blob: e672b9cffee3c986f2c3a47cac2ea0b19c02cd56 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#include <drm/drm_print.h>
#include <linux/clk.h>
#include "komeda_dev.h"
#include "komeda_kms.h"
#include "komeda_pipeline.h"
#include "komeda_framebuffer.h"
static inline bool is_switching_user(void *old, void *new)
{
if (!old || !new)
return false;
return old != new;
}
static struct komeda_pipeline_state *
komeda_pipeline_get_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
if (IS_ERR(priv_st))
return ERR_CAST(priv_st);
return priv_to_pipe_st(priv_st);
}
struct komeda_pipeline_state *
komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
if (priv_st)
return priv_to_pipe_st(priv_st);
return NULL;
}
static struct komeda_pipeline_state *
komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
if (priv_st)
return priv_to_pipe_st(priv_st);
return NULL;
}
/* Assign pipeline for crtc */
static struct komeda_pipeline_state *
komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
struct komeda_pipeline_state *st;
st = komeda_pipeline_get_state(pipe, state);
if (IS_ERR(st))
return st;
if (is_switching_user(crtc, st->crtc)) {
DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
drm_crtc_index(crtc), pipe->id);
return ERR_PTR(-EBUSY);
}
/* pipeline only can be disabled when the it is free or unused */
if (!crtc && st->active_comps) {
DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
return ERR_PTR(-EBUSY);
}
st->crtc = crtc;
if (crtc) {
struct komeda_crtc_state *kcrtc_st;
kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
crtc));
kcrtc_st->active_pipes |= BIT(pipe->id);
kcrtc_st->affected_pipes |= BIT(pipe->id);
}
return st;
}
static struct komeda_component_state *
komeda_component_get_state(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
if (IS_ERR(priv_st))
return ERR_CAST(priv_st);
return priv_to_comp_st(priv_st);
}
static struct komeda_component_state *
komeda_component_get_old_state(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
if (priv_st)
return priv_to_comp_st(priv_st);
return NULL;
}
/**
* komeda_component_get_state_and_set_user()
*
* @c: component to get state and set user
* @state: global atomic state
* @user: direct user, the binding user
* @crtc: the CRTC user, the big boss :)
*
* This function accepts two users:
* - The direct user: can be plane/crtc/wb_connector depends on component
* - The big boss (CRTC)
* CRTC is the big boss (the final user), because all component resources
* eventually will be assigned to CRTC, like the layer will be binding to
* kms_plane, but kms plane will be binding to a CRTC eventually.
*
* The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
* independent and can be assigned to CRTC freely, but belongs to a specific
* pipeline, only pipeline can be shared between crtc, and pipeline as a whole
* (include all the internal components) assigned to a specific CRTC.
*
* So when set a user to komeda_component, need first to check the status of
* component->pipeline to see if the pipeline is available on this specific
* CRTC. if the pipeline is busy (assigned to another CRTC), even the required
* component is free, the component still cannot be assigned to the direct user.
*/
static struct komeda_component_state *
komeda_component_get_state_and_set_user(struct komeda_component *c,
struct drm_atomic_state *state,
void *user,
struct drm_crtc *crtc)
{
struct komeda_pipeline_state *pipe_st;
struct komeda_component_state *st;
/* First check if the pipeline is available */
pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
state, crtc);
if (IS_ERR(pipe_st))
return ERR_CAST(pipe_st);
st = komeda_component_get_state(c, state);
if (IS_ERR(st))
return st;
/* check if the component has been occupied */
if (is_switching_user(user, st->binding_user)) {
DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
return ERR_PTR(-EBUSY);
}
st->binding_user = user;
/* mark the component as active if user is valid */
if (st->binding_user)
pipe_st->active_comps |= BIT(c->id);
return st;
}
static void
komeda_component_add_input(struct komeda_component_state *state,
struct komeda_component_output *input,
int idx)
{
struct komeda_component *c = state->component;
WARN_ON((idx < 0 || idx >= c->max_active_inputs));
/* since the inputs[i] is only valid when it is active. So if a input[i]
* is a newly enabled input which switches from disable to enable, then
* the old inputs[i] is undefined (NOT zeroed), we can not rely on
* memcmp, but directly mark it changed
*/
if (!has_bit(idx, state->affected_inputs) ||
memcmp(&state->inputs[idx], input, sizeof(*input))) {
memcpy(&state->inputs[idx], input, sizeof(*input));
state->changed_active_inputs |= BIT(idx);
}
state->active_inputs |= BIT(idx);
state->affected_inputs |= BIT(idx);
}
static int
komeda_component_check_input(struct komeda_component_state *state,
struct komeda_component_output *input,
int idx)
{
struct komeda_component *c = state->component;
if ((idx < 0) || (idx >= c->max_active_inputs)) {
DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
input->component->name, c->name, idx);
return -EINVAL;
}
if (has_bit(idx, state->active_inputs)) {
DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
input->component->name, c->name, idx);
return -EINVAL;
}
return 0;
}
static void
komeda_component_set_output(struct komeda_component_output *output,
struct komeda_component *comp,
u8 output_port)
{
output->component = comp;
output->output_port = output_port;
}
static int
komeda_component_validate_private(struct komeda_component *c,
struct komeda_component_state *st)
{
int err;
if (!c->funcs->validate)
return 0;
err = c->funcs->validate(c, st);
if (err)
DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
return err;
}
/* Get current available scaler from the component->supported_outputs */
static struct komeda_scaler *
komeda_component_get_avail_scaler(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct komeda_pipeline_state *pipe_st;
u32 avail_scalers;
pipe_st = komeda_pipeline_get_state(c->pipeline, state);
if (!pipe_st)
return NULL;
avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
KOMEDA_PIPELINE_SCALERS;
c = komeda_component_pickup_output(c, avail_scalers);
return to_scaler(c);
}
static void
komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
{
if (drm_rotation_90_or_270(rot)) {
swap(dflow->in_h, dflow->in_w);
swap(dflow->total_in_h, dflow->total_in_w);
}
}
static int
komeda_layer_check_cfg(struct komeda_layer *layer,
struct komeda_fb *kfb,
struct komeda_data_flow_cfg *dflow)
{
u32 src_x, src_y, src_w, src_h;
u32 line_sz, max_line_sz;
if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
return -EINVAL;
if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
src_x = dflow->out_x;
src_y = dflow->out_y;
src_w = dflow->out_w;
src_h = dflow->out_h;
} else {
src_x = dflow->in_x;
src_y = dflow->in_y;
src_w = dflow->in_w;
src_h = dflow->in_h;
}
if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
return -EINVAL;
if (!in_range(&layer->hsize_in, src_w)) {
DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
return -EINVAL;
}
if (!in_range(&layer->vsize_in, src_h)) {
DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
return -EINVAL;
}
if (drm_rotation_90_or_270(dflow->rot))
line_sz = dflow->in_h;
else
line_sz = dflow->in_w;
if (kfb->base.format->hsub > 1)
max_line_sz = layer->yuv_line_sz;
else
max_line_sz = layer->line_sz;
if (line_sz > max_line_sz) {
DRM_DEBUG_ATOMIC("Required line_sz: %d exceeds the max size %d\n",
line_sz, max_line_sz);
return -EINVAL;
}
return 0;
}
static int
komeda_layer_validate(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane_state *plane_st = &kplane_st->base;
struct drm_framebuffer *fb = plane_st->fb;
struct komeda_fb *kfb = to_kfb(fb);
struct komeda_component_state *c_st;
struct komeda_layer_state *st;
int i, err;
err = komeda_layer_check_cfg(layer, kfb, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&layer->base,
plane_st->state, plane_st->plane, plane_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_layer_st(c_st);
st->rot = dflow->rot;
if (fb->modifier) {
st->hsize = kfb->aligned_w;
st->vsize = kfb->aligned_h;
st->afbc_crop_l = dflow->in_x;
st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
st->afbc_crop_t = dflow->in_y;
st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
} else {
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
st->afbc_crop_l = 0;
st->afbc_crop_r = 0;
st->afbc_crop_t = 0;
st->afbc_crop_b = 0;
}
for (i = 0; i < fb->format->num_planes; i++)
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
dflow->in_y, i);
err = komeda_component_validate_private(&layer->base, c_st);
if (err)
return err;
/* update the data flow for the next stage */
komeda_component_set_output(&dflow->input, &layer->base, 0);
/*
* The rotation has been handled by layer, so adjusted the data flow for
* the next stage.
*/
komeda_rotate_data_flow(dflow, st->rot);
return 0;
}
static int
komeda_wb_layer_validate(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
struct komeda_component_state *c_st;
struct komeda_layer_state *st;
int i, err;
err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
conn_st->state, conn_st->connector, conn_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_layer_st(c_st);
st->hsize = dflow->out_w;
st->vsize = dflow->out_h;
for (i = 0; i < kfb->base.format->num_planes; i++)
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
dflow->out_y, i);
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
return 0;
}
static bool scaling_ratio_valid(u32 size_in, u32 size_out,
u32 max_upscaling, u32 max_downscaling)
{
if (size_out > size_in * max_upscaling)
return false;
else if (size_in > size_out * max_downscaling)
return false;
return true;
}
static int
komeda_scaler_check_cfg(struct komeda_scaler *scaler,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
u32 hsize_in, vsize_in, hsize_out, vsize_out;
u32 max_upscaling;
hsize_in = dflow->in_w;
vsize_in = dflow->in_h;
hsize_out = dflow->out_w;
vsize_out = dflow->out_h;
if (!in_range(&scaler->hsize, hsize_in) ||
!in_range(&scaler->hsize, hsize_out)) {
DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
return -EINVAL;
}
if (!in_range(&scaler->vsize, vsize_in) ||
!in_range(&scaler->vsize, vsize_out)) {
DRM_DEBUG_ATOMIC("Invalid vertical sizes");
return -EINVAL;
}
/* If input comes from compiz that means the scaling is for writeback
* and scaler can not do upscaling for writeback
*/
if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
max_upscaling = 1;
else
max_upscaling = scaler->max_upscaling;
if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
scaler->max_downscaling)) {
DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
return -EINVAL;
}
if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
scaler->max_downscaling)) {
DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
return -EINVAL;
}
if (hsize_in > hsize_out || vsize_in > vsize_out) {
struct komeda_pipeline *pipe = scaler->base.pipeline;
int err;
err = pipe->funcs->downscaling_clk_check(pipe,
&kcrtc_st->base.adjusted_mode,
komeda_crtc_get_aclk(kcrtc_st), dflow);
if (err) {
DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
return err;
}
}
return 0;
}
static int
komeda_scaler_validate(void *user,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_component_state *c_st;
struct komeda_scaler_state *st;
struct komeda_scaler *scaler;
int err = 0;
if (!(dflow->en_scaling || dflow->en_img_enhancement))
return 0;
scaler = komeda_component_get_avail_scaler(dflow->input.component,
drm_st);
if (!scaler) {
DRM_DEBUG_ATOMIC("No scaler available");
return -EINVAL;
}
err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&scaler->base,
drm_st, user, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_scaler_st(c_st);
st->hsize_in = dflow->in_w;
st->vsize_in = dflow->in_h;
st->hsize_out = dflow->out_w;
st->vsize_out = dflow->out_h;
st->right_crop = dflow->right_crop;
st->left_crop = dflow->left_crop;
st->total_vsize_in = dflow->total_in_h;
st->total_hsize_in = dflow->total_in_w;
st->total_hsize_out = dflow->total_out_w;
/* Enable alpha processing if the next stage needs the pixel alpha */
st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
st->en_scaling = dflow->en_scaling;
st->en_img_enhancement = dflow->en_img_enhancement;
st->en_split = dflow->en_split;
st->right_part = dflow->right_part;
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &scaler->base, 0);
return err;
}
static void komeda_split_data_flow(struct komeda_scaler *scaler,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_dflow,
struct komeda_data_flow_cfg *r_dflow);
static int
komeda_splitter_validate(struct komeda_splitter *splitter,
struct drm_connector_state *conn_st,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_output,
struct komeda_data_flow_cfg *r_output)
{
struct komeda_component_state *c_st;
struct komeda_splitter_state *st;
if (!splitter) {
DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
return -EINVAL;
}
if (!in_range(&splitter->hsize, dflow->in_w)) {
DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
dflow->in_w);
return -EINVAL;
}
if (!in_range(&splitter->vsize, dflow->in_h)) {
DRM_DEBUG_ATOMIC("split in_h: %d exceeds the acceptable range.\n",
dflow->in_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&splitter->base,
conn_st->state, conn_st->connector, conn_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
komeda_split_data_flow(splitter->base.pipeline->scalers[0],
dflow, l_output, r_output);
st = to_splitter_st(c_st);
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
st->overlap = dflow->overlap;
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&l_output->input, &splitter->base, 0);
komeda_component_set_output(&r_output->input, &splitter->base, 1);
return 0;
}
static int
komeda_merger_validate(struct komeda_merger *merger,
void *user,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *left_input,
struct komeda_data_flow_cfg *right_input,
struct komeda_data_flow_cfg *output)
{
struct komeda_component_state *c_st;
struct komeda_merger_state *st;
int err = 0;
if (!merger) {
DRM_DEBUG_ATOMIC("No merger is available");
return -EINVAL;
}
if (!in_range(&merger->hsize_merged, output->out_w)) {
DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
output->out_w);
return -EINVAL;
}
if (!in_range(&merger->vsize_merged, output->out_h)) {
DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
output->out_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&merger->base,
kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_merger_st(c_st);
st->hsize_merged = output->out_w;
st->vsize_merged = output->out_h;
komeda_component_add_input(c_st, &left_input->input, 0);
komeda_component_add_input(c_st, &right_input->input, 1);
komeda_component_set_output(&output->input, &merger->base, 0);
return err;
}
void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
u16 *hsize, u16 *vsize)
{
struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
if (hsize)
*hsize = m->hdisplay;
if (vsize)
*vsize = m->vdisplay;
}
static int
komeda_compiz_set_input(struct komeda_compiz *compiz,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_component_state *c_st, *old_st;
struct komeda_compiz_input_cfg *cin;
u16 compiz_w, compiz_h;
int idx = dflow->blending_zorder;
pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
/* check display rect */
if ((dflow->out_x + dflow->out_w > compiz_w) ||
(dflow->out_y + dflow->out_h > compiz_h) ||
dflow->out_w == 0 || dflow->out_h == 0) {
DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
dflow->out_x, dflow->out_y,
dflow->out_w, dflow->out_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
kcrtc_st->base.crtc, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
if (komeda_component_check_input(c_st, &dflow->input, idx))
return -EINVAL;
cin = &(to_compiz_st(c_st)->cins[idx]);
cin->hsize = dflow->out_w;
cin->vsize = dflow->out_h;
cin->hoffset = dflow->out_x;
cin->voffset = dflow->out_y;
cin->pixel_blend_mode = dflow->pixel_blend_mode;
cin->layer_alpha = dflow->layer_alpha;
old_st = komeda_component_get_old_state(&compiz->base, drm_st);
/* compare with old to check if this input has been changed */
if (WARN_ON(!old_st) ||
memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
c_st->changed_active_inputs |= BIT(idx);
komeda_component_add_input(c_st, &dflow->input, idx);
komeda_component_set_output(&dflow->input, &compiz->base, 0);
return 0;
}
static int
komeda_compiz_validate(struct komeda_compiz *compiz,
struct komeda_crtc_state *state,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_component_state *c_st;
struct komeda_compiz_state *st;
c_st = komeda_component_get_state_and_set_user(&compiz->base,
state->base.state, state->base.crtc, state->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_compiz_st(c_st);
pipeline_composition_size(state, &st->hsize, &st->vsize);
komeda_component_set_output(&dflow->input, &compiz->base, 0);
/* compiz output dflow will be fed to the next pipeline stage, prepare
* the data flow configuration for the next stage
*/
if (dflow) {
dflow->in_w = st->hsize;
dflow->in_h = st->vsize;
dflow->out_w = dflow->in_w;
dflow->out_h = dflow->in_h;
/* the output data of compiz doesn't have alpha, it only can be
* used as bottom layer when blend it with master layers
*/
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
dflow->layer_alpha = 0xFF;
dflow->blending_zorder = 0;
}
return 0;
}
static int
komeda_improc_validate(struct komeda_improc *improc,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_crtc *crtc = kcrtc_st->base.crtc;
struct drm_crtc_state *crtc_st = &kcrtc_st->base;
struct komeda_component_state *c_st;
struct komeda_improc_state *st;
c_st = komeda_component_get_state_and_set_user(&improc->base,
kcrtc_st->base.state, crtc, crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_improc_st(c_st);
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
if (drm_atomic_crtc_needs_modeset(crtc_st)) {
u32 output_depths, output_formats;
u32 avail_depths, avail_formats;
komeda_crtc_get_color_config(crtc_st, &output_depths,
&output_formats);
avail_depths = output_depths & improc->supported_color_depths;
if (avail_depths == 0) {
DRM_DEBUG_ATOMIC("No available color depths, conn depths: 0x%x & display: 0x%x\n",
output_depths,
improc->supported_color_depths);
return -EINVAL;
}
avail_formats = output_formats &
improc->supported_color_formats;
if (!avail_formats) {
DRM_DEBUG_ATOMIC("No available color_formats, conn formats 0x%x & display: 0x%x\n",
output_formats,
improc->supported_color_formats);
return -EINVAL;
}
st->color_depth = __fls(avail_depths);
st->color_format = BIT(__ffs(avail_formats));
}
if (kcrtc_st->base.color_mgmt_changed) {
drm_lut_to_fgamma_coeffs(kcrtc_st->base.gamma_lut,
st->fgamma_coeffs);
drm_ctm_to_coeffs(kcrtc_st->base.ctm, st->ctm_coeffs);
}
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &improc->base, 0);
return 0;
}
static int
komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_crtc *crtc = kcrtc_st->base.crtc;
struct komeda_timing_ctrlr_state *st;
struct komeda_component_state *c_st;
c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
kcrtc_st->base.state, crtc, crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_ctrlr_st(c_st);
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
return 0;
}
void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
struct komeda_data_flow_cfg *dflow,
struct drm_framebuffer *fb)
{
struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
u32 w = dflow->in_w;
u32 h = dflow->in_h;
dflow->total_in_w = dflow->in_w;
dflow->total_in_h = dflow->in_h;
dflow->total_out_w = dflow->out_w;
/* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
if (!fb->format->has_alpha)
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
if (drm_rotation_90_or_270(dflow->rot))
swap(w, h);
dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
dflow->is_yuv = fb->format->is_yuv;
/* try to enable image enhancer if data flow is a 2x+ upscaling */
dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
dflow->out_h >= 2 * h;
/* try to enable split if scaling exceed the scaler's acceptable
* input/output range.
*/
if (dflow->en_scaling && scaler)
dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
!in_range(&scaler->hsize, dflow->out_w);
}
static bool merger_is_available(struct komeda_pipeline *pipe,
struct komeda_data_flow_cfg *dflow)
{
u32 avail_inputs = pipe->merger ?
pipe->merger->base.supported_inputs : 0;
return has_bit(dflow->input.component->id, avail_inputs);
}
int komeda_build_layer_data_flow(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane *plane = kplane_st->base.plane;
struct komeda_pipeline *pipe = layer->base.pipeline;
int err;
DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
layer->base.name, plane->base.id, plane->name,
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
err = komeda_layer_validate(layer, kplane_st, dflow);
if (err)
return err;
err = komeda_scaler_validate(plane, kcrtc_st, dflow);
if (err)
return err;
/* if split, check if can put the data flow into merger */
if (dflow->en_split && merger_is_available(pipe, dflow))
return 0;
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
return err;
}
/*
* Split is introduced for workaround scaler's input/output size limitation.
* The idea is simple, if one scaler can not fit the requirement, use two.
* So split splits the big source image to two half parts (left/right) and do
* the scaling by two scaler separately and independently.
* But split also imports an edge problem in the middle of the image when
* scaling, to avoid it, split isn't a simple half-and-half, but add an extra
* pixels (overlap) to both side, after split the left/right will be:
* - left: [0, src_length/2 + overlap]
* - right: [src_length/2 - overlap, src_length]
* The extra overlap do eliminate the edge problem, but which may also generates
* unnecessary pixels when scaling, we need to crop them before scaler output
* the result to the next stage. and for the how to crop, it depends on the
* unneeded pixels, another words the position where overlay has been added.
* - left: crop the right
* - right: crop the left
*
* The diagram for how to do the split
*
* <---------------------left->out_w ---------------->
* |--------------------------------|---right_crop-----| <- left after split
* \ \ /
* \ \<--overlap--->/
* |-----------------|-------------|(Middle)------|-----------------| <- src
* /<---overlap--->\ \
* / \ \
* right after split->|-----left_crop---|--------------------------------|
* ^<------------------- right->out_w --------------->^
*
* NOTE: To consistent with HW the output_w always contains the crop size.
*/
static void komeda_split_data_flow(struct komeda_scaler *scaler,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_dflow,
struct komeda_data_flow_cfg *r_dflow)
{
bool r90 = drm_rotation_90_or_270(dflow->rot);
bool flip_h = has_flip_h(dflow->rot);
u32 l_out, r_out, overlap;
memcpy(l_dflow, dflow, sizeof(*dflow));
memcpy(r_dflow, dflow, sizeof(*dflow));
l_dflow->right_part = false;
r_dflow->right_part = true;
r_dflow->blending_zorder = dflow->blending_zorder + 1;
overlap = 0;
if (dflow->en_scaling && scaler)
overlap += scaler->scaling_split_overlap;
/* original dflow may fed into splitter, and which doesn't need
* enhancement overlap
*/
dflow->overlap = overlap;
if (dflow->en_img_enhancement && scaler)
overlap += scaler->enh_split_overlap;
l_dflow->overlap = overlap;
r_dflow->overlap = overlap;
/* split the origin content */
/* left/right here always means the left/right part of display image,
* not the source Image
*/
/* DRM rotation is anti-clockwise */
if (r90) {
if (dflow->en_scaling) {
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
r_dflow->in_h = l_dflow->in_h;
} else if (dflow->en_img_enhancement) {
/* enhancer only */
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
} else {
/* split without scaler, no overlap */
l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
r_dflow->in_h = dflow->in_h - l_dflow->in_h;
}
/* Consider YUV format, after split, the split source w/h
* may not aligned to 2. we have two choices for such case.
* 1. scaler is enabled (overlap != 0), we can do a alignment
* both left/right and crop the extra data by scaler.
* 2. scaler is not enabled, only align the split left
* src/disp, and the rest part assign to right
*/
if ((overlap != 0) && dflow->is_yuv) {
l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
}
if (flip_h)
l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
else
r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
} else {
if (dflow->en_scaling) {
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
r_dflow->in_w = l_dflow->in_w;
} else if (dflow->en_img_enhancement) {
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
} else {
l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
r_dflow->in_w = dflow->in_w - l_dflow->in_w;
}
/* do YUV alignment when scaler enabled */
if ((overlap != 0) && dflow->is_yuv) {
l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
}
/* on flip_h, the left display content from the right-source */
if (flip_h)
l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
else
r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
}
/* split the disp_rect */
if (dflow->en_scaling || dflow->en_img_enhancement)
l_dflow->out_w = ((dflow->out_w + 1) >> 1);
else
l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
r_dflow->out_w = dflow->out_w - l_dflow->out_w;
l_dflow->out_x = dflow->out_x;
r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
/* calculate the scaling crop */
/* left scaler output more data and do crop */
if (r90) {
l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
} else {
l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
}
l_dflow->left_crop = 0;
l_dflow->right_crop = l_out - l_dflow->out_w;
r_dflow->left_crop = r_out - r_dflow->out_w;
r_dflow->right_crop = 0;
/* out_w includes the crop length */
l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
}
/* For layer split, a plane state will be split to two data flows and handled
* by two separated komeda layer input pipelines. komeda supports two types of
* layer split:
* - none-scaling split:
* / layer-left -> \
* plane_state compiz-> ...
* \ layer-right-> /
*
* - scaling split:
* / layer-left -> scaler->\
* plane_state merger -> compiz-> ...
* \ layer-right-> scaler->/
*
* Since merger only supports scaler as input, so for none-scaling split, two
* layer data flows will be output to compiz directly. for scaling_split, two
* data flow will be merged by merger firstly, then merger outputs one merged
* data flow to compiz.
*/
int komeda_build_layer_split_data_flow(struct komeda_layer *left,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane *plane = kplane_st->base.plane;
struct komeda_pipeline *pipe = left->base.pipeline;
struct komeda_layer *right = left->right;
struct komeda_data_flow_cfg l_dflow, r_dflow;
int err;
komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
"src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
left->base.name, right->base.name,
plane->base.id, plane->name,
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
if (err)
return err;
err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
if (err)
return err;
/* The rotation has been handled by layer, so adjusted the data flow */
komeda_rotate_data_flow(dflow, dflow->rot);
/* left and right dflow has been merged to compiz already,
* no need merger to merge them anymore.
*/
if (r_dflow.input.component == l_dflow.input.component)
return 0;
/* line merger path */
err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
&l_dflow, &r_dflow, dflow);
if (err)
return err;
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
return err;
}
/* writeback data path: compiz -> scaler -> wb_layer -> memory */
int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_connector *conn = conn_st->connector;
int err;
err = komeda_scaler_validate(conn, kcrtc_st, dflow);
if (err)
return err;
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
}
/* writeback scaling split data path:
* /-> scaler ->\
* compiz -> splitter merger -> wb_layer -> memory
* \-> scaler ->/
*/
int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_pipeline *pipe = wb_layer->base.pipeline;
struct drm_connector *conn = conn_st->connector;
struct komeda_data_flow_cfg l_dflow, r_dflow;
int err;
err = komeda_splitter_validate(pipe->splitter, conn_st,
dflow, &l_dflow, &r_dflow);
if (err)
return err;
err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
if (err)
return err;
err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
if (err)
return err;
err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
&l_dflow, &r_dflow, dflow);
if (err)
return err;
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
}
/* build display output data flow, the data path is:
* compiz -> improc -> timing_ctrlr
*/
int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
struct komeda_crtc_state *kcrtc_st)
{
struct komeda_pipeline *master = kcrtc->master;
struct komeda_pipeline *slave = kcrtc->slave;
struct komeda_data_flow_cfg m_dflow; /* master data flow */
struct komeda_data_flow_cfg s_dflow; /* slave data flow */
int err;
memset(&m_dflow, 0, sizeof(m_dflow));
memset(&s_dflow, 0, sizeof(s_dflow));
if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
if (err)
return err;
/* merge the slave dflow into master pipeline */
err = komeda_compiz_set_input(master->compiz, kcrtc_st,
&s_dflow);
if (err)
return err;
}
err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
if (err)
return err;
err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
if (err)
return err;
err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
if (err)
return err;
return 0;
}
static void
komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
struct komeda_pipeline_state *new)
{
struct drm_atomic_state *drm_st = new->obj.state;
struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
struct komeda_component_state *c_st;
struct komeda_component *c;
u32 id;
unsigned long disabling_comps;
WARN_ON(!old);
disabling_comps = (~new->active_comps) & old->active_comps;
/* unbound all disabling component */
for_each_set_bit(id, &disabling_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
c_st = komeda_component_get_state_and_set_user(c,
drm_st, NULL, new->crtc);
WARN_ON(IS_ERR(c_st));
}
}
/* release unclaimed pipeline resource */
int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
struct komeda_crtc_state *kcrtc_st)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_pipeline_state *st;
/* ignore the pipeline which is not affected */
if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
return 0;
if (has_bit(pipe->id, kcrtc_st->active_pipes))
st = komeda_pipeline_get_new_state(pipe, drm_st);
else
st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
if (WARN_ON(IS_ERR_OR_NULL(st)))
return -EINVAL;
komeda_pipeline_unbound_components(pipe, st);
return 0;
}
/* Since standalong disabled components must be disabled separately and in the
* last, So a complete disable operation may needs to call pipeline_disable
* twice (two phase disabling).
* Phase 1: disable the common components, flush it.
* Phase 2: disable the standalone disabled components, flush it.
*
* RETURNS:
* true: disable is not complete, needs a phase 2 disable.
* false: disable is complete.
*/
bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state)
{
struct komeda_pipeline_state *old;
struct komeda_component *c;
struct komeda_component_state *c_st;
u32 id;
unsigned long disabling_comps;
old = komeda_pipeline_get_old_state(pipe, old_state);
disabling_comps = old->active_comps &
(~pipe->standalone_disabled_comps);
if (!disabling_comps)
disabling_comps = old->active_comps &
pipe->standalone_disabled_comps;
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, disabling_comps: 0x%lx.\n",
pipe->id, old->active_comps, disabling_comps);
for_each_set_bit(id, &disabling_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
c_st = priv_to_comp_st(c->obj.state);
/*
* If we disabled a component then all active_inputs should be
* put in the list of changed_active_inputs, so they get
* re-enabled.
* This usually happens during a modeset when the pipeline is
* first disabled and then the actual state gets committed
* again.
*/
c_st->changed_active_inputs |= c_st->active_inputs;
c->funcs->disable(c);
}
/* Update the pipeline state, if there are components that are still
* active, return true for calling the phase 2 disable.
*/
old->active_comps &= ~disabling_comps;
return old->active_comps ? true : false;
}
void komeda_pipeline_update(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state)
{
struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
struct komeda_pipeline_state *old;
struct komeda_component *c;
u32 id;
unsigned long changed_comps;
old = komeda_pipeline_get_old_state(pipe, old_state);
changed_comps = new->active_comps | old->active_comps;
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%lx.\n",
pipe->id, new->active_comps, changed_comps);
for_each_set_bit(id, &changed_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
if (new->active_comps & BIT(c->id))
c->funcs->update(c, priv_to_comp_st(c->obj.state));
else
c->funcs->disable(c);
}
}