blob: fa85c64d3dede7edcc6c35b3d9959b868405d7a2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Arm Firmware Framework for ARMv8-A(FFA) interface driver
*
* The Arm FFA specification[1] describes a software architecture to
* leverages the virtualization extension to isolate software images
* provided by an ecosystem of vendors from each other and describes
* interfaces that standardize communication between the various software
* images including communication between images in the Secure world and
* Normal world. Any Hypervisor could use the FFA interfaces to enable
* communication between VMs it manages.
*
* The Hypervisor a.k.a Partition managers in FFA terminology can assign
* system resources(Memory regions, Devices, CPU cycles) to the partitions
* and manage isolation amongst them.
*
* [1] https://developer.arm.com/docs/den0077/latest
*
* Copyright (C) 2021 ARM Ltd.
*/
#define DRIVER_NAME "ARM FF-A"
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#include <linux/arm_ffa.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/uuid.h>
#include "common.h"
#define FFA_DRIVER_VERSION FFA_VERSION_1_0
#define FFA_MIN_VERSION FFA_VERSION_1_0
#define SENDER_ID_MASK GENMASK(31, 16)
#define RECEIVER_ID_MASK GENMASK(15, 0)
#define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
#define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
#define PACK_TARGET_INFO(s, r) \
(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
/*
* Keeping RX TX buffer size as 4K for now
* 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
*/
#define RXTX_BUFFER_SIZE SZ_4K
static ffa_fn *invoke_ffa_fn;
static const int ffa_linux_errmap[] = {
/* better than switch case as long as return value is continuous */
0, /* FFA_RET_SUCCESS */
-EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
-EINVAL, /* FFA_RET_INVALID_PARAMETERS */
-ENOMEM, /* FFA_RET_NO_MEMORY */
-EBUSY, /* FFA_RET_BUSY */
-EINTR, /* FFA_RET_INTERRUPTED */
-EACCES, /* FFA_RET_DENIED */
-EAGAIN, /* FFA_RET_RETRY */
-ECANCELED, /* FFA_RET_ABORTED */
};
static inline int ffa_to_linux_errno(int errno)
{
int err_idx = -errno;
if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
return ffa_linux_errmap[err_idx];
return -EINVAL;
}
struct ffa_drv_info {
u32 version;
u16 vm_id;
struct mutex rx_lock; /* lock to protect Rx buffer */
struct mutex tx_lock; /* lock to protect Tx buffer */
void *rx_buffer;
void *tx_buffer;
bool mem_ops_native;
};
static struct ffa_drv_info *drv_info;
/*
* The driver must be able to support all the versions from the earliest
* supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
* The specification states that if firmware supports a FFA implementation
* that is incompatible with and at a greater version number than specified
* by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
* it must return the NOT_SUPPORTED error code.
*/
static u32 ffa_compatible_version_find(u32 version)
{
u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
return version;
pr_info("Firmware version higher than driver version, downgrading\n");
return FFA_DRIVER_VERSION;
}
static int ffa_version_check(u32 *version)
{
ffa_value_t ver;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
}, &ver);
if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
pr_info("FFA_VERSION returned not supported\n");
return -EOPNOTSUPP;
}
if (ver.a0 < FFA_MIN_VERSION) {
pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
FFA_MAJOR_VERSION(FFA_MIN_VERSION),
FFA_MINOR_VERSION(FFA_MIN_VERSION));
return -EINVAL;
}
pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
FFA_MINOR_VERSION(ver.a0));
*version = ffa_compatible_version_find(ver.a0);
return 0;
}
static int ffa_rx_release(void)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RX_RELEASE,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
/* check for ret.a0 == FFA_RX_RELEASE ? */
return 0;
}
static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FN_NATIVE(RXTX_MAP),
.a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_rxtx_unmap(u16 vm_id)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
#define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
/* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
static int
__ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
struct ffa_partition_info *buffer, int num_partitions)
{
int idx, count, flags = 0, sz, buf_sz;
ffa_value_t partition_info;
if (!buffer || !num_partitions) /* Just get the count for now */
flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
mutex_lock(&drv_info->rx_lock);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_PARTITION_INFO_GET,
.a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
.a5 = flags,
}, &partition_info);
if (partition_info.a0 == FFA_ERROR) {
mutex_unlock(&drv_info->rx_lock);
return ffa_to_linux_errno((int)partition_info.a2);
}
count = partition_info.a2;
if (drv_info->version > FFA_VERSION_1_0) {
buf_sz = sz = partition_info.a3;
if (sz > sizeof(*buffer))
buf_sz = sizeof(*buffer);
} else {
/* FFA_VERSION_1_0 lacks size in the response */
buf_sz = sz = 8;
}
if (buffer && count <= num_partitions)
for (idx = 0; idx < count; idx++)
memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
buf_sz);
ffa_rx_release();
mutex_unlock(&drv_info->rx_lock);
return count;
}
/* buffer is allocated and caller must free the same if returned count > 0 */
static int
ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
{
int count;
u32 uuid0_4[4];
struct ffa_partition_info *pbuf;
export_uuid((u8 *)uuid0_4, uuid);
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], NULL, 0);
if (count <= 0)
return count;
pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
if (!pbuf)
return -ENOMEM;
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], pbuf, count);
if (count <= 0)
kfree(pbuf);
else
*buffer = pbuf;
return count;
}
#define VM_ID_MASK GENMASK(15, 0)
static int ffa_id_get(u16 *vm_id)
{
ffa_value_t id;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_ID_GET,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
return 0;
}
static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
struct ffa_send_direct_data *data)
{
u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
ffa_value_t ret;
if (mode_32bit) {
req_id = FFA_MSG_SEND_DIRECT_REQ;
resp_id = FFA_MSG_SEND_DIRECT_RESP;
} else {
req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
}
invoke_ffa_fn((ffa_value_t){
.a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
.a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
.a6 = data->data3, .a7 = data->data4,
}, &ret);
while (ret.a0 == FFA_INTERRUPT)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RUN, .a1 = ret.a1,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == resp_id) {
data->data0 = ret.a3;
data->data1 = ret.a4;
data->data2 = ret.a5;
data->data3 = ret.a6;
data->data4 = ret.a7;
return 0;
}
return -EINVAL;
}
static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
u32 frag_len, u32 len, u64 *handle)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = func_id, .a1 = len, .a2 = frag_len,
.a3 = buf, .a4 = buf_sz,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_SUCCESS) {
if (handle)
*handle = PACK_HANDLE(ret.a2, ret.a3);
} else if (ret.a0 == FFA_MEM_FRAG_RX) {
if (handle)
*handle = PACK_HANDLE(ret.a1, ret.a2);
} else {
return -EOPNOTSUPP;
}
return frag_len;
}
static int ffa_mem_next_frag(u64 handle, u32 frag_len)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_FRAG_TX,
.a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
.a3 = frag_len,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_MEM_FRAG_RX)
return ret.a3;
else if (ret.a0 == FFA_SUCCESS)
return 0;
return -EOPNOTSUPP;
}
static int
ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
u32 len, u64 *handle, bool first)
{
if (!first)
return ffa_mem_next_frag(*handle, frag_len);
return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
}
static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
{
u32 num_pages = 0;
do {
num_pages += sg->length / FFA_PAGE_SIZE;
} while ((sg = sg_next(sg)));
return num_pages;
}
static int
ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
struct ffa_mem_ops_args *args)
{
int rc = 0;
bool first = true;
phys_addr_t addr = 0;
struct ffa_composite_mem_region *composite;
struct ffa_mem_region_addr_range *constituents;
struct ffa_mem_region_attributes *ep_mem_access;
struct ffa_mem_region *mem_region = buffer;
u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
mem_region->tag = args->tag;
mem_region->flags = args->flags;
mem_region->sender_id = drv_info->vm_id;
mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK |
FFA_MEM_INNER_SHAREABLE;
ep_mem_access = &mem_region->ep_mem_access[0];
for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
ep_mem_access->receiver = args->attrs[idx].receiver;
ep_mem_access->attrs = args->attrs[idx].attrs;
ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs);
}
mem_region->ep_count = args->nattrs;
composite = buffer + COMPOSITE_OFFSET(args->nattrs);
composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
composite->addr_range_cnt = num_entries;
length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries);
frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0);
if (frag_len > max_fragsize)
return -ENXIO;
if (!args->use_txbuf) {
addr = virt_to_phys(buffer);
buf_sz = max_fragsize / FFA_PAGE_SIZE;
}
constituents = buffer + frag_len;
idx = 0;
do {
if (frag_len == max_fragsize) {
rc = ffa_transmit_fragment(func_id, addr, buf_sz,
frag_len, length,
&args->g_handle, first);
if (rc < 0)
return -ENXIO;
first = false;
idx = 0;
frag_len = 0;
constituents = buffer;
}
if ((void *)constituents - buffer > max_fragsize) {
pr_err("Memory Region Fragment > Tx Buffer size\n");
return -EFAULT;
}
constituents->address = sg_phys(args->sg);
constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
constituents++;
frag_len += sizeof(struct ffa_mem_region_addr_range);
} while ((args->sg = sg_next(args->sg)));
return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
length, &args->g_handle, first);
}
static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
{
int ret;
void *buffer;
if (!args->use_txbuf) {
buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
} else {
buffer = drv_info->tx_buffer;
mutex_lock(&drv_info->tx_lock);
}
ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
if (args->use_txbuf)
mutex_unlock(&drv_info->tx_lock);
else
free_pages_exact(buffer, RXTX_BUFFER_SIZE);
return ret < 0 ? ret : 0;
}
static int ffa_memory_reclaim(u64 g_handle, u32 flags)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_RECLAIM,
.a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
.a3 = flags,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_features(u32 func_feat_id, u32 input_props,
u32 *if_props_1, u32 *if_props_2)
{
ffa_value_t id;
if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
pr_err("%s: Invalid Parameters: %x, %x", __func__,
func_feat_id, input_props);
return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
}
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
if (if_props_1)
*if_props_1 = id.a2;
if (if_props_2)
*if_props_2 = id.a3;
return 0;
}
static void ffa_set_up_mem_ops_native_flag(void)
{
if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
!ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
drv_info->mem_ops_native = true;
}
static u32 ffa_api_version_get(void)
{
return drv_info->version;
}
static int ffa_partition_info_get(const char *uuid_str,
struct ffa_partition_info *buffer)
{
int count;
uuid_t uuid;
struct ffa_partition_info *pbuf;
if (uuid_parse(uuid_str, &uuid)) {
pr_err("invalid uuid (%s)\n", uuid_str);
return -ENODEV;
}
count = ffa_partition_probe(&uuid, &pbuf);
if (count <= 0)
return -ENOENT;
memcpy(buffer, pbuf, sizeof(*pbuf) * count);
kfree(pbuf);
return 0;
}
static void _ffa_mode_32bit_set(struct ffa_device *dev)
{
dev->mode_32bit = true;
}
static void ffa_mode_32bit_set(struct ffa_device *dev)
{
if (drv_info->version > FFA_VERSION_1_0)
return;
_ffa_mode_32bit_set(dev);
}
static int ffa_sync_send_receive(struct ffa_device *dev,
struct ffa_send_direct_data *data)
{
return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
dev->mode_32bit, data);
}
static int ffa_memory_share(struct ffa_mem_ops_args *args)
{
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
return ffa_memory_ops(FFA_MEM_SHARE, args);
}
static int ffa_memory_lend(struct ffa_mem_ops_args *args)
{
/* Note that upon a successful MEM_LEND request the caller
* must ensure that the memory region specified is not accessed
* until a successful MEM_RECALIM call has been made.
* On systems with a hypervisor present this will been enforced,
* however on systems without a hypervisor the responsibility
* falls to the calling kernel driver to prevent access.
*/
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
return ffa_memory_ops(FFA_MEM_LEND, args);
}
static const struct ffa_info_ops ffa_drv_info_ops = {
.api_version_get = ffa_api_version_get,
.partition_info_get = ffa_partition_info_get,
};
static const struct ffa_msg_ops ffa_drv_msg_ops = {
.mode_32bit_set = ffa_mode_32bit_set,
.sync_send_receive = ffa_sync_send_receive,
};
static const struct ffa_mem_ops ffa_drv_mem_ops = {
.memory_reclaim = ffa_memory_reclaim,
.memory_share = ffa_memory_share,
.memory_lend = ffa_memory_lend,
};
static const struct ffa_ops ffa_drv_ops = {
.info_ops = &ffa_drv_info_ops,
.msg_ops = &ffa_drv_msg_ops,
.mem_ops = &ffa_drv_mem_ops,
};
void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
{
int count, idx;
struct ffa_partition_info *pbuf, *tpbuf;
/*
* FF-A v1.1 provides UUID for each partition as part of the discovery
* API, the discovered UUID must be populated in the device's UUID and
* there is no need to copy the same from the driver table.
*/
if (drv_info->version > FFA_VERSION_1_0)
return;
count = ffa_partition_probe(uuid, &pbuf);
if (count <= 0)
return;
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
if (tpbuf->id == ffa_dev->vm_id)
uuid_copy(&ffa_dev->uuid, uuid);
kfree(pbuf);
}
static void ffa_setup_partitions(void)
{
int count, idx;
uuid_t uuid;
struct ffa_device *ffa_dev;
struct ffa_partition_info *pbuf, *tpbuf;
count = ffa_partition_probe(&uuid_null, &pbuf);
if (count <= 0) {
pr_info("%s: No partitions found, error %d\n", __func__, count);
return;
}
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
import_uuid(&uuid, (u8 *)tpbuf->uuid);
/* Note that if the UUID will be uuid_null, that will require
* ffa_device_match() to find the UUID of this partition id
* with help of ffa_device_match_uuid(). FF-A v1.1 and above
* provides UUID here for each partition as part of the
* discovery API and the same is passed.
*/
ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
if (!ffa_dev) {
pr_err("%s: failed to register partition ID 0x%x\n",
__func__, tpbuf->id);
continue;
}
if (drv_info->version > FFA_VERSION_1_0 &&
!(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
_ffa_mode_32bit_set(ffa_dev);
}
kfree(pbuf);
}
static int __init ffa_init(void)
{
int ret;
ret = ffa_transport_init(&invoke_ffa_fn);
if (ret)
return ret;
ret = arm_ffa_bus_init();
if (ret)
return ret;
drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
if (!drv_info) {
ret = -ENOMEM;
goto ffa_bus_exit;
}
ret = ffa_version_check(&drv_info->version);
if (ret)
goto free_drv_info;
if (ffa_id_get(&drv_info->vm_id)) {
pr_err("failed to obtain VM id for self\n");
ret = -ENODEV;
goto free_drv_info;
}
drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->rx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->tx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
virt_to_phys(drv_info->rx_buffer),
RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
if (ret) {
pr_err("failed to register FFA RxTx buffers\n");
goto free_pages;
}
mutex_init(&drv_info->rx_lock);
mutex_init(&drv_info->tx_lock);
ffa_setup_partitions();
ffa_set_up_mem_ops_native_flag();
return 0;
free_pages:
if (drv_info->tx_buffer)
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
free_drv_info:
kfree(drv_info);
ffa_bus_exit:
arm_ffa_bus_exit();
return ret;
}
subsys_initcall(ffa_init);
static void __exit ffa_exit(void)
{
ffa_rxtx_unmap(drv_info->vm_id);
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
kfree(drv_info);
arm_ffa_bus_exit();
}
module_exit(ffa_exit);
MODULE_ALIAS("arm-ffa");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("Arm FF-A interface driver");
MODULE_LICENSE("GPL v2");