blob: ca8dbec65f736caeda5168d8076c4c788974f1f0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* u_audio.c -- interface to USB gadget "ALSA sound card" utilities
*
* Copyright (C) 2016
* Author: Ruslan Bilovol <ruslan.bilovol@gmail.com>
*
* Sound card implementation was cut-and-pasted with changes
* from f_uac2.c and has:
* Copyright (C) 2011
* Yadwinder Singh (yadi.brar01@gmail.com)
* Jaswinder Singh (jaswinder.singh@linaro.org)
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <linux/usb/audio.h>
#include "u_audio.h"
#define BUFF_SIZE_MAX (PAGE_SIZE * 16)
#define PRD_SIZE_MAX PAGE_SIZE
#define MIN_PERIODS 4
enum {
UAC_FBACK_CTRL,
UAC_P_PITCH_CTRL,
UAC_MUTE_CTRL,
UAC_VOLUME_CTRL,
UAC_RATE_CTRL,
};
/* Runtime data params for one stream */
struct uac_rtd_params {
struct snd_uac_chip *uac; /* parent chip */
bool ep_enabled; /* if the ep is enabled */
struct snd_pcm_substream *ss;
/* Ring buffer */
ssize_t hw_ptr;
void *rbuf;
unsigned int pitch; /* Stream pitch ratio to 1000000 */
unsigned int max_psize; /* MaxPacketSize of endpoint */
struct usb_request **reqs;
struct usb_request *req_fback; /* Feedback endpoint request */
bool fb_ep_enabled; /* if the ep is enabled */
/* Volume/Mute controls and their state */
int fu_id; /* Feature Unit ID */
struct snd_ctl_elem_id snd_kctl_volume_id;
struct snd_ctl_elem_id snd_kctl_mute_id;
s16 volume_min, volume_max, volume_res;
s16 volume;
int mute;
struct snd_ctl_elem_id snd_kctl_rate_id; /* read-only current rate */
int srate; /* selected samplerate */
int active; /* playback/capture running */
spinlock_t lock; /* lock for control transfers */
};
struct snd_uac_chip {
struct g_audio *audio_dev;
struct uac_rtd_params p_prm;
struct uac_rtd_params c_prm;
struct snd_card *card;
struct snd_pcm *pcm;
/* pre-calculated values for playback iso completion */
unsigned long long p_residue_mil;
unsigned int p_interval;
unsigned int p_framesize;
};
static const struct snd_pcm_hardware uac_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER
| SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID
| SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX,
.buffer_bytes_max = BUFF_SIZE_MAX,
.period_bytes_max = PRD_SIZE_MAX,
.periods_min = MIN_PERIODS,
};
static void u_audio_set_fback_frequency(enum usb_device_speed speed,
struct usb_ep *out_ep,
unsigned long long freq,
unsigned int pitch,
void *buf)
{
u32 ff = 0;
const struct usb_endpoint_descriptor *ep_desc;
/*
* Because the pitch base is 1000000, the final divider here
* will be 1000 * 1000000 = 1953125 << 9
*
* Instead of dealing with big numbers lets fold this 9 left shift
*/
if (speed == USB_SPEED_FULL) {
/*
* Full-speed feedback endpoints report frequency
* in samples/frame
* Format is encoded in Q10.10 left-justified in the 24 bits,
* so that it has a Q10.14 format.
*
* ff = (freq << 14) / 1000
*/
freq <<= 5;
} else {
/*
* High-speed feedback endpoints report frequency
* in samples/microframe.
* Format is encoded in Q12.13 fitted into four bytes so that
* the binary point is located between the second and the third
* byte fromat (that is Q16.16)
*
* ff = (freq << 16) / 8000
*
* Win10 and OSX UAC2 drivers require number of samples per packet
* in order to honor the feedback value.
* Linux snd-usb-audio detects the applied bit-shift automatically.
*/
ep_desc = out_ep->desc;
freq <<= 4 + (ep_desc->bInterval - 1);
}
ff = DIV_ROUND_CLOSEST_ULL((freq * pitch), 1953125);
*(__le32 *)buf = cpu_to_le32(ff);
}
static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req)
{
unsigned int pending;
unsigned int hw_ptr;
int status = req->status;
struct snd_pcm_substream *substream;
struct snd_pcm_runtime *runtime;
struct uac_rtd_params *prm = req->context;
struct snd_uac_chip *uac = prm->uac;
unsigned int frames, p_pktsize;
unsigned long long pitched_rate_mil, p_pktsize_residue_mil,
residue_frames_mil, div_result;
/* i/f shutting down */
if (!prm->ep_enabled) {
usb_ep_free_request(ep, req);
return;
}
if (req->status == -ESHUTDOWN)
return;
/*
* We can't really do much about bad xfers.
* Afterall, the ISOCH xfers could fail legitimately.
*/
if (status)
pr_debug("%s: iso_complete status(%d) %d/%d\n",
__func__, status, req->actual, req->length);
substream = prm->ss;
/* Do nothing if ALSA isn't active */
if (!substream)
goto exit;
snd_pcm_stream_lock(substream);
runtime = substream->runtime;
if (!runtime || !snd_pcm_running(substream)) {
snd_pcm_stream_unlock(substream);
goto exit;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/*
* For each IN packet, take the quotient of the current data
* rate and the endpoint's interval as the base packet size.
* If there is a residue from this division, add it to the
* residue accumulator.
*/
unsigned long long p_interval_mil = uac->p_interval * 1000000ULL;
pitched_rate_mil = (unsigned long long) prm->srate * prm->pitch;
div_result = pitched_rate_mil;
do_div(div_result, uac->p_interval);
do_div(div_result, 1000000);
frames = (unsigned int) div_result;
pr_debug("p_srate %d, pitch %d, interval_mil %llu, frames %d\n",
prm->srate, prm->pitch, p_interval_mil, frames);
p_pktsize = min_t(unsigned int,
uac->p_framesize * frames,
ep->maxpacket);
if (p_pktsize < ep->maxpacket) {
residue_frames_mil = pitched_rate_mil - frames * p_interval_mil;
p_pktsize_residue_mil = uac->p_framesize * residue_frames_mil;
} else
p_pktsize_residue_mil = 0;
req->length = p_pktsize;
uac->p_residue_mil += p_pktsize_residue_mil;
/*
* Whenever there are more bytes in the accumulator p_residue_mil than we
* need to add one more sample frame, increase this packet's
* size and decrease the accumulator.
*/
div_result = uac->p_residue_mil;
do_div(div_result, uac->p_interval);
do_div(div_result, 1000000);
if ((unsigned int) div_result >= uac->p_framesize) {
req->length += uac->p_framesize;
uac->p_residue_mil -= uac->p_framesize * p_interval_mil;
pr_debug("increased req length to %d\n", req->length);
}
pr_debug("remains uac->p_residue_mil %llu\n", uac->p_residue_mil);
req->actual = req->length;
}
hw_ptr = prm->hw_ptr;
/* Pack USB load in ALSA ring buffer */
pending = runtime->dma_bytes - hw_ptr;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (unlikely(pending < req->actual)) {
memcpy(req->buf, runtime->dma_area + hw_ptr, pending);
memcpy(req->buf + pending, runtime->dma_area,
req->actual - pending);
} else {
memcpy(req->buf, runtime->dma_area + hw_ptr,
req->actual);
}
} else {
if (unlikely(pending < req->actual)) {
memcpy(runtime->dma_area + hw_ptr, req->buf, pending);
memcpy(runtime->dma_area, req->buf + pending,
req->actual - pending);
} else {
memcpy(runtime->dma_area + hw_ptr, req->buf,
req->actual);
}
}
/* update hw_ptr after data is copied to memory */
prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes;
hw_ptr = prm->hw_ptr;
snd_pcm_stream_unlock(substream);
if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual)
snd_pcm_period_elapsed(substream);
exit:
if (usb_ep_queue(ep, req, GFP_ATOMIC))
dev_err(uac->card->dev, "%d Error!\n", __LINE__);
}
static void u_audio_iso_fback_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct uac_rtd_params *prm = req->context;
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
int status = req->status;
/* i/f shutting down */
if (!prm->fb_ep_enabled) {
kfree(req->buf);
usb_ep_free_request(ep, req);
return;
}
if (req->status == -ESHUTDOWN)
return;
/*
* We can't really do much about bad xfers.
* Afterall, the ISOCH xfers could fail legitimately.
*/
if (status)
pr_debug("%s: iso_complete status(%d) %d/%d\n",
__func__, status, req->actual, req->length);
u_audio_set_fback_frequency(audio_dev->gadget->speed, audio_dev->out_ep,
prm->srate, prm->pitch,
req->buf);
if (usb_ep_queue(ep, req, GFP_ATOMIC))
dev_err(uac->card->dev, "%d Error!\n", __LINE__);
}
static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct uac_rtd_params *prm;
struct g_audio *audio_dev;
struct uac_params *params;
int err = 0;
audio_dev = uac->audio_dev;
params = &audio_dev->params;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
/* Reset */
prm->hw_ptr = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
prm->ss = substream;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
prm->ss = NULL;
break;
default:
err = -EINVAL;
}
/* Clear buffer after Play stops */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss)
memset(prm->rbuf, 0, prm->max_psize * params->req_number);
return err;
}
static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct uac_rtd_params *prm;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
return bytes_to_frames(substream->runtime, prm->hw_ptr);
}
static u64 uac_ssize_to_fmt(int ssize)
{
u64 ret;
switch (ssize) {
case 3:
ret = SNDRV_PCM_FMTBIT_S24_3LE;
break;
case 4:
ret = SNDRV_PCM_FMTBIT_S32_LE;
break;
default:
ret = SNDRV_PCM_FMTBIT_S16_LE;
break;
}
return ret;
}
static int uac_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct g_audio *audio_dev;
struct uac_params *params;
struct uac_rtd_params *prm;
int p_ssize, c_ssize;
int p_chmask, c_chmask;
audio_dev = uac->audio_dev;
params = &audio_dev->params;
p_ssize = params->p_ssize;
c_ssize = params->c_ssize;
p_chmask = params->p_chmask;
c_chmask = params->c_chmask;
uac->p_residue_mil = 0;
runtime->hw = uac_pcm_hardware;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
runtime->hw.formats = uac_ssize_to_fmt(p_ssize);
runtime->hw.channels_min = num_channels(p_chmask);
prm = &uac->p_prm;
} else {
runtime->hw.formats = uac_ssize_to_fmt(c_ssize);
runtime->hw.channels_min = num_channels(c_chmask);
prm = &uac->c_prm;
}
runtime->hw.period_bytes_min = 2 * prm->max_psize
/ runtime->hw.periods_min;
runtime->hw.rate_min = prm->srate;
runtime->hw.rate_max = runtime->hw.rate_min;
runtime->hw.channels_max = runtime->hw.channels_min;
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
return 0;
}
/* ALSA cries without these function pointers */
static int uac_pcm_null(struct snd_pcm_substream *substream)
{
return 0;
}
static const struct snd_pcm_ops uac_pcm_ops = {
.open = uac_pcm_open,
.close = uac_pcm_null,
.trigger = uac_pcm_trigger,
.pointer = uac_pcm_pointer,
.prepare = uac_pcm_null,
};
static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep)
{
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev;
struct uac_params *params;
int i;
if (!prm->ep_enabled)
return;
audio_dev = uac->audio_dev;
params = &audio_dev->params;
for (i = 0; i < params->req_number; i++) {
if (prm->reqs[i]) {
if (usb_ep_dequeue(ep, prm->reqs[i]))
usb_ep_free_request(ep, prm->reqs[i]);
/*
* If usb_ep_dequeue() cannot successfully dequeue the
* request, the request will be freed by the completion
* callback.
*/
prm->reqs[i] = NULL;
}
}
prm->ep_enabled = false;
if (usb_ep_disable(ep))
dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
}
static inline void free_ep_fback(struct uac_rtd_params *prm, struct usb_ep *ep)
{
struct snd_uac_chip *uac = prm->uac;
if (!prm->fb_ep_enabled)
return;
if (prm->req_fback) {
if (usb_ep_dequeue(ep, prm->req_fback)) {
kfree(prm->req_fback->buf);
usb_ep_free_request(ep, prm->req_fback);
}
prm->req_fback = NULL;
}
prm->fb_ep_enabled = false;
if (usb_ep_disable(ep))
dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
}
static void set_active(struct uac_rtd_params *prm, bool active)
{
// notifying through the Rate ctrl
unsigned long flags;
spin_lock_irqsave(&prm->lock, flags);
if (prm->active != active) {
prm->active = active;
snd_ctl_notify(prm->uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
&prm->snd_kctl_rate_id);
}
spin_unlock_irqrestore(&prm->lock, flags);
}
int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate)
{
struct uac_params *params = &audio_dev->params;
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
int i;
unsigned long flags;
dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
prm = &uac->c_prm;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (params->c_srates[i] == srate) {
spin_lock_irqsave(&prm->lock, flags);
prm->srate = srate;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
if (params->c_srates[i] == 0)
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(u_audio_set_capture_srate);
int u_audio_get_capture_srate(struct g_audio *audio_dev, u32 *val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
prm = &uac->c_prm;
spin_lock_irqsave(&prm->lock, flags);
*val = prm->srate;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_get_capture_srate);
int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate)
{
struct uac_params *params = &audio_dev->params;
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
int i;
unsigned long flags;
dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
prm = &uac->p_prm;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (params->p_srates[i] == srate) {
spin_lock_irqsave(&prm->lock, flags);
prm->srate = srate;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
if (params->p_srates[i] == 0)
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(u_audio_set_playback_srate);
int u_audio_get_playback_srate(struct g_audio *audio_dev, u32 *val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
prm = &uac->p_prm;
spin_lock_irqsave(&prm->lock, flags);
*val = prm->srate;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_get_playback_srate);
int u_audio_start_capture(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct usb_gadget *gadget = audio_dev->gadget;
struct device *dev = &gadget->dev;
struct usb_request *req, *req_fback;
struct usb_ep *ep, *ep_fback;
struct uac_rtd_params *prm;
struct uac_params *params = &audio_dev->params;
int req_len, i, ret;
prm = &uac->c_prm;
dev_dbg(dev, "start capture with rate %d\n", prm->srate);
ep = audio_dev->out_ep;
ret = config_ep_by_speed(gadget, &audio_dev->func, ep);
if (ret < 0) {
dev_err(dev, "config_ep_by_speed for out_ep failed (%d)\n", ret);
return ret;
}
req_len = ep->maxpacket;
prm->ep_enabled = true;
ret = usb_ep_enable(ep);
if (ret < 0) {
dev_err(dev, "usb_ep_enable failed for out_ep (%d)\n", ret);
return ret;
}
for (i = 0; i < params->req_number; i++) {
if (!prm->reqs[i]) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req == NULL)
return -ENOMEM;
prm->reqs[i] = req;
req->zero = 0;
req->context = prm;
req->length = req_len;
req->complete = u_audio_iso_complete;
req->buf = prm->rbuf + i * ep->maxpacket;
}
if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
}
set_active(&uac->c_prm, true);
ep_fback = audio_dev->in_ep_fback;
if (!ep_fback)
return 0;
/* Setup feedback endpoint */
ret = config_ep_by_speed(gadget, &audio_dev->func, ep_fback);
if (ret < 0) {
dev_err(dev, "config_ep_by_speed in_ep_fback failed (%d)\n", ret);
return ret; // TODO: Clean up out_ep
}
prm->fb_ep_enabled = true;
ret = usb_ep_enable(ep_fback);
if (ret < 0) {
dev_err(dev, "usb_ep_enable failed for in_ep_fback (%d)\n", ret);
return ret; // TODO: Clean up out_ep
}
req_len = ep_fback->maxpacket;
req_fback = usb_ep_alloc_request(ep_fback, GFP_ATOMIC);
if (req_fback == NULL)
return -ENOMEM;
prm->req_fback = req_fback;
req_fback->zero = 0;
req_fback->context = prm;
req_fback->length = req_len;
req_fback->complete = u_audio_iso_fback_complete;
req_fback->buf = kzalloc(req_len, GFP_ATOMIC);
if (!req_fback->buf)
return -ENOMEM;
/*
* Configure the feedback endpoint's reported frequency.
* Always start with original frequency since its deviation can't
* be meauserd at start of playback
*/
prm->pitch = 1000000;
u_audio_set_fback_frequency(audio_dev->gadget->speed, ep,
prm->srate, prm->pitch,
req_fback->buf);
if (usb_ep_queue(ep_fback, req_fback, GFP_ATOMIC))
dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_start_capture);
void u_audio_stop_capture(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
set_active(&uac->c_prm, false);
if (audio_dev->in_ep_fback)
free_ep_fback(&uac->c_prm, audio_dev->in_ep_fback);
free_ep(&uac->c_prm, audio_dev->out_ep);
}
EXPORT_SYMBOL_GPL(u_audio_stop_capture);
int u_audio_start_playback(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct usb_gadget *gadget = audio_dev->gadget;
struct device *dev = &gadget->dev;
struct usb_request *req;
struct usb_ep *ep;
struct uac_rtd_params *prm;
struct uac_params *params = &audio_dev->params;
unsigned int factor;
const struct usb_endpoint_descriptor *ep_desc;
int req_len, i, ret;
unsigned int p_pktsize;
prm = &uac->p_prm;
dev_dbg(dev, "start playback with rate %d\n", prm->srate);
ep = audio_dev->in_ep;
ret = config_ep_by_speed(gadget, &audio_dev->func, ep);
if (ret < 0) {
dev_err(dev, "config_ep_by_speed for in_ep failed (%d)\n", ret);
return ret;
}
ep_desc = ep->desc;
/*
* Always start with original frequency
*/
prm->pitch = 1000000;
/* pre-calculate the playback endpoint's interval */
if (gadget->speed == USB_SPEED_FULL)
factor = 1000;
else
factor = 8000;
/* pre-compute some values for iso_complete() */
uac->p_framesize = params->p_ssize *
num_channels(params->p_chmask);
uac->p_interval = factor / (1 << (ep_desc->bInterval - 1));
p_pktsize = min_t(unsigned int,
uac->p_framesize *
(prm->srate / uac->p_interval),
ep->maxpacket);
req_len = p_pktsize;
uac->p_residue_mil = 0;
prm->ep_enabled = true;
ret = usb_ep_enable(ep);
if (ret < 0) {
dev_err(dev, "usb_ep_enable failed for in_ep (%d)\n", ret);
return ret;
}
for (i = 0; i < params->req_number; i++) {
if (!prm->reqs[i]) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req == NULL)
return -ENOMEM;
prm->reqs[i] = req;
req->zero = 0;
req->context = prm;
req->length = req_len;
req->complete = u_audio_iso_complete;
req->buf = prm->rbuf + i * ep->maxpacket;
}
if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
}
set_active(&uac->p_prm, true);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_start_playback);
void u_audio_stop_playback(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
set_active(&uac->p_prm, false);
free_ep(&uac->p_prm, audio_dev->in_ep);
}
EXPORT_SYMBOL_GPL(u_audio_stop_playback);
void u_audio_suspend(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
set_active(&uac->p_prm, false);
set_active(&uac->c_prm, false);
}
EXPORT_SYMBOL_GPL(u_audio_suspend);
int u_audio_get_volume(struct g_audio *audio_dev, int playback, s16 *val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
if (playback)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
spin_lock_irqsave(&prm->lock, flags);
*val = prm->volume;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_get_volume);
int u_audio_set_volume(struct g_audio *audio_dev, int playback, s16 val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
int change = 0;
if (playback)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
spin_lock_irqsave(&prm->lock, flags);
val = clamp(val, prm->volume_min, prm->volume_max);
if (prm->volume != val) {
prm->volume = val;
change = 1;
}
spin_unlock_irqrestore(&prm->lock, flags);
if (change)
snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
&prm->snd_kctl_volume_id);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_set_volume);
int u_audio_get_mute(struct g_audio *audio_dev, int playback, int *val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
if (playback)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
spin_lock_irqsave(&prm->lock, flags);
*val = prm->mute;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_get_mute);
int u_audio_set_mute(struct g_audio *audio_dev, int playback, int val)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct uac_rtd_params *prm;
unsigned long flags;
int change = 0;
int mute;
if (playback)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
mute = val ? 1 : 0;
spin_lock_irqsave(&prm->lock, flags);
if (prm->mute != mute) {
prm->mute = mute;
change = 1;
}
spin_unlock_irqrestore(&prm->lock, flags);
if (change)
snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
&prm->snd_kctl_mute_id);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_set_mute);
static int u_audio_pitch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
struct uac_params *params = &audio_dev->params;
unsigned int pitch_min, pitch_max;
pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
pitch_max = (1000 + params->fb_max) * 1000;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = pitch_min;
uinfo->value.integer.max = pitch_max;
uinfo->value.integer.step = 1;
return 0;
}
static int u_audio_pitch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = prm->pitch;
return 0;
}
static int u_audio_pitch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
struct uac_params *params = &audio_dev->params;
unsigned int val;
unsigned int pitch_min, pitch_max;
int change = 0;
pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
pitch_max = (1000 + params->fb_max) * 1000;
val = ucontrol->value.integer.value[0];
if (val < pitch_min)
val = pitch_min;
if (val > pitch_max)
val = pitch_max;
if (prm->pitch != val) {
prm->pitch = val;
change = 1;
}
return change;
}
static int u_audio_mute_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
uinfo->value.integer.step = 1;
return 0;
}
static int u_audio_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&prm->lock, flags);
ucontrol->value.integer.value[0] = !prm->mute;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
static int u_audio_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
unsigned int val;
unsigned long flags;
int change = 0;
val = !ucontrol->value.integer.value[0];
spin_lock_irqsave(&prm->lock, flags);
if (val != prm->mute) {
prm->mute = val;
change = 1;
}
spin_unlock_irqrestore(&prm->lock, flags);
if (change && audio_dev->notify)
audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_MUTE);
return change;
}
/*
* TLV callback for mixer volume controls
*/
static int u_audio_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
DECLARE_TLV_DB_MINMAX(scale, 0, 0);
if (size < sizeof(scale))
return -ENOMEM;
/* UAC volume resolution is 1/256 dB, TLV is 1/100 dB */
scale[2] = (prm->volume_min * 100) / 256;
scale[3] = (prm->volume_max * 100) / 256;
if (copy_to_user(_tlv, scale, sizeof(scale)))
return -EFAULT;
return 0;
}
static int u_audio_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
(prm->volume_max - prm->volume_min + prm->volume_res - 1)
/ prm->volume_res;
uinfo->value.integer.step = 1;
return 0;
}
static int u_audio_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&prm->lock, flags);
ucontrol->value.integer.value[0] =
(prm->volume - prm->volume_min) / prm->volume_res;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
static int u_audio_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
unsigned int val;
s16 volume;
unsigned long flags;
int change = 0;
val = ucontrol->value.integer.value[0];
spin_lock_irqsave(&prm->lock, flags);
volume = (val * prm->volume_res) + prm->volume_min;
volume = clamp(volume, prm->volume_min, prm->volume_max);
if (volume != prm->volume) {
prm->volume = volume;
change = 1;
}
spin_unlock_irqrestore(&prm->lock, flags);
if (change && audio_dev->notify)
audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_VOLUME);
return change;
}
static int get_max_srate(const int *srates)
{
int i, max_srate = 0;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (srates[i] == 0)
break;
if (srates[i] > max_srate)
max_srate = srates[i];
}
return max_srate;
}
static int get_min_srate(const int *srates)
{
int i, min_srate = INT_MAX;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (srates[i] == 0)
break;
if (srates[i] < min_srate)
min_srate = srates[i];
}
return min_srate;
}
static int u_audio_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
const int *srates;
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev = uac->audio_dev;
struct uac_params *params = &audio_dev->params;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
if (prm == &uac->c_prm)
srates = params->c_srates;
else
srates = params->p_srates;
uinfo->value.integer.min = get_min_srate(srates);
uinfo->value.integer.max = get_max_srate(srates);
return 0;
}
static int u_audio_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&prm->lock, flags);
if (prm->active)
ucontrol->value.integer.value[0] = prm->srate;
else
/* not active: reporting zero rate */
ucontrol->value.integer.value[0] = 0;
spin_unlock_irqrestore(&prm->lock, flags);
return 0;
}
static struct snd_kcontrol_new u_audio_controls[] = {
[UAC_FBACK_CTRL] = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Capture Pitch 1000000",
.info = u_audio_pitch_info,
.get = u_audio_pitch_get,
.put = u_audio_pitch_put,
},
[UAC_P_PITCH_CTRL] = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Playback Pitch 1000000",
.info = u_audio_pitch_info,
.get = u_audio_pitch_get,
.put = u_audio_pitch_put,
},
[UAC_MUTE_CTRL] = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = u_audio_mute_info,
.get = u_audio_mute_get,
.put = u_audio_mute_put,
},
[UAC_VOLUME_CTRL] = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = u_audio_volume_info,
.get = u_audio_volume_get,
.put = u_audio_volume_put,
},
[UAC_RATE_CTRL] = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "", /* will be filled later */
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = u_audio_rate_info,
.get = u_audio_rate_get,
},
};
int g_audio_setup(struct g_audio *g_audio, const char *pcm_name,
const char *card_name)
{
struct snd_uac_chip *uac;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_kcontrol *kctl;
struct uac_params *params;
int p_chmask, c_chmask;
int i, err;
if (!g_audio)
return -EINVAL;
uac = kzalloc(sizeof(*uac), GFP_KERNEL);
if (!uac)
return -ENOMEM;
g_audio->uac = uac;
uac->audio_dev = g_audio;
params = &g_audio->params;
p_chmask = params->p_chmask;
c_chmask = params->c_chmask;
if (c_chmask) {
struct uac_rtd_params *prm = &uac->c_prm;
spin_lock_init(&prm->lock);
uac->c_prm.uac = uac;
prm->max_psize = g_audio->out_ep_maxpsize;
prm->srate = params->c_srates[0];
prm->reqs = kcalloc(params->req_number,
sizeof(struct usb_request *),
GFP_KERNEL);
if (!prm->reqs) {
err = -ENOMEM;
goto fail;
}
prm->rbuf = kcalloc(params->req_number, prm->max_psize,
GFP_KERNEL);
if (!prm->rbuf) {
prm->max_psize = 0;
err = -ENOMEM;
goto fail;
}
}
if (p_chmask) {
struct uac_rtd_params *prm = &uac->p_prm;
spin_lock_init(&prm->lock);
uac->p_prm.uac = uac;
prm->max_psize = g_audio->in_ep_maxpsize;
prm->srate = params->p_srates[0];
prm->reqs = kcalloc(params->req_number,
sizeof(struct usb_request *),
GFP_KERNEL);
if (!prm->reqs) {
err = -ENOMEM;
goto fail;
}
prm->rbuf = kcalloc(params->req_number, prm->max_psize,
GFP_KERNEL);
if (!prm->rbuf) {
prm->max_psize = 0;
err = -ENOMEM;
goto fail;
}
}
/* Choose any slot, with no id */
err = snd_card_new(&g_audio->gadget->dev,
-1, NULL, THIS_MODULE, 0, &card);
if (err < 0)
goto fail;
uac->card = card;
/*
* Create first PCM device
* Create a substream only for non-zero channel streams
*/
err = snd_pcm_new(uac->card, pcm_name, 0,
p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm);
if (err < 0)
goto snd_fail;
strscpy(pcm->name, pcm_name);
pcm->private_data = uac;
uac->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops);
/*
* Create mixer and controls
* Create only if it's required on USB side
*/
if ((c_chmask && g_audio->in_ep_fback)
|| (p_chmask && params->p_fu.id)
|| (c_chmask && params->c_fu.id))
strscpy(card->mixername, card_name);
if (c_chmask && g_audio->in_ep_fback) {
kctl = snd_ctl_new1(&u_audio_controls[UAC_FBACK_CTRL],
&uac->c_prm);
if (!kctl) {
err = -ENOMEM;
goto snd_fail;
}
kctl->id.device = pcm->device;
kctl->id.subdevice = 0;
err = snd_ctl_add(card, kctl);
if (err < 0)
goto snd_fail;
}
if (p_chmask) {
kctl = snd_ctl_new1(&u_audio_controls[UAC_P_PITCH_CTRL],
&uac->p_prm);
if (!kctl) {
err = -ENOMEM;
goto snd_fail;
}
kctl->id.device = pcm->device;
kctl->id.subdevice = 0;
err = snd_ctl_add(card, kctl);
if (err < 0)
goto snd_fail;
}
for (i = 0; i <= SNDRV_PCM_STREAM_LAST; i++) {
struct uac_rtd_params *prm;
struct uac_fu_params *fu;
char ctrl_name[24];
char *direction;
if (!pcm->streams[i].substream_count)
continue;
if (i == SNDRV_PCM_STREAM_PLAYBACK) {
prm = &uac->p_prm;
fu = &params->p_fu;
direction = "Playback";
} else {
prm = &uac->c_prm;
fu = &params->c_fu;
direction = "Capture";
}
prm->fu_id = fu->id;
if (fu->mute_present) {
snprintf(ctrl_name, sizeof(ctrl_name),
"PCM %s Switch", direction);
u_audio_controls[UAC_MUTE_CTRL].name = ctrl_name;
kctl = snd_ctl_new1(&u_audio_controls[UAC_MUTE_CTRL],
prm);
if (!kctl) {
err = -ENOMEM;
goto snd_fail;
}
kctl->id.device = pcm->device;
kctl->id.subdevice = 0;
err = snd_ctl_add(card, kctl);
if (err < 0)
goto snd_fail;
prm->snd_kctl_mute_id = kctl->id;
prm->mute = 0;
}
if (fu->volume_present) {
snprintf(ctrl_name, sizeof(ctrl_name),
"PCM %s Volume", direction);
u_audio_controls[UAC_VOLUME_CTRL].name = ctrl_name;
kctl = snd_ctl_new1(&u_audio_controls[UAC_VOLUME_CTRL],
prm);
if (!kctl) {
err = -ENOMEM;
goto snd_fail;
}
kctl->id.device = pcm->device;
kctl->id.subdevice = 0;
kctl->tlv.c = u_audio_volume_tlv;
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
err = snd_ctl_add(card, kctl);
if (err < 0)
goto snd_fail;
prm->snd_kctl_volume_id = kctl->id;
prm->volume = fu->volume_max;
prm->volume_max = fu->volume_max;
prm->volume_min = fu->volume_min;
prm->volume_res = fu->volume_res;
}
/* Add rate control */
snprintf(ctrl_name, sizeof(ctrl_name),
"%s Rate", direction);
u_audio_controls[UAC_RATE_CTRL].name = ctrl_name;
kctl = snd_ctl_new1(&u_audio_controls[UAC_RATE_CTRL], prm);
if (!kctl) {
err = -ENOMEM;
goto snd_fail;
}
kctl->id.device = pcm->device;
kctl->id.subdevice = 0;
err = snd_ctl_add(card, kctl);
if (err < 0)
goto snd_fail;
prm->snd_kctl_rate_id = kctl->id;
}
strscpy(card->driver, card_name);
strscpy(card->shortname, card_name);
snprintf(card->longname, sizeof(card->longname), "%s %i",
card_name, card->dev->id);
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
NULL, 0, BUFF_SIZE_MAX);
err = snd_card_register(card);
if (!err)
return 0;
snd_fail:
snd_card_free(card);
fail:
kfree(uac->p_prm.reqs);
kfree(uac->c_prm.reqs);
kfree(uac->p_prm.rbuf);
kfree(uac->c_prm.rbuf);
kfree(uac);
return err;
}
EXPORT_SYMBOL_GPL(g_audio_setup);
void g_audio_cleanup(struct g_audio *g_audio)
{
struct snd_uac_chip *uac;
struct snd_card *card;
if (!g_audio || !g_audio->uac)
return;
uac = g_audio->uac;
g_audio->uac = NULL;
card = uac->card;
if (card)
snd_card_free_when_closed(card);
kfree(uac->p_prm.reqs);
kfree(uac->c_prm.reqs);
kfree(uac->p_prm.rbuf);
kfree(uac->c_prm.rbuf);
kfree(uac);
}
EXPORT_SYMBOL_GPL(g_audio_cleanup);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities");
MODULE_AUTHOR("Ruslan Bilovol");