq = 2422, .hw_value = 3,}, |
| {.center_freq = 2427, .hw_value = 4,}, |
| {.center_freq = 2432, .hw_value = 5,}, |
| {.center_freq = 2437, .hw_value = 6,}, |
| {.center_freq = 2442, .hw_value = 7,}, |
| {.center_freq = 2447, .hw_value = 8,}, |
| {.center_freq = 2452, .hw_value = 9,}, |
| {.center_freq = 2457, .hw_value = 10,}, |
| {.center_freq = 2462, .hw_value = 11,}, |
| {.center_freq = 2467, .hw_value = 12,}, |
| {.center_freq = 2472, .hw_value = 13,}, |
| {.center_freq = 2484, .hw_value = 14,}, |
| }; |
| |
| static struct ieee80211_channel rtw_channeltable_5g[] = { |
| {.center_freq = 5180, .hw_value = 36,}, |
| {.center_freq = 5200, .hw_value = 40,}, |
| {.center_freq = 5220, .hw_value = 44,}, |
| {.center_freq = 5240, .hw_value = 48,}, |
| {.center_freq = 5260, .hw_value = 52,}, |
| {.center_freq = 5280, .hw_value = 56,}, |
| {.center_freq = 5300, .hw_value = 60,}, |
| {.center_freq = 5320, .hw_value = 64,}, |
| {.center_freq = 5500, .hw_value = 100,}, |
| {.center_freq = 5520, .hw_value = 104,}, |
| {.center_freq = 5540, .hw_value = 108,}, |
| {.center_freq = 5560, .hw_value = 112,}, |
| {.center_freq = 5580, .hw_value = 116,}, |
| {.center_freq = 5600, .hw_value = 120,}, |
| {.center_freq = 5620, .hw_value = 124,}, |
| {.center_freq = 5640, .hw_value = 128,}, |
| {.center_freq = 5660, .hw_value = 132,}, |
| {.center_freq = 5680, .hw_value = 136,}, |
| {.center_freq = 5700, .hw_value = 140,}, |
| {.center_freq = 5720, .hw_value = 144,}, |
| {.center_freq = 5745, .hw_value = 149,}, |
| {.center_freq = 5765, .hw_value = 153,}, |
| {.center_freq = 5785, .hw_value = 157,}, |
| {.center_freq = 5805, .hw_value = 161,}, |
| {.center_freq = 5825, .hw_value = 165, |
| .flags = IEEE80211_CHAN_NO_HT40MINUS}, |
| }; |
| |
| static struct ieee80211_rate rtw_ratetable[] = { |
| {.bitrate = 10, .hw_value = 0x00,}, |
| {.bitrate = 20, .hw_value = 0x01,}, |
| {.bitrate = 55, .hw_value = 0x02,}, |
| {.bitrate = 110, .hw_value = 0x03,}, |
| {.bitrate = 60, .hw_value = 0x04,}, |
| {.bitrate = 90, .hw_value = 0x05,}, |
| {.bitrate = 120, .hw_value = 0x06,}, |
| {.bitrate = 180, .hw_value = 0x07,}, |
| {.bitrate = 240, .hw_value = 0x08,}, |
| {.bitrate = 360, .hw_value = 0x09,}, |
| {.bitrate = 480, .hw_value = 0x0a,}, |
| {.bitrate = 540, .hw_value = 0x0b,}, |
| }; |
| |
| static const struct ieee80211_iface_limit rtw_iface_limits[] = { |
| { |
| .max = 1, |
| .types = BIT(NL80211_IFTYPE_STATION), |
| }, |
| { |
| .max = 1, |
| .types = BIT(NL80211_IFTYPE_AP), |
| } |
| }; |
| |
| static const struct ieee80211_iface_combination rtw_iface_combs[] = { |
| { |
| .limits = rtw_iface_limits, |
| .n_limits = ARRAY_SIZE(rtw_iface_limits), |
| .max_interfaces = 2, |
| .num_different_channels = 1, |
| } |
| }; |
| |
| u16 rtw_desc_to_bitrate(u8 desc_rate) |
| { |
| struct ieee80211_rate rate; |
| |
| if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n")) |
| return 0; |
| |
| rate = rtw_ratetable[desc_rate]; |
| |
| return rate.bitrate; |
| } |
| |
| static struct ieee80211_supported_band rtw_band_2ghz = { |
| .band = NL80211_BAND_2GHZ, |
| |
| .channels = rtw_channeltable_2g, |
| .n_channels = ARRAY_SIZE(rtw_channeltable_2g), |
| |
| .bitrates = rtw_ratetable, |
| .n_bitrates = ARRAY_SIZE(rtw_ratetable), |
| |
| .ht_cap = {0}, |
| .vht_cap = {0}, |
| }; |
| |
| static struct ieee80211_supported_band rtw_band_5ghz = { |
| .band = NL80211_BAND_5GHZ, |
| |
| .channels = rtw_channeltable_5g, |
| .n_channels = ARRAY_SIZE(rtw_channeltable_5g), |
| |
| /* 5G has no CCK rates */ |
| .bitrates = rtw_ratetable + 4, |
| .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, |
| |
| .ht_cap = {0}, |
| .vht_cap = {0}, |
| }; |
| |
| struct rtw_watch_dog_iter_data { |
| struct rtw_dev *rtwdev; |
| struct rtw_vif *rtwvif; |
| }; |
| |
| static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif) |
| { |
| struct rtw_bf_info *bf_info = &rtwdev->bf_info; |
| u8 fix_rate_enable = 0; |
| u8 new_csi_rate_idx; |
| |
| if (rtwvif->bfee.role != RTW_BFEE_SU && |
| rtwvif->bfee.role != RTW_BFEE_MU) |
| return; |
| |
| rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi, |
| bf_info->cur_csi_rpt_rate, |
| fix_rate_enable, &new_csi_rate_idx); |
| |
| if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate) |
| bf_info->cur_csi_rpt_rate = new_csi_rate_idx; |
| } |
| |
| static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif) |
| { |
| struct rtw_watch_dog_iter_data *iter_data = data; |
| struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; |
| |
| if (vif->type == NL80211_IFTYPE_STATION) |
| if (vif->cfg.assoc) |
| iter_data->rtwvif = rtwvif; |
| |
| rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif); |
| |
| rtwvif->stats.tx_unicast = 0; |
| rtwvif->stats.rx_unicast = 0; |
| rtwvif->stats.tx_cnt = 0; |
| rtwvif->stats.rx_cnt = 0; |
| } |
| |
| /* process TX/RX statistics periodically for hardware, |
| * the information helps hardware to enhance performance |
| */ |
| static void rtw_watch_dog_work(struct work_struct *work) |
| { |
| struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, |
| watch_dog_work.work); |
| struct rtw_traffic_stats *stats = &rtwdev->stats; |
| struct rtw_watch_dog_iter_data data = {}; |
| bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); |
| u32 tx_unicast_mbps, rx_unicast_mbps; |
| bool ps_active; |
| |
| mutex_lock(&rtwdev->mutex); |
| |
| if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags)) |
| goto unlock; |
| |
| ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, |
| RTW_WATCH_DOG_DELAY_TIME); |
| |
| if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100) |
| set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); |
| else |
| clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); |
| |
| if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags)) |
| rtw_coex_wl_status_change_notify(rtwdev, 0); |
| |
| if (stats->tx_cnt > RTW_LPS_THRESHOLD || |
| stats->rx_cnt > RTW_LPS_THRESHOLD) |
| ps_active = true; |
| else |
| ps_active = false; |
| |
| tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT; |
| rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT; |
| |
| ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps); |
| ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps); |
| stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp); |
| stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp); |
| |
| /* reset tx/rx statictics */ |
| stats->tx_unicast = 0; |
| stats->rx_unicast = 0; |
| stats->tx_cnt = 0; |
| stats->rx_cnt = 0; |
| |
| if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) |
| goto unlock; |
| |
| /* make sure BB/RF is working for dynamic mech */ |
| rtw_leave_lps(rtwdev); |
| rtw_coex_wl_status_check(rtwdev); |
| rtw_coex_query_bt_hid_list(rtwdev); |
| |
| rtw_phy_dynamic_mechanism(rtwdev); |
| |
| rtw_hci_dynamic_rx_agg(rtwdev, |
| tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1); |
| |
| data.rtwdev = rtwdev; |
| /* rtw_iterate_vifs internally uses an atomic iterator which is needed |
| * to avoid taking local->iflist_mtx mutex |
| */ |
| rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data); |
| |
| /* fw supports only one station associated to enter lps, if there are |
| * more than two stations associated to the AP, then we can not enter |
| * lps, because fw does not handle the overlapped beacon interval |
| * |
| * rtw_recalc_lps() iterate vifs and determine if driver can enter |
| * ps by vif->type and vif->cfg.ps, all we need to do here is to |
| * get that vif and check if device is having traffic more than the |
| * threshold. |
| */ |
| if (rtwdev->ps_enabled && data.rtwvif && !ps_active && |
| !rtwdev->beacon_loss && !rtwdev->ap_active) |
| rtw_enter_lps(rtwdev, data.rtwvif->port); |
| |
| rtwdev->watch_dog_cnt++; |
| |
| unlock: |
| mutex_unlock(&rtwdev->mutex); |
| } |
| |
| static void rtw_c2h_work(struct work_struct *work) |
| { |
| struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); |
| struct sk_buff *skb, *tmp; |
| |
| skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { |
| skb_unlink(skb, &rtwdev->c2h_queue); |
| rtw_fw_c2h_cmd_handle(rtwdev, skb); |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| static void rtw_ips_work(struct work_struct *work) |
| { |
| struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work); |
| |
| mutex_lock(&rtwdev->mutex); |
| if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE) |
| rtw_enter_ips(rtwdev); |
| mutex_unlock(&rtwdev->mutex); |
| } |
| |
| static void rtw_sta_rc_work(struct work_struct *work) |
| { |
| struct rtw_sta_info *si = container_of(work, struct rtw_sta_info, |
| rc_work); |
| struct rtw_dev *rtwdev = si->rtwdev; |
| |
| mutex_lock(&rtwdev->mutex); |
| rtw_update_sta_info(rtwdev, si, true); |
| mutex_unlock(&rtwdev->mutex); |
| } |
| |
| int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, |
| struct ieee80211_vif *vif) |
| { |
| struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; |
| struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; |
| int i; |
| |
| if (vif->type == NL80211_IFTYPE_STATION) { |
| si->mac_id = rtwvif->mac_id; |
| } else { |
| si->mac_id = rtw_acquire_macid(rtwdev); |
| if (si->mac_id >= RTW_MAX_MAC_ID_NUM) |
| return -ENOSPC; |
| } |
| |
| si->rtwdev = rtwdev; |
| si->sta = sta; |
| si->vif = vif; |
| si->init_ra_lv = 1; |
| ewma_rssi_init(&si->avg_rssi); |
| for (i = 0; i < ARRAY_SIZE(sta->txq); i++) |
| rtw_txq_init(rtwdev, sta->txq[i]); |
| INIT_WORK(&si->rc_work, rtw_sta_rc_work); |
| |
| rtw_update_sta_info(rtwdev, si, true); |
| rtw_fw_media_status_report(rtwdev, si->mac_id, true); |
| |
| rtwdev->sta_cnt++; |
| rtwdev->beacon_loss = false; |
| rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n", |
| sta->addr, si->mac_id); |
| |
| return 0; |
| } |
| |
| void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, |
| bool fw_exist) |
| { |
| struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; |
| struct ieee80211_vif *vif = si->vif; |
| int i; |
| |
| cancel_work_sync(&si->rc_work); |
| |
| if (vif->type != NL80211_IFTYPE_STATION) |
| rtw_release_macid(rtwdev, si->mac_id); |
| if (fw_exist) |
| rtw_fw_media_status_report(rtwdev, si->mac_id, false); |
| |
| for (i = 0; i < ARRAY_SIZE(sta->txq); i++) |
| rtw_txq_cleanup(rtwdev, sta->txq[i]); |
| |
| kfree(si->mask); |
| |
| rtwdev->sta_cnt--; |
| rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n", |
| sta->addr, si->mac_id); |
| } |
| |
| struct rtw_fwcd_hdr { |
| u32 item; |
| u32 size; |
| u32 padding1; |
| u32 padding2; |
| } __packed; |
| |
| static int rtw_fwcd_prep(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; |
| const struct rtw_fwcd_segs *segs = chip->fwcd_segs; |
| u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr); |
| u8 i; |
| |
| if (segs) { |
| prep_size += segs->num * sizeof(struct rtw_fwcd_hdr); |
| |
| for (i = 0; i < segs->num; i++) |
| prep_size += segs->segs[i]; |
| } |
| |
| desc->data = vmalloc(prep_size); |
| if (!desc->data) |
| return -ENOMEM; |
| |
| desc->size = prep_size; |
| desc->next = desc->data; |
| |
| return 0; |
| } |
| |
| static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size) |
| { |
| struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; |
| struct rtw_fwcd_hdr *hdr; |
| u8 *next; |
| |
| if (!desc->data) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n"); |
| return NULL; |
| } |
| |
| next = desc->next + sizeof(struct rtw_fwcd_hdr); |
| if (next - desc->data + size > desc->size) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n"); |
| return NULL; |
| } |
| |
| hdr = (struct rtw_fwcd_hdr *)(desc->next); |
| hdr->item = item; |
| hdr->size = size; |
| hdr->padding1 = 0x01234567; |
| hdr->padding2 = 0x89abcdef; |
| desc->next = next + size; |
| |
| return next; |
| } |
| |
| static void rtw_fwcd_dump(struct rtw_dev *rtwdev) |
| { |
| struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; |
| |
| rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n"); |
| |
| /* Data will be freed after lifetime of device coredump. After calling |
| * dev_coredump, data is supposed to be handled by the device coredump |
| * framework. Note that a new dump will be discarded if a previous one |
| * hasn't been released yet. |
| */ |
| dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL); |
| } |
| |
| static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self) |
| { |
| struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; |
| |
| if (free_self) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n"); |
| vfree(desc->data); |
| } |
| |
| desc->data = NULL; |
| desc->next = NULL; |
| } |
| |
| static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev) |
| { |
| u32 size = rtwdev->chip->fw_rxff_size; |
| u32 *buf; |
| u8 seq; |
| |
| buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size); |
| if (!buf) |
| return -ENOMEM; |
| |
| if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n"); |
| return -EINVAL; |
| } |
| |
| if (GET_FW_DUMP_LEN(buf) == 0) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n"); |
| return -EINVAL; |
| } |
| |
| seq = GET_FW_DUMP_SEQ(buf); |
| if (seq > 0) { |
| rtw_dbg(rtwdev, RTW_DBG_FW, |
| "fw crash dump's seq is wrong: %d\n", seq); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size, |
| u32 fwcd_item) |
| { |
| u32 rxff = rtwdev->chip->fw_rxff_size; |
| u32 dump_size, done_size = 0; |
| u8 *buf; |
| int ret; |
| |
| buf = rtw_fwcd_next(rtwdev, fwcd_item, size); |
| if (!buf) |
| return -ENOMEM; |
| |
| while (size) { |
| dump_size = size > rxff ? rxff : size; |
| |
| ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size, |
| dump_size); |
| if (ret) { |
| rtw_err(rtwdev, |
| "ddma fw 0x%x [+0x%x] to fw fifo fail\n", |
| ocp_src, done_size); |
| return ret; |
| } |
| |
| ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, |
| dump_size, (u32 *)(buf + done_size)); |
| if (ret) { |
| rtw_err(rtwdev, |
| "dump fw 0x%x [+0x%x] from fw fifo fail\n", |
| ocp_src, done_size); |
| return ret; |
| } |
| |
| size -= dump_size; |
| done_size += dump_size; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rtw_dump_fw); |
| |
| int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size) |
| { |
| u8 *buf; |
| u32 i; |
| |
| if (addr & 0x3) { |
| WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr); |
| return -EINVAL; |
| } |
| |
| buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < size; i += 4) |
| *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rtw_dump_reg); |
| |
| void rtw_vif_assoc_changed(struct rtw_vif *rtwvif, |
| struct ieee80211_bss_conf *conf) |
| { |
| struct ieee80211_vif *vif = NULL; |
| |
| if (conf) |
| vif = container_of(conf, struct ieee80211_vif, bss_conf); |
| |
| if (conf && vif->cfg.assoc) { |
| rtwvif->aid = vif->cfg.aid; |
| rtwvif->net_type = RTW_NET_MGD_LINKED; |
| } else { |
| rtwvif->aid = 0; |
| rtwvif->net_type = RTW_NET_NO_LINK; |
| } |
| } |
| |
| static void rtw_reset_key_iter(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key, |
| void *data) |
| { |
| struct rtw_dev *rtwdev = (struct rtw_dev *)data; |
| struct rtw_sec_desc *sec = &rtwdev->sec; |
| |
| rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx); |
| } |
| |
| static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta) |
| { |
| struct rtw_dev *rtwdev = (struct rtw_dev *)data; |
| |
| if (rtwdev->sta_cnt == 0) { |
| rtw_warn(rtwdev, "sta count before reset should not be 0\n"); |
| return; |
| } |
| rtw_sta_remove(rtwdev, sta, false); |
| } |
| |
| static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) |
| { |
| struct rtw_dev *rtwdev = (struct rtw_dev *)data; |
| struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; |
| |
| rtw_bf_disassoc(rtwdev, vif, NULL); |
| rtw_vif_assoc_changed(rtwvif, NULL); |
| rtw_txq_cleanup(rtwdev, vif->txq); |
| |
| rtw_release_macid(rtwdev, rtwvif->mac_id); |
| } |
| |
| void rtw_fw_recovery(struct rtw_dev *rtwdev) |
| { |
| if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags)) |
| ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work); |
| } |
| |
| static void __fw_recovery_work(struct rtw_dev *rtwdev) |
| { |
| int ret = 0; |
| |
| set_bit(RTW_FLAG_RESTARTING, rtwdev->flags); |
| clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags); |
| |
| ret = rtw_fwcd_prep(rtwdev); |
| if (ret) |
| goto free; |
| ret = rtw_fw_dump_crash_log(rtwdev); |
| if (ret) |
| goto free; |
| ret = rtw_chip_dump_fw_crash(rtwdev); |
| if (ret) |
| goto free; |
| |
| rtw_fwcd_dump(rtwdev); |
| free: |
| rtw_fwcd_free(rtwdev, !!ret); |
| rtw_write8(rtwdev, REG_MCU_TST_CFG, 0); |
| |
| WARN(1, "firmware crash, start reset and recover\n"); |
| |
| rcu_read_lock(); |
| rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev); |
| rcu_read_unlock(); |
| rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev); |
| rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev); |
| bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM); |
| rtw_enter_ips(rtwdev); |
| } |
| |
| static void rtw_fw_recovery_work(struct work_struct *work) |
| { |
| struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, |
| fw_recovery_work); |
| |
| mutex_lock(&rtwdev->mutex); |
| __fw_recovery_work(rtwdev); |
| mutex_unlock(&rtwdev->mutex); |
| |
| ieee80211_restart_hw(rtwdev->hw); |
| } |
| |
| struct rtw_txq_ba_iter_data { |
| }; |
| |
| static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta) |
| { |
| struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; |
| int ret; |
| u8 tid; |
| |
| tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); |
| while (tid != IEEE80211_NUM_TIDS) { |
| clear_bit(tid, si->tid_ba); |
| ret = ieee80211_start_tx_ba_session(sta, tid, 0); |
| if (ret == -EINVAL) { |
| struct ieee80211_txq *txq; |
| struct rtw_txq *rtwtxq; |
| |
| txq = sta->txq[tid]; |
| rtwtxq = (struct rtw_txq *)txq->drv_priv; |
| set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags); |
| } |
| |
| tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); |
| } |
| } |
| |
| static void rtw_txq_ba_work(struct work_struct *work) |
| { |
| struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work); |
| struct rtw_txq_ba_iter_data data; |
| |
| rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data); |
| } |
| |
| void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel) |
| { |
| if (IS_CH_2G_BAND(channel)) |
| pkt_stat->band = NL80211_BAND_2GHZ; |
| else if (IS_CH_5G_BAND(channel)) |
| pkt_stat->band = NL80211_BAND_5GHZ; |
| else |
| return; |
| |
| pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band); |
| } |
| EXPORT_SYMBOL(rtw_set_rx_freq_band); |
| |
| void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period) |
| { |
| rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE); |
| rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1); |
| } |
| |
| void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel, |
| u8 primary_channel, enum rtw_supported_band band, |
| enum rtw_bandwidth bandwidth) |
| { |
| enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band); |
| struct rtw_hal *hal = &rtwdev->hal; |
| u8 *cch_by_bw = hal->cch_by_bw; |
| u32 center_freq, primary_freq; |
| enum rtw_sar_bands sar_band; |
| u8 primary_channel_idx; |
| |
| center_freq = ieee80211_channel_to_frequency(center_channel, nl_band); |
| primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band); |
| |
| /* assign the center channel used while 20M bw is selected */ |
| cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel; |
| |
| /* assign the center channel used while current bw is selected */ |
| cch_by_bw[bandwidth] = center_channel; |
| |
| switch (bandwidth) { |
| case RTW_CHANNEL_WIDTH_20: |
| default: |
| primary_channel_idx = RTW_SC_DONT_CARE; |
| break; |
| case RTW_CHANNEL_WIDTH_40: |
| if (primary_freq > center_freq) |
| primary_channel_idx = RTW_SC_20_UPPER; |
| else |
| primary_channel_idx = RTW_SC_20_LOWER; |
| break; |
| case RTW_CHANNEL_WIDTH_80: |
| if (primary_freq > center_freq) { |
| if (primary_freq - center_freq == 10) |
| primary_channel_idx = RTW_SC_20_UPPER; |
| else |
| primary_channel_idx = RTW_SC_20_UPMOST; |
| |
| /* assign the center channel used |
| * while 40M bw is selected |
| */ |
| cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4; |
| } else { |
| if (center_freq - primary_freq == 10) |
| primary_channel_idx = RTW_SC_20_LOWER; |
| else |
| primary_channel_idx = RTW_SC_20_LOWEST; |
| |
| /* assign the center channel used |
| * while 40M bw is selected |
| */ |
| cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4; |
| } |
| break; |
| } |
| |
| switch (center_channel) { |
| case 1 ... 14: |
| sar_band = RTW_SAR_BAND_0; |
| break; |
| case 36 ... 64: |
| sar_band = RTW_SAR_BAND_1; |
| break; |
| case 100 ... 144: |
| sar_band = RTW_SAR_BAND_3; |
| break; |
| case 149 ... 177: |
| sar_band = RTW_SAR_BAND_4; |
| break; |
| default: |
| WARN(1, "unknown ch(%u) to SAR band\n", center_channel); |
| sar_band = RTW_SAR_BAND_0; |
| break; |
| } |
| |
| hal->current_primary_channel_index = primary_channel_idx; |
| hal->current_band_width = bandwidth; |
| hal->primary_channel = primary_channel; |
| hal->current_channel = center_channel; |
| hal->current_band_type = band; |
| hal->sar_band = sar_band; |
| } |
| |
| void rtw_get_channel_params(struct cfg80211_chan_def *chandef, |
| struct rtw_channel_params *chan_params) |
| { |
| struct ieee80211_channel *channel = chandef->chan; |
| enum nl80211_chan_width width = chandef->width; |
| u32 primary_freq, center_freq; |
| u8 center_chan; |
| u8 bandwidth = RTW_CHANNEL_WIDTH_20; |
| |
| center_chan = channel->hw_value; |
| primary_freq = channel->center_freq; |
| center_freq = chandef->center_freq1; |
| |
| switch (width) { |
| case NL80211_CHAN_WIDTH_20_NOHT: |
| case NL80211_CHAN_WIDTH_20: |
| bandwidth = RTW_CHANNEL_WIDTH_20; |
| break; |
| case NL80211_CHAN_WIDTH_40: |
| bandwidth = RTW_CHANNEL_WIDTH_40; |
| if (primary_freq > center_freq) |
| center_chan -= 2; |
| else |
| center_chan += 2; |
| break; |
| case NL80211_CHAN_WIDTH_80: |
| bandwidth = RTW_CHANNEL_WIDTH_80; |
| if (primary_freq > center_freq) { |
| if (primary_freq - center_freq == 10) |
| center_chan -= 2; |
| else |
| center_chan -= 6; |
| } else { |
| if (center_freq - primary_freq == 10) |
| center_chan += 2; |
| else |
| center_chan += 6; |
| } |
| break; |
| default: |
| center_chan = 0; |
| break; |
| } |
| |
| chan_params->center_chan = center_chan; |
| chan_params->bandwidth = bandwidth; |
| chan_params->primary_chan = channel->hw_value; |
| } |
| |
| void rtw_set_channel(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct ieee80211_hw *hw = rtwdev->hw; |
| struct rtw_hal *hal = &rtwdev->hal; |
| struct rtw_channel_params ch_param; |
| u8 center_chan, primary_chan, bandwidth, band; |
| |
| rtw_get_channel_params(&hw->conf.chandef, &ch_param); |
| if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) |
| return; |
| |
| center_chan = ch_param.center_chan; |
| primary_chan = ch_param.primary_chan; |
| bandwidth = ch_param.bandwidth; |
| band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; |
| |
| rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth); |
| |
| if (rtwdev->scan_info.op_chan) |
| rtw_store_op_chan(rtwdev, true); |
| |
| chip->ops->set_channel(rtwdev, center_chan, bandwidth, |
| hal->current_primary_channel_index); |
| |
| if (hal->current_band_type == RTW_BAND_5G) { |
| rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G); |
| } else { |
| if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) |
| rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G); |
| else |
| rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN); |
| } |
| |
| rtw_phy_set_tx_power_level(rtwdev, center_chan); |
| |
| /* if the channel isn't set for scanning, we will do RF calibration |
| * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration |
| * during scanning on each channel takes too long. |
| */ |
| if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) |
| rtwdev->need_rfk = true; |
| } |
| |
| void rtw_chip_prepare_tx(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| |
| if (rtwdev->need_rfk) { |
| rtwdev->need_rfk = false; |
| chip->ops->phy_calibration(rtwdev); |
| } |
| } |
| |
| static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) |
| { |
| int i; |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| rtw_write8(rtwdev, start + i, addr[i]); |
| } |
| |
| void rtw_vif_port_config(struct rtw_dev *rtwdev, |
| struct rtw_vif *rtwvif, |
| u32 config) |
| { |
| u32 addr, mask; |
| |
| if (config & PORT_SET_MAC_ADDR) { |
| addr = rtwvif->conf->mac_addr.addr; |
| rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); |
| } |
| if (config & PORT_SET_BSSID) { |
| addr = rtwvif->conf->bssid.addr; |
| rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); |
| } |
| if (config & PORT_SET_NET_TYPE) { |
| addr = rtwvif->conf->net_type.addr; |
| mask = rtwvif->conf->net_type.mask; |
| rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); |
| } |
| if (config & PORT_SET_AID) { |
| addr = rtwvif->conf->aid.addr; |
| mask = rtwvif->conf->aid.mask; |
| rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); |
| } |
| if (config & PORT_SET_BCN_CTRL) { |
| addr = rtwvif->conf->bcn_ctrl.addr; |
| mask = rtwvif->conf->bcn_ctrl.mask; |
| rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl); |
| } |
| } |
| |
| static u8 hw_bw_cap_to_bitamp(u8 bw_cap) |
| { |
| u8 bw = 0; |
| |
| switch (bw_cap) { |
| case EFUSE_HW_CAP_IGNORE: |
| case EFUSE_HW_CAP_SUPP_BW80: |
| bw |= BIT(RTW_CHANNEL_WIDTH_80); |
| fallthrough; |
| case EFUSE_HW_CAP_SUPP_BW40: |
| bw |= BIT(RTW_CHANNEL_WIDTH_40); |
| fallthrough; |
| default: |
| bw |= BIT(RTW_CHANNEL_WIDTH_20); |
| break; |
| } |
| |
| return bw; |
| } |
| |
| static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_hal *hal = &rtwdev->hal; |
| |
| if (hw_ant_num == EFUSE_HW_CAP_IGNORE || |
| hw_ant_num >= hal->rf_path_num) |
| return; |
| |
| switch (hw_ant_num) { |
| case 1: |
| hal->rf_type = RF_1T1R; |
| hal->rf_path_num = 1; |
| if (!chip->fix_rf_phy_num) |
| hal->rf_phy_num = hal->rf_path_num; |
| hal->antenna_tx = BB_PATH_A; |
| hal->antenna_rx = BB_PATH_A; |
| break; |
| default: |
| WARN(1, "invalid hw configuration from efuse\n"); |
| break; |
| } |
| } |
| |
| static u64 get_vht_ra_mask(struct ieee80211_sta *sta) |
| { |
| u64 ra_mask = 0; |
| u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map); |
| u8 vht_mcs_cap; |
| int i, nss; |
| |
| /* 4SS, every two bits for MCS7/8/9 */ |
| for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { |
| vht_mcs_cap = mcs_map & 0x3; |
| switch (vht_mcs_cap) { |
| case 2: /* MCS9 */ |
| ra_mask |= 0x3ffULL << nss; |
| break; |
| case 1: /* MCS8 */ |
| ra_mask |= 0x1ffULL << nss; |
| break; |
| case 0: /* MCS7 */ |
| ra_mask |= 0x0ffULL << nss; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return ra_mask; |
| } |
| |
| static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) |
| { |
| u8 rate_id = 0; |
| |
| switch (wireless_set) { |
| case WIRELESS_CCK: |
| rate_id = RTW_RATEID_B_20M; |
| break; |
| case WIRELESS_OFDM: |
| rate_id = RTW_RATEID_G; |
| break; |
| case WIRELESS_CCK | WIRELESS_OFDM: |
| rate_id = RTW_RATEID_BG; |
| break; |
| case WIRELESS_OFDM | WIRELESS_HT: |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_GN_N1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_GN_N2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR5_N_3SS; |
| break; |
| case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: |
| if (bw_mode == RTW_CHANNEL_WIDTH_40) { |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_BGN_40M_1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_BGN_40M_2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR5_N_3SS; |
| else if (tx_num == 4) |
| rate_id = RTW_RATEID_ARFR7_N_4SS; |
| } else { |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_BGN_20M_1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_BGN_20M_2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR5_N_3SS; |
| else if (tx_num == 4) |
| rate_id = RTW_RATEID_ARFR7_N_4SS; |
| } |
| break; |
| case WIRELESS_OFDM | WIRELESS_VHT: |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_ARFR1_AC_1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_ARFR0_AC_2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR4_AC_3SS; |
| else if (tx_num == 4) |
| rate_id = RTW_RATEID_ARFR6_AC_4SS; |
| break; |
| case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: |
| if (bw_mode >= RTW_CHANNEL_WIDTH_80) { |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_ARFR1_AC_1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_ARFR0_AC_2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR4_AC_3SS; |
| else if (tx_num == 4) |
| rate_id = RTW_RATEID_ARFR6_AC_4SS; |
| } else { |
| if (tx_num == 1) |
| rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; |
| else if (tx_num == 2) |
| rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; |
| else if (tx_num == 3) |
| rate_id = RTW_RATEID_ARFR4_AC_3SS; |
| else if (tx_num == 4) |
| rate_id = RTW_RATEID_ARFR6_AC_4SS; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return rate_id; |
| } |
| |
| #define RA_MASK_CCK_RATES 0x0000f |
| #define RA_MASK_OFDM_RATES 0x00ff0 |
| #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) |
| #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) |
| #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) |
| #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ |
| RA_MASK_HT_RATES_2SS | \ |
| RA_MASK_HT_RATES_3SS) |
| #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) |
| #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) |
| #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) |
| #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ |
| RA_MASK_VHT_RATES_2SS | \ |
| RA_MASK_VHT_RATES_3SS) |
| #define RA_MASK_CCK_IN_BG 0x00005 |
| #define RA_MASK_CCK_IN_HT 0x00005 |
| #define RA_MASK_CCK_IN_VHT 0x00005 |
| #define RA_MASK_OFDM_IN_VHT 0x00010 |
| #define RA_MASK_OFDM_IN_HT_2G 0x00010 |
| #define RA_MASK_OFDM_IN_HT_5G 0x00030 |
| |
| static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set) |
| { |
| u8 rssi_level = si->rssi_level; |
| |
| if (wireless_set == WIRELESS_CCK) |
| return 0xffffffffffffffffULL; |
| |
| if (rssi_level == 0) |
| return 0xffffffffffffffffULL; |
| else if (rssi_level == 1) |
| return 0xfffffffffffffff0ULL; |
| else if (rssi_level == 2) |
| return 0xffffffffffffefe0ULL; |
| else if (rssi_level == 3) |
| return 0xffffffffffffcfc0ULL; |
| else if (rssi_level == 4) |
| return 0xffffffffffff8f80ULL; |
| else |
| return 0xffffffffffff0f00ULL; |
| } |
| |
| static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak) |
| { |
| if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0) |
| ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); |
| |
| if (ra_mask == 0) |
| ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); |
| |
| return ra_mask; |
| } |
| |
| static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si, |
| u64 ra_mask, bool is_vht_enable) |
| { |
| struct rtw_hal *hal = &rtwdev->hal; |
| const struct cfg80211_bitrate_mask *mask = si->mask; |
| u64 cfg_mask = GENMASK_ULL(63, 0); |
| u8 band; |
| |
| if (!si->use_cfg_mask) |
| return ra_mask; |
| |
| band = hal->current_band_type; |
| if (band == RTW_BAND_2G) { |
| band = NL80211_BAND_2GHZ; |
| cfg_mask = mask->control[band].legacy; |
| } else if (band == RTW_BAND_5G) { |
| band = NL80211_BAND_5GHZ; |
| cfg_mask = u64_encode_bits(mask->control[band].legacy, |
| RA_MASK_OFDM_RATES); |
| } |
| |
| if (!is_vht_enable) { |
| if (ra_mask & RA_MASK_HT_RATES_1SS) |
| cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0], |
| RA_MASK_HT_RATES_1SS); |
| if (ra_mask & RA_MASK_HT_RATES_2SS) |
| cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1], |
| RA_MASK_HT_RATES_2SS); |
| } else { |
| if (ra_mask & RA_MASK_VHT_RATES_1SS) |
| cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0], |
| RA_MASK_VHT_RATES_1SS); |
| if (ra_mask & RA_MASK_VHT_RATES_2SS) |
| cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1], |
| RA_MASK_VHT_RATES_2SS); |
| } |
| |
| ra_mask &= cfg_mask; |
| |
| return ra_mask; |
| } |
| |
| void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si, |
| bool reset_ra_mask) |
| { |
| struct rtw_dm_info *dm_info = &rtwdev->dm_info; |
| struct ieee80211_sta *sta = si->sta; |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| struct rtw_hal *hal = &rtwdev->hal; |
| u8 wireless_set; |
| u8 bw_mode; |
| u8 rate_id; |
| u8 rf_type = RF_1T1R; |
| u8 stbc_en = 0; |
| u8 ldpc_en = 0; |
| u8 tx_num = 1; |
| u64 ra_mask = 0; |
| u64 ra_mask_bak = 0; |
| bool is_vht_enable = false; |
| bool is_support_sgi = false; |
| |
| if (sta->deflink.vht_cap.vht_supported) { |
| is_vht_enable = true; |
| ra_mask |= get_vht_ra_mask(sta); |
| if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) |
| stbc_en = VHT_STBC_EN; |
| if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) |
| ldpc_en = VHT_LDPC_EN; |
| } else if (sta->deflink.ht_cap.ht_supported) { |
| ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) | |
| (sta->deflink.ht_cap.mcs.rx_mask[0] << 12); |
| if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) |
| stbc_en = HT_STBC_EN; |
| if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) |
| ldpc_en = HT_LDPC_EN; |
| } |
| |
| if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss) |
| ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS; |
| |
| if (hal->current_band_type == RTW_BAND_5G) { |
| ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4; |
| ra_mask_bak = ra_mask; |
| if (sta->deflink.vht_cap.vht_supported) { |
| ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; |
| wireless_set = WIRELESS_OFDM | WIRELESS_VHT; |
| } else if (sta->deflink.ht_cap.ht_supported) { |
| ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; |
| wireless_set = WIRELESS_OFDM | WIRELESS_HT; |
| } else { |
| wireless_set = WIRELESS_OFDM; |
| } |
| dm_info->rrsr_val_init = RRSR_INIT_5G; |
| } else if (hal->current_band_type == RTW_BAND_2G) { |
| ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ]; |
| ra_mask_bak = ra_mask; |
| if (sta->deflink.vht_cap.vht_supported) { |
| ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | |
| RA_MASK_OFDM_IN_VHT; |
| wireless_set = WIRELESS_CCK | WIRELESS_OFDM | |
| WIRELESS_HT | WIRELESS_VHT; |
| } else if (sta->deflink.ht_cap.ht_supported) { |
| ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | |
| RA_MASK_OFDM_IN_HT_2G; |
| wireless_set = WIRELESS_CCK | WIRELESS_OFDM | |
| WIRELESS_HT; |
| } else if (sta->deflink.supp_rates[0] <= 0xf) { |
| wireless_set = WIRELESS_CCK; |
| } else { |
| ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG; |
| wireless_set = WIRELESS_CCK | WIRELESS_OFDM; |
| } |
| dm_info->rrsr_val_init = RRSR_INIT_2G; |
| } else { |
| rtw_err(rtwdev, "Unknown band type\n"); |
| ra_mask_bak = ra_mask; |
| wireless_set = 0; |
| } |
| |
| switch (sta->deflink.bandwidth) { |
| case IEEE80211_STA_RX_BW_80: |
| bw_mode = RTW_CHANNEL_WIDTH_80; |
| is_support_sgi = sta->deflink.vht_cap.vht_supported && |
| (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80); |
| break; |
| case IEEE80211_STA_RX_BW_40: |
| bw_mode = RTW_CHANNEL_WIDTH_40; |
| is_support_sgi = sta->deflink.ht_cap.ht_supported && |
| (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40); |
| break; |
| default: |
| bw_mode = RTW_CHANNEL_WIDTH_20; |
| is_support_sgi = sta->deflink.ht_cap.ht_supported && |
| (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20); |
| break; |
| } |
| |
| if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) { |
| tx_num = 2; |
| rf_type = RF_2T2R; |
| } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) { |
| tx_num = 2; |
| rf_type = RF_2T2R; |
| } |
| |
| rate_id = get_rate_id(wireless_set, bw_mode, tx_num); |
| |
| ra_mask &= rtw_rate_mask_rssi(si, wireless_set); |
| ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak); |
| ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable); |
| |
| si->bw_mode = bw_mode; |
| si->stbc_en = stbc_en; |
| si->ldpc_en = ldpc_en; |
| si->rf_type = rf_type; |
| si->sgi_enable = is_support_sgi; |
| si->vht_enable = is_vht_enable; |
| si->ra_mask = ra_mask; |
| si->rate_id = rate_id; |
| |
| rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask); |
| } |
| |
| static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_fw_state *fw; |
| int ret = 0; |
| |
| fw = &rtwdev->fw; |
| wait_for_completion(&fw->completion); |
| if (!fw->firmware) |
| ret = -EINVAL; |
| |
| if (chip->wow_fw_name) { |
| fw = &rtwdev->wow_fw; |
| wait_for_completion(&fw->completion); |
| if (!fw->firmware) |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev, |
| struct rtw_fw_state *fw) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| |
| if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported || |
| !fw->feature) |
| return LPS_DEEP_MODE_NONE; |
| |
| if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) && |
| rtw_fw_feature_check(fw, FW_FEATURE_PG)) |
| return LPS_DEEP_MODE_PG; |
| |
| if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) && |
| rtw_fw_feature_check(fw, FW_FEATURE_LCLK)) |
| return LPS_DEEP_MODE_LCLK; |
| |
| return LPS_DEEP_MODE_NONE; |
| } |
| |
| static int rtw_power_on(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_fw_state *fw = &rtwdev->fw; |
| bool wifi_only; |
| int ret; |
| |
| ret = rtw_hci_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup hci\n"); |
| goto err; |
| } |
| |
| /* power on MAC before firmware downloaded */ |
| ret = rtw_mac_power_on(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to power on mac\n"); |
| goto err; |
| } |
| |
| ret = rtw_wait_firmware_completion(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to wait firmware completion\n"); |
| goto err_off; |
| } |
| |
| ret = rtw_download_firmware(rtwdev, fw); |
| if (ret) { |
| rtw_err(rtwdev, "failed to download firmware\n"); |
| goto err_off; |
| } |
| |
| /* config mac after firmware downloaded */ |
| ret = rtw_mac_init(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to configure mac\n"); |
| goto err_off; |
| } |
| |
| chip->ops->phy_set_param(rtwdev); |
| |
| ret = rtw_hci_start(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to start hci\n"); |
| goto err_off; |
| } |
| |
| /* send H2C after HCI has started */ |
| rtw_fw_send_general_info(rtwdev); |
| rtw_fw_send_phydm_info(rtwdev); |
| |
| wifi_only = !rtwdev->efuse.btcoex; |
| rtw_coex_power_on_setting(rtwdev); |
| rtw_coex_init_hw_config(rtwdev, wifi_only); |
| |
| return 0; |
| |
| err_off: |
| rtw_mac_power_off(rtwdev); |
| |
| err: |
| return ret; |
| } |
| |
| void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start) |
| { |
| if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN)) |
| return; |
| |
| if (start) { |
| rtw_fw_scan_notify(rtwdev, true); |
| } else { |
| reinit_completion(&rtwdev->fw_scan_density); |
| rtw_fw_scan_notify(rtwdev, false); |
| if (!wait_for_completion_timeout(&rtwdev->fw_scan_density, |
| SCAN_NOTIFY_TIMEOUT)) |
| rtw_warn(rtwdev, "firmware failed to report density after scan\n"); |
| } |
| } |
| |
| void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif, |
| const u8 *mac_addr, bool hw_scan) |
| { |
| u32 config = 0; |
| int ret = 0; |
| |
| rtw_leave_lps(rtwdev); |
| |
| if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) { |
| ret = rtw_leave_ips(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to leave idle state\n"); |
| return; |
| } |
| } |
| |
| ether_addr_copy(rtwvif->mac_addr, mac_addr); |
| config |= PORT_SET_MAC_ADDR; |
| rtw_vif_port_config(rtwdev, rtwvif, config); |
| |
| rtw_coex_scan_notify(rtwdev, COEX_SCAN_START); |
| rtw_core_fw_scan_notify(rtwdev, true); |
| |
| set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); |
| set_bit(RTW_FLAG_SCANNING, rtwdev->flags); |
| } |
| |
| void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif, |
| bool hw_scan) |
| { |
| struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL; |
| u32 config = 0; |
| |
| if (!rtwvif) |
| return; |
| |
| clear_bit(RTW_FLAG_SCANNING, rtwdev->flags); |
| clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); |
| |
| rtw_core_fw_scan_notify(rtwdev, false); |
| |
| ether_addr_copy(rtwvif->mac_addr, vif->addr); |
| config |= PORT_SET_MAC_ADDR; |
| rtw_vif_port_config(rtwdev, rtwvif, config); |
| |
| rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH); |
| |
| if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) |
| ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work); |
| } |
| |
| int rtw_core_start(struct rtw_dev *rtwdev) |
| { |
| int ret; |
| |
| ret = rtw_power_on(rtwdev); |
| if (ret) |
| return ret; |
| |
| rtw_sec_enable_sec_engine(rtwdev); |
| |
| rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw); |
| rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw); |
| |
| /* rcr reset after powered on */ |
| rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); |
| |
| ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, |
| RTW_WATCH_DOG_DELAY_TIME); |
| |
| set_bit(RTW_FLAG_RUNNING, rtwdev->flags); |
| |
| return 0; |
| } |
| |
| static void rtw_power_off(struct rtw_dev *rtwdev) |
| { |
| rtw_hci_stop(rtwdev); |
| rtw_coex_power_off_setting(rtwdev); |
| rtw_mac_power_off(rtwdev); |
| } |
| |
| void rtw_core_stop(struct rtw_dev *rtwdev) |
| { |
| struct rtw_coex *coex = &rtwdev->coex; |
| |
| clear_bit(RTW_FLAG_RUNNING, rtwdev->flags); |
| clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags); |
| |
| mutex_unlock(&rtwdev->mutex); |
| |
| cancel_work_sync(&rtwdev->c2h_work); |
| cancel_work_sync(&rtwdev->update_beacon_work); |
| cancel_delayed_work_sync(&rtwdev->watch_dog_work); |
| cancel_delayed_work_sync(&coex->bt_relink_work); |
| cancel_delayed_work_sync(&coex->bt_reenable_work); |
| cancel_delayed_work_sync(&coex->defreeze_work); |
| cancel_delayed_work_sync(&coex->wl_remain_work); |
| cancel_delayed_work_sync(&coex->bt_remain_work); |
| cancel_delayed_work_sync(&coex->wl_connecting_work); |
| cancel_delayed_work_sync(&coex->bt_multi_link_remain_work); |
| cancel_delayed_work_sync(&coex->wl_ccklock_work); |
| |
| mutex_lock(&rtwdev->mutex); |
| |
| rtw_power_off(rtwdev); |
| } |
| |
| static void rtw_init_ht_cap(struct rtw_dev *rtwdev, |
| struct ieee80211_sta_ht_cap *ht_cap) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| |
| ht_cap->ht_supported = true; |
| ht_cap->cap = 0; |
| ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | |
| IEEE80211_HT_CAP_MAX_AMSDU | |
| (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); |
| |
| if (rtw_chip_has_rx_ldpc(rtwdev)) |
| ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING; |
| if (rtw_chip_has_tx_stbc(rtwdev)) |
| ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; |
| |
| if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) |
| ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | |
| IEEE80211_HT_CAP_DSSSCCK40 | |
| IEEE80211_HT_CAP_SGI_40; |
| ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; |
| ht_cap->ampdu_density = chip->ampdu_density; |
| ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; |
| if (efuse->hw_cap.nss > 1) { |
| ht_cap->mcs.rx_mask[0] = 0xFF; |
| ht_cap->mcs.rx_mask[1] = 0xFF; |
| ht_cap->mcs.rx_mask[4] = 0x01; |
| ht_cap->mcs.rx_highest = cpu_to_le16(300); |
| } else { |
| ht_cap->mcs.rx_mask[0] = 0xFF; |
| ht_cap->mcs.rx_mask[1] = 0x00; |
| ht_cap->mcs.rx_mask[4] = 0x01; |
| ht_cap->mcs.rx_highest = cpu_to_le16(150); |
| } |
| } |
| |
| static void rtw_init_vht_cap(struct rtw_dev *rtwdev, |
| struct ieee80211_sta_vht_cap *vht_cap) |
| { |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| u16 mcs_map; |
| __le16 highest; |
| |
| if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && |
| efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) |
| return; |
| |
| vht_cap->vht_supported = true; |
| vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | |
| IEEE80211_VHT_CAP_SHORT_GI_80 | |
| IEEE80211_VHT_CAP_RXSTBC_1 | |
| IEEE80211_VHT_CAP_HTC_VHT | |
| IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | |
| 0; |
| if (rtwdev->hal.rf_path_num > 1) |
| vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; |
| vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | |
| IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; |
| vht_cap->cap |= (rtwdev->hal.bfee_sts_cap << |
| IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); |
| |
| if (rtw_chip_has_rx_ldpc(rtwdev)) |
| vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; |
| |
| mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; |
| if (efuse->hw_cap.nss > 1) { |
| highest = cpu_to_le16(780); |
| mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; |
| } else { |
| highest = cpu_to_le16(390); |
| mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; |
| } |
| |
| vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); |
| vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); |
| vht_cap->vht_mcs.rx_highest = highest; |
| vht_cap->vht_mcs.tx_highest = highest; |
| } |
| |
| static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev) |
| { |
| u16 len; |
| |
| len = rtwdev->chip->max_scan_ie_len; |
| |
| if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) && |
| rtwdev->chip->id == RTW_CHIP_TYPE_8822C) |
| len = IEEE80211_MAX_DATA_LEN; |
| else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM)) |
| len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE; |
| |
| return len; |
| } |
| |
| static void rtw_set_supported_band(struct ieee80211_hw *hw, |
| const struct rtw_chip_info *chip) |
| { |
| struct rtw_dev *rtwdev = hw->priv; |
| struct ieee80211_supported_band *sband; |
| |
| if (chip->band & RTW_BAND_2G) { |
| sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); |
| if (!sband) |
| goto err_out; |
| if (chip->ht_supported) |
| rtw_init_ht_cap(rtwdev, &sband->ht_cap); |
| hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; |
| } |
| |
| if (chip->band & RTW_BAND_5G) { |
| sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); |
| if (!sband) |
| goto err_out; |
| if (chip->ht_supported) |
| rtw_init_ht_cap(rtwdev, &sband->ht_cap); |
| if (chip->vht_supported) |
| rtw_init_vht_cap(rtwdev, &sband->vht_cap); |
| hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; |
| } |
| |
| return; |
| |
| err_out: |
| rtw_err(rtwdev, "failed to set supported band\n"); |
| } |
| |
| static void rtw_unset_supported_band(struct ieee80211_hw *hw, |
| const struct rtw_chip_info *chip) |
| { |
| kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); |
| kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); |
| } |
| |
| static void rtw_vif_smps_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rtw_dev *rtwdev = (struct rtw_dev *)data; |
| |
| if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc) |
| return; |
| |
| if (rtwdev->hal.txrx_1ss) |
| ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC); |
| else |
| ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF); |
| } |
| |
| void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_hal *hal = &rtwdev->hal; |
| |
| if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss) |
| return; |
| |
| rtwdev->hal.txrx_1ss = txrx_1ss; |
| if (txrx_1ss) |
| chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false); |
| else |
| chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx, |
| hal->antenna_rx, false); |
| rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev); |
| } |
| |
| static void __update_firmware_feature(struct rtw_dev *rtwdev, |
| struct rtw_fw_state *fw) |
| { |
| u32 feature; |
| const struct rtw_fw_hdr *fw_hdr = |
| (const struct rtw_fw_hdr *)fw->firmware->data; |
| |
| feature = le32_to_cpu(fw_hdr->feature); |
| fw->feature = feature & FW_FEATURE_SIG ? feature : 0; |
| |
| if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C && |
| RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13)) |
| fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM; |
| } |
| |
| static void __update_firmware_info(struct rtw_dev *rtwdev, |
| struct rtw_fw_state *fw) |
| { |
| const struct rtw_fw_hdr *fw_hdr = |
| (const struct rtw_fw_hdr *)fw->firmware->data; |
| |
| fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver); |
| fw->version = le16_to_cpu(fw_hdr->version); |
| fw->sub_version = fw_hdr->subversion; |
| fw->sub_index = fw_hdr->subindex; |
| |
| __update_firmware_feature(rtwdev, fw); |
| } |
| |
| static void __update_firmware_info_legacy(struct rtw_dev *rtwdev, |
| struct rtw_fw_state *fw) |
| { |
| struct rtw_fw_hdr_legacy *legacy = |
| (struct rtw_fw_hdr_legacy *)fw->firmware->data; |
| |
| fw->h2c_version = 0; |
| fw->version = le16_to_cpu(legacy->version); |
| fw->sub_version = legacy->subversion1; |
| fw->sub_index = legacy->subversion2; |
| } |
| |
| static void update_firmware_info(struct rtw_dev *rtwdev, |
| struct rtw_fw_state *fw) |
| { |
| if (rtw_chip_wcpu_11n(rtwdev)) |
| __update_firmware_info_legacy(rtwdev, fw); |
| else |
| __update_firmware_info(rtwdev, fw); |
| } |
| |
| static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) |
| { |
| struct rtw_fw_state *fw = context; |
| struct rtw_dev *rtwdev = fw->rtwdev; |
| |
| if (!firmware || !firmware->data) { |
| rtw_err(rtwdev, "failed to request firmware\n"); |
| complete_all(&fw->completion); |
| return; |
| } |
| |
| fw->firmware = firmware; |
| update_firmware_info(rtwdev, fw); |
| complete_all(&fw->completion); |
| |
| rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n", |
| fw->type == RTW_WOWLAN_FW ? "WOW " : "", |
| fw->version, fw->sub_version, fw->sub_index, fw->h2c_version); |
| } |
| |
| static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type) |
| { |
| const char *fw_name; |
| struct rtw_fw_state *fw; |
| int ret; |
| |
| switch (type) { |
| case RTW_WOWLAN_FW: |
| fw = &rtwdev->wow_fw; |
| fw_name = rtwdev->chip->wow_fw_name; |
| break; |
| |
| case RTW_NORMAL_FW: |
| fw = &rtwdev->fw; |
| fw_name = rtwdev->chip->fw_name; |
| break; |
| |
| default: |
| rtw_warn(rtwdev, "unsupported firmware type\n"); |
| return -ENOENT; |
| } |
| |
| fw->type = type; |
| fw->rtwdev = rtwdev; |
| init_completion(&fw->completion); |
| |
| ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, |
| GFP_KERNEL, fw, rtw_load_firmware_cb); |
| if (ret) { |
| rtw_err(rtwdev, "failed to async firmware request\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_hal *hal = &rtwdev->hal; |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| |
| switch (rtw_hci_type(rtwdev)) { |
| case RTW_HCI_TYPE_PCIE: |
| rtwdev->hci.rpwm_addr = 0x03d9; |
| rtwdev->hci.cpwm_addr = 0x03da; |
| break; |
| case RTW_HCI_TYPE_SDIO: |
| rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1; |
| rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2; |
| break; |
| case RTW_HCI_TYPE_USB: |
| rtwdev->hci.rpwm_addr = 0xfe58; |
| rtwdev->hci.cpwm_addr = 0xfe57; |
| break; |
| default: |
| rtw_err(rtwdev, "unsupported hci type\n"); |
| return -EINVAL; |
| } |
| |
| hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); |
| hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); |
| hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; |
| if (hal->chip_version & BIT_RF_TYPE_ID) { |
| hal->rf_type = RF_2T2R; |
| hal->rf_path_num = 2; |
| hal->antenna_tx = BB_PATH_AB; |
| hal->antenna_rx = BB_PATH_AB; |
| } else { |
| hal->rf_type = RF_1T1R; |
| hal->rf_path_num = 1; |
| hal->antenna_tx = BB_PATH_A; |
| hal->antenna_rx = BB_PATH_A; |
| } |
| hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num : |
| hal->rf_path_num; |
| |
| efuse->physical_size = chip->phy_efuse_size; |
| efuse->logical_size = chip->log_efuse_size; |
| efuse->protect_size = chip->ptct_efuse_size; |
| |
| /* default use ack */ |
| rtwdev->hal.rcr |= BIT_VHT_DACK; |
| |
| hal->bfee_sts_cap = 3; |
| |
| return 0; |
| } |
| |
| static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) |
| { |
| struct rtw_fw_state *fw = &rtwdev->fw; |
| int ret; |
| |
| ret = rtw_hci_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup hci\n"); |
| goto err; |
| } |
| |
| ret = rtw_mac_power_on(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to power on mac\n"); |
| goto err; |
| } |
| |
| rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); |
| |
| wait_for_completion(&fw->completion); |
| if (!fw->firmware) { |
| ret = -EINVAL; |
| rtw_err(rtwdev, "failed to load firmware\n"); |
| goto err; |
| } |
| |
| ret = rtw_download_firmware(rtwdev, fw); |
| if (ret) { |
| rtw_err(rtwdev, "failed to download firmware\n"); |
| goto err_off; |
| } |
| |
| return 0; |
| |
| err_off: |
| rtw_mac_power_off(rtwdev); |
| |
| err: |
| return ret; |
| } |
| |
| static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) |
| { |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| u8 hw_feature[HW_FEATURE_LEN]; |
| u8 id; |
| u8 bw; |
| int i; |
| |
| id = rtw_read8(rtwdev, REG_C2HEVT); |
| if (id != C2H_HW_FEATURE_REPORT) { |
| rtw_err(rtwdev, "failed to read hw feature report\n"); |
| return -EBUSY; |
| } |
| |
| for (i = 0; i < HW_FEATURE_LEN; i++) |
| hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); |
| |
| rtw_write8(rtwdev, REG_C2HEVT, 0); |
| |
| bw = GET_EFUSE_HW_CAP_BW(hw_feature); |
| efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); |
| efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); |
| efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); |
| efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); |
| efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); |
| |
| rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); |
| |
| if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE || |
| efuse->hw_cap.nss > rtwdev->hal.rf_path_num) |
| efuse->hw_cap.nss = rtwdev->hal.rf_path_num; |
| |
| rtw_dbg(rtwdev, RTW_DBG_EFUSE, |
| "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", |
| efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, |
| efuse->hw_cap.ant_num, efuse->hw_cap.nss); |
| |
| return 0; |
| } |
| |
| static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) |
| { |
| rtw_hci_stop(rtwdev); |
| rtw_mac_power_off(rtwdev); |
| } |
| |
| static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) |
| { |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| int ret; |
| |
| mutex_lock(&rtwdev->mutex); |
| |
| /* power on mac to read efuse */ |
| ret = rtw_chip_efuse_enable(rtwdev); |
| if (ret) |
| goto out_unlock; |
| |
| ret = rtw_parse_efuse_map(rtwdev); |
| if (ret) |
| goto out_disable; |
| |
| ret = rtw_dump_hw_feature(rtwdev); |
| if (ret) |
| goto out_disable; |
| |
| ret = rtw_check_supported_rfe(rtwdev); |
| if (ret) |
| goto out_disable; |
| |
| if (efuse->crystal_cap == 0xff) |
| efuse->crystal_cap = 0; |
| if (efuse->pa_type_2g == 0xff) |
| efuse->pa_type_2g = 0; |
| if (efuse->pa_type_5g == 0xff) |
| efuse->pa_type_5g = 0; |
| if (efuse->lna_type_2g == 0xff) |
| efuse->lna_type_2g = 0; |
| if (efuse->lna_type_5g == 0xff) |
| efuse->lna_type_5g = 0; |
| if (efuse->channel_plan == 0xff) |
| efuse->channel_plan = 0x7f; |
| if (efuse->rf_board_option == 0xff) |
| efuse->rf_board_option = 0; |
| if (efuse->bt_setting & BIT(0)) |
| efuse->share_ant = true; |
| if (efuse->regd == 0xff) |
| efuse->regd = 0; |
| if (efuse->tx_bb_swing_setting_2g == 0xff) |
| efuse->tx_bb_swing_setting_2g = 0; |
| if (efuse->tx_bb_swing_setting_5g == 0xff) |
| efuse->tx_bb_swing_setting_5g = 0; |
| |
| efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20; |
| efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; |
| efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; |
| efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; |
| efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0; |
| |
| if (!is_valid_ether_addr(efuse->addr)) { |
| eth_random_addr(efuse->addr); |
| dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n"); |
| } |
| |
| out_disable: |
| rtw_chip_efuse_disable(rtwdev); |
| |
| out_unlock: |
| mutex_unlock(&rtwdev->mutex); |
| return ret; |
| } |
| |
| static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) |
| { |
| struct rtw_hal *hal = &rtwdev->hal; |
| const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); |
| |
| if (!rfe_def) |
| return -ENODEV; |
| |
| rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type); |
| |
| rtw_phy_init_tx_power(rtwdev); |
| rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); |
| rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); |
| rtw_phy_tx_power_by_rate_config(hal); |
| rtw_phy_tx_power_limit_config(hal); |
| |
| return 0; |
| } |
| |
| int rtw_chip_info_setup(struct rtw_dev *rtwdev) |
| { |
| int ret; |
| |
| ret = rtw_chip_parameter_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup chip parameters\n"); |
| goto err_out; |
| } |
| |
| ret = rtw_chip_efuse_info_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup chip efuse info\n"); |
| goto err_out; |
| } |
| |
| ret = rtw_chip_board_info_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup chip board info\n"); |
| goto err_out; |
| } |
| |
| return 0; |
| |
| err_out: |
| return ret; |
| } |
| EXPORT_SYMBOL(rtw_chip_info_setup); |
| |
| static void rtw_stats_init(struct rtw_dev *rtwdev) |
| { |
| struct rtw_traffic_stats *stats = &rtwdev->stats; |
| struct rtw_dm_info *dm_info = &rtwdev->dm_info; |
| int i; |
| |
| ewma_tp_init(&stats->tx_ewma_tp); |
| ewma_tp_init(&stats->rx_ewma_tp); |
| |
| for (i = 0; i < RTW_EVM_NUM; i++) |
| ewma_evm_init(&dm_info->ewma_evm[i]); |
| for (i = 0; i < RTW_SNR_NUM; i++) |
| ewma_snr_init(&dm_info->ewma_snr[i]); |
| } |
| |
| int rtw_core_init(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_coex *coex = &rtwdev->coex; |
| int ret; |
| |
| INIT_LIST_HEAD(&rtwdev->rsvd_page_list); |
| INIT_LIST_HEAD(&rtwdev->txqs); |
| |
| timer_setup(&rtwdev->tx_report.purge_timer, |
| rtw_tx_report_purge_timer, 0); |
| rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0); |
| if (!rtwdev->tx_wq) { |
| rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n"); |
| return -ENOMEM; |
| } |
| |
| INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); |
| INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work); |
| INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work); |
| INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work); |
| INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work); |
| INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work); |
| INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work); |
| INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work, |
| rtw_coex_bt_multi_link_remain_work); |
| INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work); |
| INIT_WORK(&rtwdev->tx_work, rtw_tx_work); |
| INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); |
| INIT_WORK(&rtwdev->ips_work, rtw_ips_work); |
| INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work); |
| INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work); |
| INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work); |
| skb_queue_head_init(&rtwdev->c2h_queue); |
| skb_queue_head_init(&rtwdev->coex.queue); |
| skb_queue_head_init(&rtwdev->tx_report.queue); |
| |
| spin_lock_init(&rtwdev->txq_lock); |
| spin_lock_init(&rtwdev->tx_report.q_lock); |
| |
| mutex_init(&rtwdev->mutex); |
| mutex_init(&rtwdev->hal.tx_power_mutex); |
| |
| init_waitqueue_head(&rtwdev->coex.wait); |
| init_completion(&rtwdev->lps_leave_check); |
| init_completion(&rtwdev->fw_scan_density); |
| |
| rtwdev->sec.total_cam_num = 32; |
| rtwdev->hal.current_channel = 1; |
| rtwdev->dm_info.fix_rate = U8_MAX; |
| |
| rtw_stats_init(rtwdev); |
| |
| /* default rx filter setting */ |
| rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | |
| BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | |
| BIT_AB | BIT_AM | BIT_APM; |
| |
| ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW); |
| if (ret) { |
| rtw_warn(rtwdev, "no firmware loaded\n"); |
| goto out; |
| } |
| |
| if (chip->wow_fw_name) { |
| ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW); |
| if (ret) { |
| rtw_warn(rtwdev, "no wow firmware loaded\n"); |
| wait_for_completion(&rtwdev->fw.completion); |
| if (rtwdev->fw.firmware) |
| release_firmware(rtwdev->fw.firmware); |
| goto out; |
| } |
| } |
| |
| return 0; |
| |
| out: |
| destroy_workqueue(rtwdev->tx_wq); |
| return ret; |
| } |
| EXPORT_SYMBOL(rtw_core_init); |
| |
| void rtw_core_deinit(struct rtw_dev *rtwdev) |
| { |
| struct rtw_fw_state *fw = &rtwdev->fw; |
| struct rtw_fw_state *wow_fw = &rtwdev->wow_fw; |
| struct rtw_rsvd_page *rsvd_pkt, *tmp; |
| unsigned long flags; |
| |
| rtw_wait_firmware_completion(rtwdev); |
| |
| if (fw->firmware) |
| release_firmware(fw->firmware); |
| |
| if (wow_fw->firmware) |
| release_firmware(wow_fw->firmware); |
| |
| destroy_workqueue(rtwdev->tx_wq); |
| timer_delete_sync(&rtwdev->tx_report.purge_timer); |
| spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); |
| skb_queue_purge(&rtwdev->tx_report.queue); |
| spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); |
| skb_queue_purge(&rtwdev->coex.queue); |
| skb_queue_purge(&rtwdev->c2h_queue); |
| |
| list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, |
| build_list) { |
| list_del(&rsvd_pkt->build_list); |
| kfree(rsvd_pkt); |
| } |
| |
| mutex_destroy(&rtwdev->mutex); |
| mutex_destroy(&rtwdev->hal.tx_power_mutex); |
| } |
| EXPORT_SYMBOL(rtw_core_deinit); |
| |
| int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) |
| { |
| bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO; |
| struct rtw_hal *hal = &rtwdev->hal; |
| int max_tx_headroom = 0; |
| int ret; |
| |
| max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; |
| |
| if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO) |
| max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN; |
| |
| hw->extra_tx_headroom = max_tx_headroom; |
| hw->queues = IEEE80211_NUM_ACS; |
| hw->txq_data_size = sizeof(struct rtw_txq); |
| hw->sta_data_size = sizeof(struct rtw_sta_info); |
| hw->vif_data_size = sizeof(struct rtw_vif); |
| |
| ieee80211_hw_set(hw, SIGNAL_DBM); |
| ieee80211_hw_set(hw, RX_INCLUDES_FCS); |
| ieee80211_hw_set(hw, AMPDU_AGGREGATION); |
| ieee80211_hw_set(hw, MFP_CAPABLE); |
| ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); |
| ieee80211_hw_set(hw, SUPPORTS_PS); |
| ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); |
| ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); |
| ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); |
| ieee80211_hw_set(hw, HAS_RATE_CONTROL); |
| ieee80211_hw_set(hw, TX_AMSDU); |
| ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS); |
| |
| if (sta_mode_only) |
| hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); |
| else |
| hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | |
| BIT(NL80211_IFTYPE_AP) | |
| BIT(NL80211_IFTYPE_ADHOC); |
| hw->wiphy->available_antennas_tx = hal->antenna_tx; |
| hw->wiphy->available_antennas_rx = hal->antenna_rx; |
| |
| hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | |
| WIPHY_FLAG_TDLS_EXTERNAL_SETUP; |
| |
| hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; |
| hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS; |
| hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev); |
| |
| if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) { |
| hw->wiphy->iface_combinations = rtw_iface_combs; |
| hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs); |
| } |
| |
| wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); |
| wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN); |
| wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); |
| |
| #ifdef CONFIG_PM |
| hw->wiphy->wowlan = rtwdev->chip->wowlan_stub; |
| hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids; |
| #endif |
| rtw_set_supported_band(hw, rtwdev->chip); |
| SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); |
| |
| hw->wiphy->sar_capa = &rtw_sar_capa; |
| |
| ret = rtw_regd_init(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to init regd\n"); |
| return ret; |
| } |
| |
| ret = ieee80211_register_hw(hw); |
| if (ret) { |
| rtw_err(rtwdev, "failed to register hw\n"); |
| return ret; |
| } |
| |
| ret = rtw_regd_hint(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to hint regd\n"); |
| return ret; |
| } |
| |
| rtw_debugfs_init(rtwdev); |
| |
| rtwdev->bf_info.bfer_mu_cnt = 0; |
| rtwdev->bf_info.bfer_su_cnt = 0; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rtw_register_hw); |
| |
| void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| |
| ieee80211_unregister_hw(hw); |
| rtw_unset_supported_band(hw, chip); |
| rtw_debugfs_deinit(rtwdev); |
| } |
| EXPORT_SYMBOL(rtw_unregister_hw); |
| |
| static |
| void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, |
| const struct rtw_hw_reg *reg2, u8 nbytes) |
| { |
| u8 i; |
| |
| for (i = 0; i < nbytes; i++) { |
| u8 v1 = rtw_read8(rtwdev, reg1->addr + i); |
| u8 v2 = rtw_read8(rtwdev, reg2->addr + i); |
| |
| rtw_write8(rtwdev, reg1->addr + i, v2); |
| rtw_write8(rtwdev, reg2->addr + i, v1); |
| } |
| } |
| |
| static |
| void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, |
| const struct rtw_hw_reg *reg2) |
| { |
| u32 v1, v2; |
| |
| v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask); |
| v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask); |
| rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1); |
| rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2); |
| } |
| |
| struct rtw_iter_port_switch_data { |
| struct rtw_dev *rtwdev; |
| struct rtw_vif *rtwvif_ap; |
| }; |
| |
| static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif) |
| { |
| struct rtw_iter_port_switch_data *iter_data = data; |
| struct rtw_dev *rtwdev = iter_data->rtwdev; |
| struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv; |
| struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap; |
| const struct rtw_hw_reg *reg1, *reg2; |
| |
| if (rtwvif_target->port != RTW_PORT_0) |
| return; |
| |
| rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n", |
| rtwvif_ap->port, rtwvif_target->port); |
| |
| /* Leave LPS so the value swapped are not in PS mode */ |
| rtw_leave_lps(rtwdev); |
| |
| reg1 = &rtwvif_ap->conf->net_type; |
| reg2 = &rtwvif_target->conf->net_type; |
| rtw_swap_reg_mask(rtwdev, reg1, reg2); |
| |
| reg1 = &rtwvif_ap->conf->mac_addr; |
| reg2 = &rtwvif_target->conf->mac_addr; |
| rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); |
| |
| reg1 = &rtwvif_ap->conf->bssid; |
| reg2 = &rtwvif_target->conf->bssid; |
| rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); |
| |
| reg1 = &rtwvif_ap->conf->bcn_ctrl; |
| reg2 = &rtwvif_target->conf->bcn_ctrl; |
| rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1); |
| |
| swap(rtwvif_target->port, rtwvif_ap->port); |
| swap(rtwvif_target->conf, rtwvif_ap->conf); |
| |
| rtw_fw_default_port(rtwdev, rtwvif_target); |
| } |
| |
| void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif) |
| { |
| struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; |
| struct rtw_iter_port_switch_data iter_data; |
| |
| if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0) |
| return; |
| |
| iter_data.rtwdev = rtwdev; |
| iter_data.rtwvif_ap = rtwvif; |
| rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data); |
| } |
| |
| static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif) |
| { |
| struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; |
| bool *active = data; |
| |
| if (*active) |
| return; |
| |
| if (vif->type != NL80211_IFTYPE_STATION) |
| return; |
| |
| if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid)) |
| *active = true; |
| } |
| |
| bool rtw_core_check_sta_active(struct rtw_dev *rtwdev) |
| { |
| bool sta_active = false; |
| |
| rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active); |
| |
| return rtwdev->ap_active || sta_active; |
| } |
| |
| void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable) |
| { |
| if (!rtwdev->ap_active) |
| return; |
| |
| if (enable) { |
| rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); |
| rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE); |
| } else { |
| rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); |
| rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE); |
| } |
| } |
| |
| MODULE_AUTHOR("Realtek Corporation"); |
| MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); |
| MODULE_LICENSE("Dual BSD/GPL"); |