blob: d669ce25b5f9c1f77246c25438fb0d18853d17c0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) "OF: " fmt
#include <linux/device.h>
#include <linux/fwnode.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/logic_pio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/dma-direct.h> /* for bus_dma_region */
#include "of_private.h"
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
/* Debug utility */
#ifdef DEBUG
static void of_dump_addr(const char *s, const __be32 *addr, int na)
{
pr_debug("%s", s);
while (na--)
pr_cont(" %08x", be32_to_cpu(*(addr++)));
pr_cont("\n");
}
#else
static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
#endif
/* Callbacks for bus specific translators */
struct of_bus {
const char *name;
const char *addresses;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
u64 (*map)(__be32 *addr, const __be32 *range,
int na, int ns, int pna, int fna);
int (*translate)(__be32 *addr, u64 offset, int na);
int flag_cells;
unsigned int (*get_flags)(const __be32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dev);
if (sizec)
*sizec = of_n_size_cells(dev);
}
static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
int na, int ns, int pna, int fna)
{
u64 cp, s, da;
cp = of_read_number(range + fna, na - fna);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr + fna, na - fna);
pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
{
u64 a = of_read_number(addr, na);
memset(addr, 0, na * 4);
a += offset;
if (na > 1)
addr[na - 2] = cpu_to_be32(a >> 32);
addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
return 0;
}
static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
{
return of_read_number(addr, 1);
}
static unsigned int of_bus_default_get_flags(const __be32 *addr)
{
return IORESOURCE_MEM;
}
static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
int ns, int pna, int fna)
{
/* Check that flags match */
if (*addr != *range)
return OF_BAD_ADDR;
return of_bus_default_map(addr, range, na, ns, pna, fna);
}
static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
{
/* Keep "flags" part (high cell) in translated address */
return of_bus_default_translate(addr + 1, offset, na - 1);
}
#ifdef CONFIG_PCI
static unsigned int of_bus_pci_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
if (!IS_ENABLED(CONFIG_PCI))
return 0;
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
break;
case 0x02: /* 32 bits */
flags |= IORESOURCE_MEM;
break;
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
break;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
/*
* PCI bus specific translator
*/
static bool of_node_is_pcie(struct device_node *np)
{
bool is_pcie = of_node_name_eq(np, "pcie");
if (is_pcie)
pr_warn_once("%pOF: Missing device_type\n", np);
return is_pcie;
}
static int of_bus_pci_match(struct device_node *np)
{
/*
* "pciex" is PCI Express
* "vci" is for the /chaos bridge on 1st-gen PCI powermacs
* "ht" is hypertransport
*
* If none of the device_type match, and that the node name is
* "pcie", accept the device as PCI (with a warning).
*/
return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
of_node_is_pcie(np);
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
int pna, int fna)
{
unsigned int af, rf;
af = of_bus_pci_get_flags(addr);
rf = of_bus_pci_get_flags(range);
/* Check address type match */
if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
return OF_BAD_ADDR;
return of_bus_default_map(addr, range, na, ns, pna, fna);
}
#endif /* CONFIG_PCI */
/*
* of_pci_range_to_resource - Create a resource from an of_pci_range
* @range: the PCI range that describes the resource
* @np: device node where the range belongs to
* @res: pointer to a valid resource that will be updated to
* reflect the values contained in the range.
*
* Returns -EINVAL if the range cannot be converted to resource.
*
* Note that if the range is an IO range, the resource will be converted
* using pci_address_to_pio() which can fail if it is called too early or
* if the range cannot be matched to any host bridge IO space (our case here).
* To guard against that we try to register the IO range first.
* If that fails we know that pci_address_to_pio() will do too.
*/
int of_pci_range_to_resource(struct of_pci_range *range,
struct device_node *np, struct resource *res)
{
int err;
res->flags = range->flags;
res->parent = res->child = res->sibling = NULL;
res->name = np->full_name;
if (res->flags & IORESOURCE_IO) {
unsigned long port;
err = pci_register_io_range(&np->fwnode, range->cpu_addr,
range->size);
if (err)
goto invalid_range;
port = pci_address_to_pio(range->cpu_addr);
if (port == (unsigned long)-1) {
err = -EINVAL;
goto invalid_range;
}
res->start = port;
} else {
if ((sizeof(resource_size_t) < 8) &&
upper_32_bits(range->cpu_addr)) {
err = -EINVAL;
goto invalid_range;
}
res->start = range->cpu_addr;
}
res->end = res->start + range->size - 1;
return 0;
invalid_range:
res->start = (resource_size_t)OF_BAD_ADDR;
res->end = (resource_size_t)OF_BAD_ADDR;
return err;
}
EXPORT_SYMBOL(of_pci_range_to_resource);
/*
* of_range_to_resource - Create a resource from a ranges entry
* @np: device node where the range belongs to
* @index: the 'ranges' index to convert to a resource
* @res: pointer to a valid resource that will be updated to
* reflect the values contained in the range.
*
* Returns ENOENT if the entry is not found or EINVAL if the range cannot be
* converted to resource.
*/
int of_range_to_resource(struct device_node *np, int index, struct resource *res)
{
int ret, i = 0;
struct of_range_parser parser;
struct of_range range;
ret = of_range_parser_init(&parser, np);
if (ret)
return ret;
for_each_of_range(&parser, &range)
if (i++ == index)
return of_pci_range_to_resource(&range, np, res);
return -ENOENT;
}
EXPORT_SYMBOL(of_range_to_resource);
/*
* ISA bus specific translator
*/
static int of_bus_isa_match(struct device_node *np)
{
return of_node_name_eq(np, "isa");
}
static void of_bus_isa_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
int pna, int fna)
{
/* Check address type match */
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
return OF_BAD_ADDR;
return of_bus_default_map(addr, range, na, ns, pna, fna);
}
static unsigned int of_bus_isa_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
if (w & 1)
flags |= IORESOURCE_IO;
else
flags |= IORESOURCE_MEM;
return flags;
}
static int of_bus_default_flags_match(struct device_node *np)
{
return of_bus_n_addr_cells(np) == 3;
}
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
#ifdef CONFIG_PCI
/* PCI */
{
.name = "pci",
.addresses = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.translate = of_bus_default_flags_translate,
.flag_cells = 1,
.get_flags = of_bus_pci_get_flags,
},
#endif /* CONFIG_PCI */
/* ISA */
{
.name = "isa",
.addresses = "reg",
.match = of_bus_isa_match,
.count_cells = of_bus_isa_count_cells,
.map = of_bus_isa_map,
.translate = of_bus_default_flags_translate,
.flag_cells = 1,
.get_flags = of_bus_isa_get_flags,
},
/* Default with flags cell */
{
.name = "default-flags",
.addresses = "reg",
.match = of_bus_default_flags_match,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_flags_map,
.translate = of_bus_default_flags_translate,
.flag_cells = 1,
.get_flags = of_bus_default_flags_get_flags,
},
/* Default */
{
.name = "default",
.addresses = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.translate = of_bus_default_translate,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int of_empty_ranges_quirk(struct device_node *np)
{
if (IS_ENABLED(CONFIG_PPC)) {
/* To save cycles, we cache the result for global "Mac" setting */
static int quirk_state = -1;
/* PA-SEMI sdc DT bug */
if (of_device_is_compatible(np, "1682m-sdc"))
return true;
/* Make quirk cached */
if (quirk_state < 0)
quirk_state =
of_machine_is_compatible("Power Macintosh") ||
of_machine_is_compatible("MacRISC");
return quirk_state;
}
return false;
}
static int of_translate_one(struct device_node *parent, struct of_bus *bus,
struct of_bus *pbus, __be32 *addr,
int na, int ns, int pna, const char *rprop)
{
const __be32 *ranges;
unsigned int rlen;
int rone;
u64 offset = OF_BAD_ADDR;
/*
* Normally, an absence of a "ranges" property means we are
* crossing a non-translatable boundary, and thus the addresses
* below the current cannot be converted to CPU physical ones.
* Unfortunately, while this is very clear in the spec, it's not
* what Apple understood, and they do have things like /uni-n or
* /ht nodes with no "ranges" property and a lot of perfectly
* useable mapped devices below them. Thus we treat the absence of
* "ranges" as equivalent to an empty "ranges" property which means
* a 1:1 translation at that level. It's up to the caller not to try
* to translate addresses that aren't supposed to be translated in
* the first place. --BenH.
*
* As far as we know, this damage only exists on Apple machines, so
* This code is only enabled on powerpc. --gcl
*
* This quirk also applies for 'dma-ranges' which frequently exist in
* child nodes without 'dma-ranges' in the parent nodes. --RobH
*/
ranges = of_get_property(parent, rprop, &rlen);
if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
strcmp(rprop, "dma-ranges")) {
pr_debug("no ranges; cannot translate\n");
return 1;
}
if (ranges == NULL || rlen == 0) {
offset = of_read_number(addr, na);
memset(addr, 0, pna * 4);
pr_debug("empty ranges; 1:1 translation\n");
goto finish;
}
pr_debug("walking ranges...\n");
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
if (offset != OF_BAD_ADDR)
break;
}
if (offset == OF_BAD_ADDR) {
pr_debug("not found !\n");
return 1;
}
memcpy(addr, ranges + na, 4 * pna);
finish:
of_dump_addr("parent translation for:", addr, pna);
pr_debug("with offset: %llx\n", offset);
/* Translate it into parent bus space */
return pbus->translate(addr, offset, pna);
}
/*
* Translate an address from the device-tree into a CPU physical address,
* this walks up the tree and applies the various bus mappings on the
* way.
*
* Note: We consider that crossing any level with #size-cells == 0 to mean
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*
* Whenever the translation fails, the *host pointer will be set to the
* device that had registered logical PIO mapping, and the return code is
* relative to that node.
*/
static u64 __of_translate_address(struct device_node *node,
struct device_node *(*get_parent)(const struct device_node *),
const __be32 *in_addr, const char *rprop,
struct device_node **host)
{
struct device_node *dev __free(device_node) = of_node_get(node);
struct device_node *parent __free(device_node) = get_parent(dev);
struct of_bus *bus, *pbus;
__be32 addr[OF_MAX_ADDR_CELLS];
int na, ns, pna, pns;
pr_debug("** translation for device %pOF **\n", dev);
*host = NULL;
if (parent == NULL)
return OF_BAD_ADDR;
bus = of_match_bus(parent);
/* Count address cells & copy address locally */
bus->count_cells(dev, &na, &ns);
if (!OF_CHECK_COUNTS(na, ns)) {
pr_debug("Bad cell count for %pOF\n", dev);
return OF_BAD_ADDR;
}
memcpy(addr, in_addr, na * 4);
pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
bus->name, na, ns, parent);
of_dump_addr("translating address:", addr, na);
/* Translate */
for (;;) {
struct logic_pio_hwaddr *iorange;
/* Switch to parent bus */
of_node_put(dev);
dev = parent;
parent = get_parent(dev);
/* If root, we have finished */
if (parent == NULL) {
pr_debug("reached root node\n");
return of_read_number(addr, na);
}
/*
* For indirectIO device which has no ranges property, get
* the address from reg directly.
*/
iorange = find_io_range_by_fwnode(&dev->fwnode);
if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
u64 result = of_read_number(addr + 1, na - 1);
pr_debug("indirectIO matched(%pOF) 0x%llx\n",
dev, result);
*host = no_free_ptr(dev);
return result;
}
/* Get new parent bus and counts */
pbus = of_match_bus(parent);
pbus->count_cells(dev, &pna, &pns);
if (!OF_CHECK_COUNTS(pna, pns)) {
pr_err("Bad cell count for %pOF\n", dev);
return OF_BAD_ADDR;
}
pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
pbus->name, pna, pns, parent);
/* Apply bus translation */
if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
return OF_BAD_ADDR;
/* Complete the move up one level */
na = pna;
ns = pns;
bus = pbus;
of_dump_addr("one level translation:", addr, na);
}
unreachable();
}
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
{
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, of_get_parent,
in_addr, "ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_address);
#ifdef CONFIG_HAS_DMA
struct device_node *__of_get_dma_parent(const struct device_node *np)
{
struct of_phandle_args args;
int ret, index;
index = of_property_match_string(np, "interconnect-names", "dma-mem");
if (index < 0)
return of_get_parent(np);
ret = of_parse_phandle_with_args(np, "interconnects",
"#interconnect-cells",
index, &args);
if (ret < 0)
return of_get_parent(np);
return of_node_get(args.np);
}
#endif
static struct device_node *of_get_next_dma_parent(struct device_node *np)
{
struct device_node *parent;
parent = __of_get_dma_parent(np);
of_node_put(np);
return parent;
}
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
{
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, __of_get_dma_parent,
in_addr, "dma-ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_dma_address);
/**
* of_translate_dma_region - Translate device tree address and size tuple
* @dev: device tree node for which to translate
* @prop: pointer into array of cells
* @start: return value for the start of the DMA range
* @length: return value for the length of the DMA range
*
* Returns a pointer to the cell immediately following the translated DMA region.
*/
const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
phys_addr_t *start, size_t *length)
{
struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
u64 address, size;
int na, ns;
if (!parent)
return NULL;
na = of_bus_n_addr_cells(parent);
ns = of_bus_n_size_cells(parent);
address = of_translate_dma_address(dev, prop);
if (address == OF_BAD_ADDR)
return NULL;
size = of_read_number(prop + na, ns);
if (start)
*start = address;
if (length)
*length = size;
return prop + na + ns;
}
EXPORT_SYMBOL(of_translate_dma_region);
const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
u64 *size, unsigned int *flags)
{
const __be32 *prop;
unsigned int psize;
struct device_node *parent __free(device_node) = of_get_parent(dev);
struct of_bus *bus;
int onesize, i, na, ns;
if (parent == NULL)
return NULL;
/* match the parent's bus type */
bus = of_match_bus(parent);
if (strcmp(bus->name, "pci") && (bar_no >= 0))
return NULL;
bus->count_cells(dev, &na, &ns);
if (!OF_CHECK_ADDR_COUNT(na))
return NULL;
/* Get "reg" or "assigned-addresses" property */
prop = of_get_property(dev, bus->addresses, &psize);
if (prop == NULL)
return NULL;
psize /= 4;
onesize = na + ns;
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
u32 val = be32_to_cpu(prop[0]);
/* PCI bus matches on BAR number instead of index */
if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
((index >= 0) && (i == index))) {
if (size)
*size = of_read_number(prop + na, ns);
if (flags)
*flags = bus->get_flags(prop);
return prop;
}
}
return NULL;
}
EXPORT_SYMBOL(__of_get_address);
/**
* of_property_read_reg - Retrieve the specified "reg" entry index without translating
* @np: device tree node for which to retrieve "reg" from
* @idx: "reg" entry index to read
* @addr: return value for the untranslated address
* @size: return value for the entry size
*
* Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
* size values filled in.
*/
int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
{
const __be32 *prop = of_get_address(np, idx, size, NULL);
if (!prop)
return -EINVAL;
*addr = of_read_number(prop, of_n_addr_cells(np));
return 0;
}
EXPORT_SYMBOL(of_property_read_reg);
static int parser_init(struct of_pci_range_parser *parser,
struct device_node *node, const char *name)
{
int rlen;
parser->node = node;
parser->pna = of_n_addr_cells(node);
parser->na = of_bus_n_addr_cells(node);
parser->ns = of_bus_n_size_cells(node);
parser->dma = !strcmp(name, "dma-ranges");
parser->bus = of_match_bus(node);
parser->range = of_get_property(node, name, &rlen);
if (parser->range == NULL)
return -ENOENT;
parser->end = parser->range + rlen / sizeof(__be32);
return 0;
}
int of_pci_range_parser_init(struct of_pci_range_parser *parser,
struct device_node *node)
{
return parser_init(parser, node, "ranges");
}
EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
struct device_node *node)
{
return parser_init(parser, node, "dma-ranges");
}
EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
#define of_dma_range_parser_init of_pci_dma_range_parser_init
struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
struct of_pci_range *range)
{
int na = parser->na;
int ns = parser->ns;
int np = parser->pna + na + ns;
int busflag_na = parser->bus->flag_cells;
if (!range)
return NULL;
if (!parser->range || parser->range + np > parser->end)
return NULL;
range->flags = parser->bus->get_flags(parser->range);
range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
if (parser->dma)
range->cpu_addr = of_translate_dma_address(parser->node,
parser->range + na);
else
range->cpu_addr = of_translate_address(parser->node,
parser->range + na);
range->size = of_read_number(parser->range + parser->pna + na, ns);
parser->range += np;
/* Now consume following elements while they are contiguous */
while (parser->range + np <= parser->end) {
u32 flags = 0;
u64 bus_addr, cpu_addr, size;
flags = parser->bus->get_flags(parser->range);
bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
if (parser->dma)
cpu_addr = of_translate_dma_address(parser->node,
parser->range + na);
else
cpu_addr = of_translate_address(parser->node,
parser->range + na);
size = of_read_number(parser->range + parser->pna + na, ns);
if (flags != range->flags)
break;
if (bus_addr != range->bus_addr + range->size ||
cpu_addr != range->cpu_addr + range->size)
break;
range->size += size;
parser->range += np;
}
return range;
}
EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
u64 size)
{
u64 taddr;
unsigned long port;
struct device_node *host;
taddr = __of_translate_address(dev, of_get_parent,
in_addr, "ranges", &host);
if (host) {
/* host-specific port access */
port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
of_node_put(host);
} else {
/* memory-mapped I/O range */
port = pci_address_to_pio(taddr);
}
if (port == (unsigned long)-1)
return OF_BAD_ADDR;
return port;
}
#ifdef CONFIG_HAS_DMA
/**
* of_dma_get_range - Get DMA range info and put it into a map array
* @np: device node to get DMA range info
* @map: dma range structure to return
*
* Look in bottom up direction for the first "dma-ranges" property
* and parse it. Put the information into a DMA offset map array.
*
* dma-ranges format:
* DMA addr (dma_addr) : naddr cells
* CPU addr (phys_addr_t) : pna cells
* size : nsize cells
*
* It returns -ENODEV if "dma-ranges" property was not found for this
* device in the DT.
*/
int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
{
struct device_node *node __free(device_node) = of_node_get(np);
const __be32 *ranges = NULL;
bool found_dma_ranges = false;
struct of_range_parser parser;
struct of_range range;
struct bus_dma_region *r;
int len, num_ranges = 0;
while (node) {
ranges = of_get_property(node, "dma-ranges", &len);
/* Ignore empty ranges, they imply no translation required */
if (ranges && len > 0)
break;
/* Once we find 'dma-ranges', then a missing one is an error */
if (found_dma_ranges && !ranges)
return -ENODEV;
found_dma_ranges = true;
node = of_get_next_dma_parent(node);
}
if (!node || !ranges) {
pr_debug("no dma-ranges found for node(%pOF)\n", np);
return -ENODEV;
}
of_dma_range_parser_init(&parser, node);
for_each_of_range(&parser, &range) {
if (range.cpu_addr == OF_BAD_ADDR) {
pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
range.bus_addr, node);
continue;
}
num_ranges++;
}
if (!num_ranges)
return -EINVAL;
r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
if (!r)
return -ENOMEM;
/*
* Record all info in the generic DMA ranges array for struct device,
* returning an error if we don't find any parsable ranges.
*/
*map = r;
of_dma_range_parser_init(&parser, node);
for_each_of_range(&parser, &range) {
pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
range.bus_addr, range.cpu_addr, range.size);
if (range.cpu_addr == OF_BAD_ADDR)
continue;
r->cpu_start = range.cpu_addr;
r->dma_start = range.bus_addr;
r->size = range.size;
r++;
}
return 0;
}
#endif /* CONFIG_HAS_DMA */
/**
* of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
* @np: The node to start searching from or NULL to start from the root
*
* Gets the highest CPU physical address that is addressable by all DMA masters
* in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
* DMA constrained device is found, it returns PHYS_ADDR_MAX.
*/
phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
{
phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
struct of_range_parser parser;
phys_addr_t subtree_max_addr;
struct device_node *child;
struct of_range range;
const __be32 *ranges;
u64 cpu_end = 0;
int len;
if (!np)
np = of_root;
ranges = of_get_property(np, "dma-ranges", &len);
if (ranges && len) {
of_dma_range_parser_init(&parser, np);
for_each_of_range(&parser, &range)
if (range.cpu_addr + range.size > cpu_end)
cpu_end = range.cpu_addr + range.size - 1;
if (max_cpu_addr > cpu_end)
max_cpu_addr = cpu_end;
}
for_each_available_child_of_node(np, child) {
subtree_max_addr = of_dma_get_max_cpu_address(child);
if (max_cpu_addr > subtree_max_addr)
max_cpu_addr = subtree_max_addr;
}
return max_cpu_addr;
}
/**
* of_dma_is_coherent - Check if device is coherent
* @np: device node
*
* It returns true if "dma-coherent" property was found
* for this device in the DT, or if DMA is coherent by
* default for OF devices on the current platform and no
* "dma-noncoherent" property was found for this device.
*/
bool of_dma_is_coherent(struct device_node *np)
{
struct device_node *node __free(device_node) = of_node_get(np);
while (node) {
if (of_property_read_bool(node, "dma-coherent"))
return true;
if (of_property_read_bool(node, "dma-noncoherent"))
return false;
node = of_get_next_dma_parent(node);
}
return dma_default_coherent;
}
EXPORT_SYMBOL_GPL(of_dma_is_coherent);
/**
* of_mmio_is_nonposted - Check if device uses non-posted MMIO
* @np: device node
*
* Returns true if the "nonposted-mmio" property was found for
* the device's bus.
*
* This is currently only enabled on builds that support Apple ARM devices, as
* an optimization.
*/
static bool of_mmio_is_nonposted(struct device_node *np)
{
if (!IS_ENABLED(CONFIG_ARCH_APPLE))
return false;
struct device_node *parent __free(device_node) = of_get_parent(np);
if (!parent)
return false;
return of_property_read_bool(parent, "nonposted-mmio");
}
static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
struct resource *r)
{
u64 taddr;
const __be32 *addrp;
u64 size;
unsigned int flags;
const char *name = NULL;
addrp = __of_get_address(dev, index, bar_no, &size, &flags);
if (addrp == NULL)
return -EINVAL;
/* Get optional "reg-names" property to add a name to a resource */
if (index >= 0)
of_property_read_string_index(dev, "reg-names", index, &name);
if (flags & IORESOURCE_MEM)
taddr = of_translate_address(dev, addrp);
else if (flags & IORESOURCE_IO)
taddr = of_translate_ioport(dev, addrp, size);
else
return -EINVAL;
if (taddr == OF_BAD_ADDR)
return -EINVAL;
memset(r, 0, sizeof(struct resource));
if (of_mmio_is_nonposted(dev))
flags |= IORESOURCE_MEM_NONPOSTED;
r->start = taddr;
r->end = taddr + size - 1;
r->flags = flags;
r->name = name ? name : dev->full_name;
return 0;
}
/**
* of_address_to_resource - Translate device tree address and return as resource
* @dev: Caller's Device Node
* @index: Index into the array
* @r: Pointer to resource array
*
* Returns -EINVAL if the range cannot be converted to resource.
*
* Note that if your address is a PIO address, the conversion will fail if
* the physical address can't be internally converted to an IO token with
* pci_address_to_pio(), that is because it's either called too early or it
* can't be matched to any host bridge IO space
*/
int of_address_to_resource(struct device_node *dev, int index,
struct resource *r)
{
return __of_address_to_resource(dev, index, -1, r);
}
EXPORT_SYMBOL_GPL(of_address_to_resource);
int of_pci_address_to_resource(struct device_node *dev, int bar,
struct resource *r)
{
if (!IS_ENABLED(CONFIG_PCI))
return -ENOSYS;
return __of_address_to_resource(dev, -1, bar, r);
}
EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
/**
* of_iomap - Maps the memory mapped IO for a given device_node
* @np: the device whose io range will be mapped
* @index: index of the io range
*
* Returns a pointer to the mapped memory
*/
void __iomem *of_iomap(struct device_node *np, int index)
{
struct resource res;
if (of_address_to_resource(np, index, &res))
return NULL;
if (res.flags & IORESOURCE_MEM_NONPOSTED)
return ioremap_np(res.start, resource_size(&res));
else
return ioremap(res.start, resource_size(&res));
}
EXPORT_SYMBOL(of_iomap);
/*
* of_io_request_and_map - Requests a resource and maps the memory mapped IO
* for a given device_node
* @device: the device whose io range will be mapped
* @index: index of the io range
* @name: name "override" for the memory region request or NULL
*
* Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
* error code on failure. Usage example:
*
* base = of_io_request_and_map(node, 0, "foo");
* if (IS_ERR(base))
* return PTR_ERR(base);
*/
void __iomem *of_io_request_and_map(struct device_node *np, int index,
const char *name)
{
struct resource res;
void __iomem *mem;
if (of_address_to_resource(np, index, &res))
return IOMEM_ERR_PTR(-EINVAL);
if (!name)
name = res.name;
if (!request_mem_region(res.start, resource_size(&res), name))
return IOMEM_ERR_PTR(-EBUSY);
if (res.flags & IORESOURCE_MEM_NONPOSTED)
mem = ioremap_np(res.start, resource_size(&res));
else
mem = ioremap(res.start, resource_size(&res));
if (!mem) {
release_mem_region(res.start, resource_size(&res));
return IOMEM_ERR_PTR(-ENOMEM);
}
return mem;
}
EXPORT_SYMBOL(of_io_request_and_map);