blob: f9877a3e83acf8194a923e5dbdb129f00da202b9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
*/
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>
#include <linux/suspend.h>
#include <linux/atomic.h>
#include <linux/acpi.h>
#include <linux/firmware.h>
#include <crypto/hash.h>
#include <linux/usb/r8152.h>
/* Information for net-next */
#define NETNEXT_VERSION "12"
/* Information for net */
#define NET_VERSION "11"
#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"
#define R8152_PHY_ID 32
#define PLA_IDR 0xc000
#define PLA_RCR 0xc010
#define PLA_RCR1 0xc012
#define PLA_RMS 0xc016
#define PLA_RXFIFO_CTRL0 0xc0a0
#define PLA_RXFIFO_FULL 0xc0a2
#define PLA_RXFIFO_CTRL1 0xc0a4
#define PLA_RX_FIFO_FULL 0xc0a6
#define PLA_RXFIFO_CTRL2 0xc0a8
#define PLA_RX_FIFO_EMPTY 0xc0aa
#define PLA_DMY_REG0 0xc0b0
#define PLA_FMC 0xc0b4
#define PLA_CFG_WOL 0xc0b6
#define PLA_TEREDO_CFG 0xc0bc
#define PLA_TEREDO_WAKE_BASE 0xc0c4
#define PLA_MAR 0xcd00
#define PLA_BACKUP 0xd000
#define PLA_BDC_CR 0xd1a0
#define PLA_TEREDO_TIMER 0xd2cc
#define PLA_REALWOW_TIMER 0xd2e8
#define PLA_UPHY_TIMER 0xd388
#define PLA_SUSPEND_FLAG 0xd38a
#define PLA_INDICATE_FALG 0xd38c
#define PLA_MACDBG_PRE 0xd38c /* RTL_VER_04 only */
#define PLA_MACDBG_POST 0xd38e /* RTL_VER_04 only */
#define PLA_EXTRA_STATUS 0xd398
#define PLA_GPHY_CTRL 0xd3ae
#define PLA_POL_GPIO_CTRL 0xdc6a
#define PLA_EFUSE_DATA 0xdd00
#define PLA_EFUSE_CMD 0xdd02
#define PLA_LEDSEL 0xdd90
#define PLA_LED_FEATURE 0xdd92
#define PLA_PHYAR 0xde00
#define PLA_BOOT_CTRL 0xe004
#define PLA_LWAKE_CTRL_REG 0xe007
#define PLA_GPHY_INTR_IMR 0xe022
#define PLA_EEE_CR 0xe040
#define PLA_EEE_TXTWSYS 0xe04c
#define PLA_EEE_TXTWSYS_2P5G 0xe058
#define PLA_EEEP_CR 0xe080
#define PLA_MAC_PWR_CTRL 0xe0c0
#define PLA_MAC_PWR_CTRL2 0xe0ca
#define PLA_MAC_PWR_CTRL3 0xe0cc
#define PLA_MAC_PWR_CTRL4 0xe0ce
#define PLA_WDT6_CTRL 0xe428
#define PLA_TCR0 0xe610
#define PLA_TCR1 0xe612
#define PLA_MTPS 0xe615
#define PLA_TXFIFO_CTRL 0xe618
#define PLA_TXFIFO_FULL 0xe61a
#define PLA_RSTTALLY 0xe800
#define PLA_CR 0xe813
#define PLA_CRWECR 0xe81c
#define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5 0xe822
#define PLA_PHY_PWR 0xe84c
#define PLA_OOB_CTRL 0xe84f
#define PLA_CPCR 0xe854
#define PLA_MISC_0 0xe858
#define PLA_MISC_1 0xe85a
#define PLA_OCP_GPHY_BASE 0xe86c
#define PLA_TALLYCNT 0xe890
#define PLA_SFF_STS_7 0xe8de
#define PLA_PHYSTATUS 0xe908
#define PLA_CONFIG6 0xe90a /* CONFIG6 */
#define PLA_USB_CFG 0xe952
#define PLA_BP_BA 0xfc26
#define PLA_BP_0 0xfc28
#define PLA_BP_1 0xfc2a
#define PLA_BP_2 0xfc2c
#define PLA_BP_3 0xfc2e
#define PLA_BP_4 0xfc30
#define PLA_BP_5 0xfc32
#define PLA_BP_6 0xfc34
#define PLA_BP_7 0xfc36
#define PLA_BP_EN 0xfc38
#define USB_USB2PHY 0xb41e
#define USB_SSPHYLINK1 0xb426
#define USB_SSPHYLINK2 0xb428
#define USB_L1_CTRL 0xb45e
#define USB_U2P3_CTRL 0xb460
#define USB_CSR_DUMMY1 0xb464
#define USB_CSR_DUMMY2 0xb466
#define USB_DEV_STAT 0xb808
#define USB_CONNECT_TIMER 0xcbf8
#define USB_MSC_TIMER 0xcbfc
#define USB_BURST_SIZE 0xcfc0
#define USB_FW_FIX_EN0 0xcfca
#define USB_FW_FIX_EN1 0xcfcc
#define USB_LPM_CONFIG 0xcfd8
#define USB_ECM_OPTION 0xcfee
#define USB_CSTMR 0xcfef /* RTL8153A */
#define USB_MISC_2 0xcfff
#define USB_ECM_OP 0xd26b
#define USB_GPHY_CTRL 0xd284
#define USB_SPEED_OPTION 0xd32a
#define USB_FW_CTRL 0xd334 /* RTL8153B */
#define USB_FC_TIMER 0xd340
#define USB_USB_CTRL 0xd406
#define USB_PHY_CTRL 0xd408
#define USB_TX_AGG 0xd40a
#define USB_RX_BUF_TH 0xd40c
#define USB_USB_TIMER 0xd428
#define USB_RX_EARLY_TIMEOUT 0xd42c
#define USB_RX_EARLY_SIZE 0xd42e
#define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */
#define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */
#define USB_TX_DMA 0xd434
#define USB_UPT_RXDMA_OWN 0xd437
#define USB_UPHY3_MDCMDIO 0xd480
#define USB_TOLERANCE 0xd490
#define USB_LPM_CTRL 0xd41a
#define USB_BMU_RESET 0xd4b0
#define USB_BMU_CONFIG 0xd4b4
#define USB_U1U2_TIMER 0xd4da
#define USB_FW_TASK 0xd4e8 /* RTL8153B */
#define USB_RX_AGGR_NUM 0xd4ee
#define USB_UPS_CTRL 0xd800
#define USB_POWER_CUT 0xd80a
#define USB_MISC_0 0xd81a
#define USB_MISC_1 0xd81f
#define USB_AFE_CTRL2 0xd824
#define USB_UPHY_XTAL 0xd826
#define USB_UPS_CFG 0xd842
#define USB_UPS_FLAGS 0xd848
#define USB_WDT1_CTRL 0xe404
#define USB_WDT11_CTRL 0xe43c
#define USB_BP_BA PLA_BP_BA
#define USB_BP_0 PLA_BP_0
#define USB_BP_1 PLA_BP_1
#define USB_BP_2 PLA_BP_2
#define USB_BP_3 PLA_BP_3
#define USB_BP_4 PLA_BP_4
#define USB_BP_5 PLA_BP_5
#define USB_BP_6 PLA_BP_6
#define USB_BP_7 PLA_BP_7
#define USB_BP_EN PLA_BP_EN /* RTL8153A */
#define USB_BP_8 0xfc38 /* RTL8153B */
#define USB_BP_9 0xfc3a
#define USB_BP_10 0xfc3c
#define USB_BP_11 0xfc3e
#define USB_BP_12 0xfc40
#define USB_BP_13 0xfc42
#define USB_BP_14 0xfc44
#define USB_BP_15 0xfc46
#define USB_BP2_EN 0xfc48
/* OCP Registers */
#define OCP_ALDPS_CONFIG 0x2010
#define OCP_EEE_CONFIG1 0x2080
#define OCP_EEE_CONFIG2 0x2092
#define OCP_EEE_CONFIG3 0x2094
#define OCP_BASE_MII 0xa400
#define OCP_EEE_AR 0xa41a
#define OCP_EEE_DATA 0xa41c
#define OCP_PHY_STATUS 0xa420
#define OCP_NCTL_CFG 0xa42c
#define OCP_POWER_CFG 0xa430
#define OCP_EEE_CFG 0xa432
#define OCP_SRAM_ADDR 0xa436
#define OCP_SRAM_DATA 0xa438
#define OCP_DOWN_SPEED 0xa442
#define OCP_EEE_ABLE 0xa5c4
#define OCP_EEE_ADV 0xa5d0
#define OCP_EEE_LPABLE 0xa5d2
#define OCP_10GBT_CTRL 0xa5d4
#define OCP_10GBT_STAT 0xa5d6
#define OCP_EEE_ADV2 0xa6d4
#define OCP_PHY_STATE 0xa708 /* nway state for 8153 */
#define OCP_PHY_PATCH_STAT 0xb800
#define OCP_PHY_PATCH_CMD 0xb820
#define OCP_PHY_LOCK 0xb82e
#define OCP_ADC_IOFFSET 0xbcfc
#define OCP_ADC_CFG 0xbc06
#define OCP_SYSCLK_CFG 0xc416
/* SRAM Register */
#define SRAM_GREEN_CFG 0x8011
#define SRAM_LPF_CFG 0x8012
#define SRAM_GPHY_FW_VER 0x801e
#define SRAM_10M_AMP1 0x8080
#define SRAM_10M_AMP2 0x8082
#define SRAM_IMPEDANCE 0x8084
#define SRAM_PHY_LOCK 0xb82e
/* PLA_RCR */
#define RCR_AAP 0x00000001
#define RCR_APM 0x00000002
#define RCR_AM 0x00000004
#define RCR_AB 0x00000008
#define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)
#define SLOT_EN BIT(11)
/* PLA_RCR1 */
#define OUTER_VLAN BIT(7)
#define INNER_VLAN BIT(6)
/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL 0x00080002
#define RXFIFO_THR1_OOB 0x01800003
/* PLA_RXFIFO_FULL */
#define RXFIFO_FULL_MASK 0xfff
/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL 0x00000060
#define RXFIFO_THR2_HIGH 0x00000038
#define RXFIFO_THR2_OOB 0x0000004a
#define RXFIFO_THR2_NORMAL 0x00a0
/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL 0x00000078
#define RXFIFO_THR3_HIGH 0x00000048
#define RXFIFO_THR3_OOB 0x0000005a
#define RXFIFO_THR3_NORMAL 0x0110
/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL 0x00400008
#define TXFIFO_THR_NORMAL2 0x01000008
/* PLA_DMY_REG0 */
#define ECM_ALDPS 0x0002
/* PLA_FMC */
#define FMC_FCR_MCU_EN 0x0001
/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX 0x0002
/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE 0x0010
/* PLA_TCR0 */
#define TCR0_TX_EMPTY 0x0800
#define TCR0_AUTO_FIFO 0x0080
/* PLA_TCR1 */
#define VERSION_MASK 0x7cf0
#define IFG_MASK (BIT(3) | BIT(9) | BIT(8))
#define IFG_144NS BIT(9)
#define IFG_96NS (BIT(9) | BIT(8))
/* PLA_MTPS */
#define MTPS_JUMBO (12 * 1024 / 64)
#define MTPS_DEFAULT (6 * 1024 / 64)
/* PLA_RSTTALLY */
#define TALLY_RESET 0x0001
/* PLA_CR */
#define CR_RST 0x10
#define CR_RE 0x08
#define CR_TE 0x04
/* PLA_CRWECR */
#define CRWECR_NORAML 0x00
#define CRWECR_CONFIG 0xc0
/* PLA_OOB_CTRL */
#define NOW_IS_OOB 0x80
#define TXFIFO_EMPTY 0x20
#define RXFIFO_EMPTY 0x10
#define LINK_LIST_READY 0x02
#define DIS_MCU_CLROOB 0x01
#define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY)
/* PLA_MISC_1 */
#define RXDY_GATED_EN 0x0008
/* PLA_SFF_STS_7 */
#define RE_INIT_LL 0x8000
#define MCU_BORW_EN 0x4000
/* PLA_CPCR */
#define FLOW_CTRL_EN BIT(0)
#define CPCR_RX_VLAN 0x0040
/* PLA_CFG_WOL */
#define MAGIC_EN 0x0001
/* PLA_TEREDO_CFG */
#define TEREDO_SEL 0x8000
#define TEREDO_WAKE_MASK 0x7f00
#define TEREDO_RS_EVENT_MASK 0x00fe
#define OOB_TEREDO_EN 0x0001
/* PLA_BDC_CR */
#define ALDPS_PROXY_MODE 0x0001
/* PLA_EFUSE_CMD */
#define EFUSE_READ_CMD BIT(15)
#define EFUSE_DATA_BIT16 BIT(7)
/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN 0x0010
#define LINK_OFF_WAKE_EN 0x0008
/* PLA_CONFIG6 */
#define LANWAKE_CLR_EN BIT(0)
/* PLA_USB_CFG */
#define EN_XG_LIP BIT(1)
#define EN_G_LIP BIT(2)
/* PLA_CONFIG5 */
#define BWF_EN 0x0040
#define MWF_EN 0x0020
#define UWF_EN 0x0010
#define LAN_WAKE_EN 0x0002
/* PLA_LED_FEATURE */
#define LED_MODE_MASK 0x0700
/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN 0x0080
#define PFM_PWM_SWITCH 0x0040
#define TEST_IO_OFF BIT(4)
/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN 0x00004000
#define MCU_CLK_RATIO 0x07010f07
#define MCU_CLK_RATIO_MASK 0x0f0f0f0f
#define ALDPS_SPDWN_RATIO 0x0f87
/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO 0x8007
#define MAC_CLK_SPDWN_EN BIT(15)
#define EEE_SPDWN_RATIO_MASK 0xff
/* PLA_MAC_PWR_CTRL3 */
#define PLA_MCU_SPDWN_EN BIT(14)
#define PKT_AVAIL_SPDWN_EN 0x0100
#define SUSPEND_SPDWN_EN 0x0004
#define U1U2_SPDWN_EN 0x0002
#define L1_SPDWN_EN 0x0001
/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN 0x1000
#define RXDV_SPDWN_EN 0x0800
#define TX10MIDLE_EN 0x0100
#define IDLE_SPDWN_EN BIT(6)
#define TP100_SPDWN_EN 0x0020
#define TP500_SPDWN_EN 0x0010
#define TP1000_SPDWN_EN 0x0008
#define EEE_SPDWN_EN 0x0001
/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK 0x0001
#define SPEED_DOWN_MSK 0x0002
#define SPDWN_RXDV_MSK 0x0004
#define SPDWN_LINKCHG_MSK 0x0008
/* PLA_PHYAR */
#define PHYAR_FLAG 0x80000000
/* PLA_EEE_CR */
#define EEE_RX_EN 0x0001
#define EEE_TX_EN 0x0002
/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE 0x0002
/* PLA_LWAKE_CTRL_REG */
#define LANWAKE_PIN BIT(7)
/* PLA_SUSPEND_FLAG */
#define LINK_CHG_EVENT BIT(0)
/* PLA_INDICATE_FALG */
#define UPCOMING_RUNTIME_D3 BIT(0)
/* PLA_MACDBG_PRE and PLA_MACDBG_POST */
#define DEBUG_OE BIT(0)
#define DEBUG_LTSSM 0x0082
/* PLA_EXTRA_STATUS */
#define CUR_LINK_OK BIT(15)
#define U3P3_CHECK_EN BIT(7) /* RTL_VER_05 only */
#define LINK_CHANGE_FLAG BIT(8)
#define POLL_LINK_CHG BIT(0)
/* PLA_GPHY_CTRL */
#define GPHY_FLASH BIT(1)
/* PLA_POL_GPIO_CTRL */
#define DACK_DET_EN BIT(15)
#define POL_GPHY_PATCH BIT(4)
/* USB_USB2PHY */
#define USB2PHY_SUSPEND 0x0001
#define USB2PHY_L1 0x0002
/* USB_SSPHYLINK1 */
#define DELAY_PHY_PWR_CHG BIT(1)
/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask 0x3ffe
#define pwd_dn_scale(x) ((x) << 1)
/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST 0x0001
/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC 0x0001
/* USB_DEV_STAT */
#define STAT_SPEED_MASK 0x0006
#define STAT_SPEED_HIGH 0x0000
#define STAT_SPEED_FULL 0x0002
/* USB_FW_FIX_EN0 */
#define FW_FIX_SUSPEND BIT(14)
/* USB_FW_FIX_EN1 */
#define FW_IP_RESET_EN BIT(9)
/* USB_LPM_CONFIG */
#define LPM_U1U2_EN BIT(0)
/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD 0x03
/* USB_RX_BUF_TH */
#define RX_THR_SUPPER 0x0c350180
#define RX_THR_HIGH 0x7a120180
#define RX_THR_SLOW 0xffff0180
#define RX_THR_B 0x00010001
/* USB_TX_DMA */
#define TEST_MODE_DISABLE 0x00000001
#define TX_SIZE_ADJUST1 0x00000100
/* USB_BMU_RESET */
#define BMU_RESET_EP_IN 0x01
#define BMU_RESET_EP_OUT 0x02
/* USB_BMU_CONFIG */
#define ACT_ODMA BIT(1)
/* USB_UPT_RXDMA_OWN */
#define OWN_UPDATE BIT(0)
#define OWN_CLEAR BIT(1)
/* USB_FW_TASK */
#define FC_PATCH_TASK BIT(1)
/* USB_RX_AGGR_NUM */
#define RX_AGGR_NUM_MASK 0x1ff
/* USB_UPS_CTRL */
#define POWER_CUT 0x0100
/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE 0x0001
/* USB_ECM_OPTION */
#define BYPASS_MAC_RESET BIT(5)
/* USB_CSTMR */
#define FORCE_SUPER BIT(0)
/* USB_MISC_2 */
#define UPS_FORCE_PWR_DOWN BIT(0)
/* USB_ECM_OP */
#define EN_ALL_SPEED BIT(0)
/* USB_GPHY_CTRL */
#define GPHY_PATCH_DONE BIT(2)
#define BYPASS_FLASH BIT(5)
#define BACKUP_RESTRORE BIT(6)
/* USB_SPEED_OPTION */
#define RG_PWRDN_EN BIT(8)
#define ALL_SPEED_OFF BIT(9)
/* USB_FW_CTRL */
#define FLOW_CTRL_PATCH_OPT BIT(1)
#define AUTO_SPEEDUP BIT(3)
#define FLOW_CTRL_PATCH_2 BIT(8)
/* USB_FC_TIMER */
#define CTRL_TIMER_EN BIT(15)
/* USB_USB_CTRL */
#define CDC_ECM_EN BIT(3)
#define RX_AGG_DISABLE 0x0010
#define RX_ZERO_EN 0x0080
/* USB_U2P3_CTRL */
#define U2P3_ENABLE 0x0001
#define RX_DETECT8 BIT(3)
/* USB_POWER_CUT */
#define PWR_EN 0x0001
#define PHASE2_EN 0x0008
#define UPS_EN BIT(4)
#define USP_PREWAKE BIT(5)
/* USB_MISC_0 */
#define PCUT_STATUS 0x0001
/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER 85000U
#define COALESCE_HIGH 250000U
#define COALESCE_SLOW 524280U
/* USB_WDT1_CTRL */
#define WTD1_EN BIT(0)
/* USB_WDT11_CTRL */
#define TIMER11_EN 0x0001
/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK 0x0c
#define LPM_TIMER_500MS 0x04 /* 500 ms */
#define LPM_TIMER_500US 0x0c /* 500 us */
#define ROK_EXIT_LPM 0x02
/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK 0xf800
#define SEN_VAL_NORMAL 0xa000
#define SEL_RXIDLE 0x0100
/* USB_UPHY_XTAL */
#define OOBS_POLLING BIT(8)
/* USB_UPS_CFG */
#define SAW_CNT_1MS_MASK 0x0fff
#define MID_REVERSE BIT(5) /* RTL8156A */
/* USB_UPS_FLAGS */
#define UPS_FLAGS_R_TUNE BIT(0)
#define UPS_FLAGS_EN_10M_CKDIV BIT(1)
#define UPS_FLAGS_250M_CKDIV BIT(2)
#define UPS_FLAGS_EN_ALDPS BIT(3)
#define UPS_FLAGS_CTAP_SHORT_DIS BIT(4)
#define UPS_FLAGS_SPEED_MASK (0xf << 16)
#define ups_flags_speed(x) ((x) << 16)
#define UPS_FLAGS_EN_EEE BIT(20)
#define UPS_FLAGS_EN_500M_EEE BIT(21)
#define UPS_FLAGS_EN_EEE_CKDIV BIT(22)
#define UPS_FLAGS_EEE_PLLOFF_100 BIT(23)
#define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24)
#define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25)
#define UPS_FLAGS_EN_GREEN BIT(26)
#define UPS_FLAGS_EN_FLOW_CTR BIT(27)
enum spd_duplex {
NWAY_10M_HALF,
NWAY_10M_FULL,
NWAY_100M_HALF,
NWAY_100M_FULL,
NWAY_1000M_FULL,
FORCE_10M_HALF,
FORCE_10M_FULL,
FORCE_100M_HALF,
FORCE_100M_FULL,
FORCE_1000M_FULL,
NWAY_2500M_FULL,
};
/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE 0x8000
#define ENPDNPS 0x0200
#define LINKENA 0x0100
#define DIS_SDSAVE 0x0010
/* OCP_PHY_STATUS */
#define PHY_STAT_MASK 0x0007
#define PHY_STAT_EXT_INIT 2
#define PHY_STAT_LAN_ON 3
#define PHY_STAT_PWRDN 5
/* OCP_NCTL_CFG */
#define PGA_RETURN_EN BIT(1)
/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN 0x8000
#define EN_ALDPS 0x0004
#define EN_10M_PLLOFF 0x0001
/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP 0x8000
#define RG_MATCLR_EN 0x4000
#define EEE_10_CAP 0x2000
#define EEE_NWAY_EN 0x1000
#define TX_QUIET_EN 0x0200
#define RX_QUIET_EN 0x0100
#define sd_rise_time_mask 0x0070
#define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP 0x0008
#define SDFALLTIME 0x0007 /* bit 0 ~ 2 */
/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */
#define RG_DACQUIET_EN 0x0400
#define RG_LDVQUIET_EN 0x0200
#define RG_CKRSEL 0x0020
#define RG_EEEPRG_EN 0x0010
/* OCP_EEE_CONFIG3 */
#define fast_snr_mask 0xff80
#define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */
#define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */
#define MSK_PH 0x0006 /* bit 0 ~ 3 */
/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR 0x0000
#define FUN_DATA 0x4000
/* bit[4:0] device addr */
/* OCP_EEE_CFG */
#define CTAP_SHORT_EN 0x0040
#define EEE10_EN 0x0010
/* OCP_DOWN_SPEED */
#define EN_EEE_CMODE BIT(14)
#define EN_EEE_1000 BIT(13)
#define EN_EEE_100 BIT(12)
#define EN_10M_CLKDIV BIT(11)
#define EN_10M_BGOFF 0x0080
/* OCP_10GBT_CTRL */
#define RTL_ADV2_5G_F_R BIT(5) /* Advertise 2.5GBASE-T fast-retrain */
/* OCP_PHY_STATE */
#define TXDIS_STATE 0x01
#define ABD_STATE 0x02
/* OCP_PHY_PATCH_STAT */
#define PATCH_READY BIT(6)
/* OCP_PHY_PATCH_CMD */
#define PATCH_REQUEST BIT(4)
/* OCP_PHY_LOCK */
#define PATCH_LOCK BIT(0)
/* OCP_ADC_CFG */
#define CKADSEL_L 0x0100
#define ADC_EN 0x0080
#define EN_EMI_L 0x0040
/* OCP_SYSCLK_CFG */
#define sysclk_div_expo(x) (min(x, 5) << 8)
#define clk_div_expo(x) (min(x, 5) << 4)
/* SRAM_GREEN_CFG */
#define GREEN_ETH_EN BIT(15)
#define R_TUNE_EN BIT(11)
/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE 0x8000
/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL 0x0008
/* SRAM_10M_AMP2 */
#define AMP_DN 0x0200
/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK 0x6000
/* SRAM_PHY_LOCK */
#define PHY_PATCH_LOCK 0x0001
/* MAC PASSTHRU */
#define AD_MASK 0xfee0
#define BND_MASK 0x0004
#define BD_MASK 0x0001
#define EFUSE 0xcfdb
#define PASS_THRU_MASK 0x1
#define BP4_SUPER_ONLY 0x1578 /* RTL_VER_04 only */
enum rtl_register_content {
_2500bps = BIT(10),
_1250bps = BIT(9),
_500bps = BIT(8),
_tx_flow = BIT(6),
_rx_flow = BIT(5),
_1000bps = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LINK_STATUS = 0x02,
FULL_DUP = 0x01,
};
#define is_speed_2500(_speed) (((_speed) & (_2500bps | LINK_STATUS)) == (_2500bps | LINK_STATUS))
#define is_flow_control(_speed) (((_speed) & (_tx_flow | _rx_flow)) == (_tx_flow | _rx_flow))
#define RTL8152_MAX_TX 4
#define RTL8152_MAX_RX 10
#define INTBUFSIZE 2
#define TX_ALIGN 4
#define RX_ALIGN 8
#define RTL8152_RX_MAX_PENDING 4096
#define RTL8152_RXFG_HEADSZ 256
#define INTR_LINK 0x0004
#define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
#define RTL8153_RMS RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT (5 * HZ)
#define mtu_to_size(m) ((m) + VLAN_ETH_HLEN + ETH_FCS_LEN)
#define size_to_mtu(s) ((s) - VLAN_ETH_HLEN - ETH_FCS_LEN)
#define rx_reserved_size(x) (mtu_to_size(x) + sizeof(struct rx_desc) + RX_ALIGN)
/* rtl8152 flags */
enum rtl8152_flags {
RTL8152_UNPLUG = 0,
RTL8152_SET_RX_MODE,
WORK_ENABLE,
RTL8152_LINK_CHG,
SELECTIVE_SUSPEND,
PHY_RESET,
SCHEDULE_TASKLET,
GREEN_ETHERNET,
RX_EPROTO,
};
#define DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2 0x3082
#define DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2 0xa387
struct tally_counter {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
};
struct rx_desc {
__le32 opts1;
#define RX_LEN_MASK 0x7fff
__le32 opts2;
#define RD_UDP_CS BIT(23)
#define RD_TCP_CS BIT(22)
#define RD_IPV6_CS BIT(20)
#define RD_IPV4_CS BIT(19)
__le32 opts3;
#define IPF BIT(23) /* IP checksum fail */
#define UDPF BIT(22) /* UDP checksum fail */
#define TCPF BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG BIT(16)
__le32 opts4;
__le32 opts5;
__le32 opts6;
};
struct tx_desc {
__le32 opts1;
#define TX_FS BIT(31) /* First segment of a packet */
#define TX_LS BIT(30) /* Final segment of a packet */
#define GTSENDV4 BIT(28)
#define GTSENDV6 BIT(27)
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
#define TX_LEN_MAX 0x3ffffU
__le32 opts2;
#define UDP_CS BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT 17
#define MSS_MAX 0x7ffU
#define TCPHO_SHIFT 17
#define TCPHO_MAX 0x7ffU
#define TX_VLAN_TAG BIT(16)
};
struct r8152;
struct rx_agg {
struct list_head list, info_list;
struct urb *urb;
struct r8152 *context;
struct page *page;
void *buffer;
};
struct tx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
u32 skb_num;
u32 skb_len;
};
struct r8152 {
unsigned long flags;
struct usb_device *udev;
struct napi_struct napi;
struct usb_interface *intf;
struct net_device *netdev;
struct urb *intr_urb;
struct tx_agg tx_info[RTL8152_MAX_TX];
struct list_head rx_info, rx_used;
struct list_head rx_done, tx_free;
struct sk_buff_head tx_queue, rx_queue;
spinlock_t rx_lock, tx_lock;
struct delayed_work schedule, hw_phy_work;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */
#ifdef CONFIG_PM_SLEEP
struct notifier_block pm_notifier;
#endif
struct tasklet_struct tx_tl;
struct rtl_ops {
void (*init)(struct r8152 *tp);
int (*enable)(struct r8152 *tp);
void (*disable)(struct r8152 *tp);
void (*up)(struct r8152 *tp);
void (*down)(struct r8152 *tp);
void (*unload)(struct r8152 *tp);
int (*eee_get)(struct r8152 *tp, struct ethtool_eee *eee);
int (*eee_set)(struct r8152 *tp, struct ethtool_eee *eee);
bool (*in_nway)(struct r8152 *tp);
void (*hw_phy_cfg)(struct r8152 *tp);
void (*autosuspend_en)(struct r8152 *tp, bool enable);
void (*change_mtu)(struct r8152 *tp);
} rtl_ops;
struct ups_info {
u32 r_tune:1;
u32 _10m_ckdiv:1;
u32 _250m_ckdiv:1;
u32 aldps:1;
u32 lite_mode:2;
u32 speed_duplex:4;
u32 eee:1;
u32 eee_lite:1;
u32 eee_ckdiv:1;
u32 eee_plloff_100:1;
u32 eee_plloff_giga:1;
u32 eee_cmod_lv:1;
u32 green:1;
u32 flow_control:1;
u32 ctap_short_off:1;
} ups_info;
#define RTL_VER_SIZE 32
struct rtl_fw {
const char *fw_name;
const struct firmware *fw;
char version[RTL_VER_SIZE];
int (*pre_fw)(struct r8152 *tp);
int (*post_fw)(struct r8152 *tp);
bool retry;
} rtl_fw;
atomic_t rx_count;
bool eee_en;
int intr_interval;
u32 saved_wolopts;
u32 msg_enable;
u32 tx_qlen;
u32 coalesce;
u32 advertising;
u32 rx_buf_sz;
u32 rx_copybreak;
u32 rx_pending;
u32 fc_pause_on, fc_pause_off;
unsigned int pipe_in, pipe_out, pipe_intr, pipe_ctrl_in, pipe_ctrl_out;
u32 support_2500full:1;
u32 lenovo_macpassthru:1;
u32 dell_tb_rx_agg_bug:1;
u16 ocp_base;
u16 speed;
u16 eee_adv;
u8 *intr_buff;
u8 version;
u8 duplex;
u8 autoneg;
};
/**
* struct fw_block - block type and total length
* @type: type of the current block, such as RTL_FW_END, RTL_FW_PLA,
* RTL_FW_USB and so on.
* @length: total length of the current block.
*/
struct fw_block {
__le32 type;
__le32 length;
} __packed;
/**
* struct fw_header - header of the firmware file
* @checksum: checksum of sha256 which is calculated from the whole file
* except the checksum field of the file. That is, calculate sha256
* from the version field to the end of the file.
* @version: version of this firmware.
* @blocks: the first firmware block of the file
*/
struct fw_header {
u8 checksum[32];
char version[RTL_VER_SIZE];
struct fw_block blocks[];
} __packed;
enum rtl8152_fw_flags {
FW_FLAGS_USB = 0,
FW_FLAGS_PLA,
FW_FLAGS_START,
FW_FLAGS_STOP,
FW_FLAGS_NC,
FW_FLAGS_NC1,
FW_FLAGS_NC2,
FW_FLAGS_UC2,
FW_FLAGS_UC,
FW_FLAGS_SPEED_UP,
FW_FLAGS_VER,
};
enum rtl8152_fw_fixup_cmd {
FW_FIXUP_AND = 0,
FW_FIXUP_OR,
FW_FIXUP_NOT,
FW_FIXUP_XOR,
};
struct fw_phy_set {
__le16 addr;
__le16 data;
} __packed;
struct fw_phy_speed_up {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 version;
__le16 fw_reg;
__le16 reserved;
char info[];
} __packed;
struct fw_phy_ver {
struct fw_block blk_hdr;
struct fw_phy_set ver;
__le32 reserved;
} __packed;
struct fw_phy_fixup {
struct fw_block blk_hdr;
struct fw_phy_set setting;
__le16 bit_cmd;
__le16 reserved;
} __packed;
struct fw_phy_union {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
struct fw_phy_set pre_set[2];
struct fw_phy_set bp[8];
struct fw_phy_set bp_en;
u8 pre_num;
u8 bp_num;
char info[];
} __packed;
/**
* struct fw_mac - a firmware block used by RTL_FW_PLA and RTL_FW_USB.
* The layout of the firmware block is:
* <struct fw_mac> + <info> + <firmware data>.
* @blk_hdr: firmware descriptor (type, length)
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_mac + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @bp_ba_addr: the register to write break point base address. Depends on
* chip.
* @bp_ba_value: break point base address. Depends on chip.
* @bp_en_addr: the register to write break point enabled mask. Depends
* on chip.
* @bp_en_value: break point enabled mask. Depends on the firmware.
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @reserved: reserved space (unused)
* @fw_ver_reg: the register to store the fw version.
* @fw_ver_data: the firmware version of the current type.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_mac {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 bp_ba_addr;
__le16 bp_ba_value;
__le16 bp_en_addr;
__le16 bp_en_value;
__le16 bp_start;
__le16 bp_num;
__le16 bp[16]; /* any value determined by firmware */
__le32 reserved;
__le16 fw_ver_reg;
u8 fw_ver_data;
char info[];
} __packed;
/**
* struct fw_phy_patch_key - a firmware block used by RTL_FW_PHY_START.
* This is used to set patch key when loading the firmware of PHY.
* @blk_hdr: firmware descriptor (type, length)
* @key_reg: the register to write the patch key.
* @key_data: patch key.
* @reserved: reserved space (unused)
*/
struct fw_phy_patch_key {
struct fw_block blk_hdr;
__le16 key_reg;
__le16 key_data;
__le32 reserved;
} __packed;
/**
* struct fw_phy_nc - a firmware block used by RTL_FW_PHY_NC.
* The layout of the firmware block is:
* <struct fw_phy_nc> + <info> + <firmware data>.
* @blk_hdr: firmware descriptor (type, length)
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_phy_nc + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @ba_reg: the register to write the base address. Depends on chip.
* @ba_data: base address. Depends on chip.
* @patch_en_addr: the register of enabling patch mode. Depends on chip.
* @patch_en_value: patch mode enabled mask. Depends on the firmware.
* @mode_reg: the regitster of switching the mode.
* @mode_pre: the mode needing to be set before loading the firmware.
* @mode_post: the mode to be set when finishing to load the firmware.
* @reserved: reserved space (unused)
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_phy_nc {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 ba_reg;
__le16 ba_data;
__le16 patch_en_addr;
__le16 patch_en_value;
__le16 mode_reg;
__le16 mode_pre;
__le16 mode_post;
__le16 reserved;
__le16 bp_start;
__le16 bp_num;
__le16 bp[4];
char info[];
} __packed;
enum rtl_fw_type {
RTL_FW_END = 0,
RTL_FW_PLA,
RTL_FW_USB,
RTL_FW_PHY_START,
RTL_FW_PHY_STOP,
RTL_FW_PHY_NC,
RTL_FW_PHY_FIXUP,
RTL_FW_PHY_UNION_NC,
RTL_FW_PHY_UNION_NC1,
RTL_FW_PHY_UNION_NC2,
RTL_FW_PHY_UNION_UC2,
RTL_FW_PHY_UNION_UC,
RTL_FW_PHY_UNION_MISC,
RTL_FW_PHY_SPEED_UP,
RTL_FW_PHY_VER,
};
enum rtl_version {
RTL_VER_UNKNOWN = 0,
RTL_VER_01,
RTL_VER_02,
RTL_VER_03,
RTL_VER_04,
RTL_VER_05,
RTL_VER_06,
RTL_VER_07,
RTL_VER_08,
RTL_VER_09,
RTL_TEST_01,
RTL_VER_10,
RTL_VER_11,
RTL_VER_12,
RTL_VER_13,
RTL_VER_14,
RTL_VER_15,
RTL_VER_MAX
};
enum tx_csum_stat {
TX_CSUM_SUCCESS = 0,
TX_CSUM_TSO,
TX_CSUM_NONE
};
#define RTL_ADVERTISED_10_HALF BIT(0)
#define RTL_ADVERTISED_10_FULL BIT(1)
#define RTL_ADVERTISED_100_HALF BIT(2)
#define RTL_ADVERTISED_100_FULL BIT(3)
#define RTL_ADVERTISED_1000_HALF BIT(4)
#define RTL_ADVERTISED_1000_FULL BIT(5)
#define RTL_ADVERTISED_2500_FULL BIT(6)
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The RTL chips use a 64 element hash table based on the Ethernet CRC.
*/
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;
#define RTL_LIMITED_TSO_SIZE (size_to_mtu(agg_buf_sz) - sizeof(struct tx_desc))
static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmalloc(size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, tp->pipe_ctrl_in,
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
value, index, tmp, size, 500);
if (ret < 0)
memset(data, 0xff, size);
else
memcpy(data, tmp, size);
kfree(tmp);
return ret;
}
static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmemdup(data, size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, tp->pipe_ctrl_out,
RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
value, index, tmp, size, 500);
kfree(tmp);
return ret;
}
static void rtl_set_unplug(struct r8152 *tp)
{
if (tp->udev->state == USB_STATE_NOTATTACHED) {
set_bit(RTL8152_UNPLUG, &tp->flags);
smp_mb__after_atomic();
}
}
static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
void *data, u16 type)
{
u16 limit = 64;
int ret = 0;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
while (size) {
if (size > limit) {
ret = get_registers(tp, index, type, limit, data);
if (ret < 0)
break;
index += limit;
data += limit;
size -= limit;
} else {
ret = get_registers(tp, index, type, size, data);
if (ret < 0)
break;
index += size;
data += size;
size = 0;
break;
}
}
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
u16 size, void *data, u16 type)
{
int ret;
u16 byteen_start, byteen_end, byen;
u16 limit = 512;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
byteen_start = byteen & BYTE_EN_START_MASK;
byteen_end = byteen & BYTE_EN_END_MASK;
byen = byteen_start | (byteen_start << 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
index += 4;
data += 4;
size -= 4;
if (size) {
size -= 4;
while (size) {
if (size > limit) {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
limit, data);
if (ret < 0)
goto error1;
index += limit;
data += limit;
size -= limit;
} else {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
size, data);
if (ret < 0)
goto error1;
index += size;
data += size;
size = 0;
break;
}
}
byen = byteen_end | (byteen_end >> 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
}
error1:
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}
static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}
static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}
static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
__le32 data;
generic_ocp_read(tp, index, sizeof(data), &data, type);
return __le32_to_cpu(data);
}
static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
__le32 tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}
static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
index &= ~3;
byen <<= shift;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xffff;
return (u16)data;
}
static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xffff;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
data &= mask;
if (index & 2) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 3;
index &= ~3;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xff;
return (u8)data;
}
static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xff;
__le32 tmp;
u16 byen = BYTE_EN_BYTE;
u8 shift = index & 3;
data &= mask;
if (index & 3) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}
static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}
static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}
static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}
static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
ocp_reg_write(tp, OCP_SRAM_DATA, data);
}
static u16 sram_read(struct r8152 *tp, u16 addr)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
return ocp_reg_read(tp, OCP_SRAM_DATA);
}
static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
if (phy_id != R8152_PHY_ID)
return -EINVAL;
ret = r8152_mdio_read(tp, reg);
return ret;
}
static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
struct r8152 *tp = netdev_priv(netdev);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (phy_id != R8152_PHY_ID)
return;
r8152_mdio_write(tp, reg, val);
}
static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);
static int
rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex,
u32 advertising);
static int __rtl8152_set_mac_address(struct net_device *netdev, void *p,
bool in_resume)
{
struct r8152 *tp = netdev_priv(netdev);
struct sockaddr *addr = p;
int ret = -EADDRNOTAVAIL;
if (!is_valid_ether_addr(addr->sa_data))
goto out1;
if (!in_resume) {
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out1;
}
mutex_lock(&tp->control);
eth_hw_addr_set(netdev, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
mutex_unlock(&tp->control);
if (!in_resume)
usb_autopm_put_interface(tp->intf);
out1:
return ret;
}
static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
return __rtl8152_set_mac_address(netdev, p, false);
}
/* Devices containing proper chips can support a persistent
* host system provided MAC address.
* Examples of this are Dell TB15 and Dell WD15 docks
*/
static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa)
{
acpi_status status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
int ret = -EINVAL;
u32 ocp_data;
unsigned char buf[6];
char *mac_obj_name;
acpi_object_type mac_obj_type;
int mac_strlen;
if (tp->lenovo_macpassthru) {
mac_obj_name = "\\MACA";
mac_obj_type = ACPI_TYPE_STRING;
mac_strlen = 0x16;
} else {
/* test for -AD variant of RTL8153 */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
if ((ocp_data & AD_MASK) == 0x1000) {
/* test for MAC address pass-through bit */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE);
if ((ocp_data & PASS_THRU_MASK) != 1) {
netif_dbg(tp, probe, tp->netdev,
"No efuse for RTL8153-AD MAC pass through\n");
return -ENODEV;
}
} else {
/* test for RTL8153-BND and RTL8153-BD */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1);
if ((ocp_data & BND_MASK) == 0 && (ocp_data & BD_MASK) == 0) {
netif_dbg(tp, probe, tp->netdev,
"Invalid variant for MAC pass through\n");
return -ENODEV;
}
}
mac_obj_name = "\\_SB.AMAC";
mac_obj_type = ACPI_TYPE_BUFFER;
mac_strlen = 0x17;
}
/* returns _AUXMAC_#AABBCCDDEEFF# */
status = acpi_evaluate_object(NULL, mac_obj_name, NULL, &buffer);
obj = (union acpi_object *)buffer.pointer;
if (!ACPI_SUCCESS(status))
return -ENODEV;
if (obj->type != mac_obj_type || obj->string.length != mac_strlen) {
netif_warn(tp, probe, tp->netdev,
"Invalid buffer for pass-thru MAC addr: (%d, %d)\n",
obj->type, obj->string.length);
goto amacout;
}
if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 ||
strncmp(obj->string.pointer + 0x15, "#", 1) != 0) {
netif_warn(tp, probe, tp->netdev,
"Invalid header when reading pass-thru MAC addr\n");
goto amacout;
}
ret = hex2bin(buf, obj->string.pointer + 9, 6);
if (!(ret == 0 && is_valid_ether_addr(buf))) {
netif_warn(tp, probe, tp->netdev,
"Invalid MAC for pass-thru MAC addr: %d, %pM\n",
ret, buf);
ret = -EINVAL;
goto amacout;
}
memcpy(sa->sa_data, buf, 6);
netif_info(tp, probe, tp->netdev,
"Using pass-thru MAC addr %pM\n", sa->sa_data);
amacout:
kfree(obj);
return ret;
}
static int determine_ethernet_addr(struct r8152 *tp, struct sockaddr *sa)
{
struct net_device *dev = tp->netdev;
int ret;
sa->sa_family = dev->type;
ret = eth_platform_get_mac_address(&tp->udev->dev, sa->sa_data);
if (ret < 0) {
if (tp->version == RTL_VER_01) {
ret = pla_ocp_read(tp, PLA_IDR, 8, sa->sa_data);
} else {
/* if device doesn't support MAC pass through this will
* be expected to be non-zero
*/
ret = vendor_mac_passthru_addr_read(tp, sa);
if (ret < 0)
ret = pla_ocp_read(tp, PLA_BACKUP, 8,
sa->sa_data);
}
}
if (ret < 0) {
netif_err(tp, probe, dev, "Get ether addr fail\n");
} else if (!is_valid_ether_addr(sa->sa_data)) {
netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
sa->sa_data);
eth_hw_addr_random(dev);
ether_addr_copy(sa->sa_data, dev->dev_addr);
netif_info(tp, probe, dev, "Random ether addr %pM\n",
sa->sa_data);
return 0;
}
return ret;
}
static int set_ethernet_addr(struct r8152 *tp, bool in_resume)
{
struct net_device *dev = tp->netdev;
struct sockaddr sa;
int ret;
ret = determine_ethernet_addr(tp, &sa);
if (ret < 0)
return ret;
if (tp->version == RTL_VER_01)
eth_hw_addr_set(dev, sa.sa_data);
else
ret = __rtl8152_set_mac_address(dev, &sa, in_resume);
return ret;
}
static void read_bulk_callback(struct urb *urb)
{
struct net_device *netdev;
int status = urb->status;
struct rx_agg *agg;
struct r8152 *tp;
unsigned long flags;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
netdev = tp->netdev;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(netdev))
return;
usb_mark_last_busy(tp->udev);
switch (status) {
case 0:
if (urb->actual_length < ETH_ZLEN)
break;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
napi_schedule(&tp->napi);
return;
case -ESHUTDOWN:
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
return;
case -EPROTO:
urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
set_bit(RX_EPROTO, &tp->flags);
schedule_delayed_work(&tp->schedule, 1);
return;
case -ENOENT:
return; /* the urb is in unlink state */
case -ETIME:
if (net_ratelimit())
netdev_warn(netdev, "maybe reset is needed?\n");
break;
default:
if (net_ratelimit())
netdev_warn(netdev, "Rx status %d\n", status);
break;
}
r8152_submit_rx(tp, agg, GFP_ATOMIC);
}
static void write_bulk_callback(struct urb *urb)
{
struct net_device_stats *stats;
struct net_device *netdev;
struct tx_agg *agg;
struct r8152 *tp;
unsigned long flags;
int status = urb->status;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
netdev = tp->netdev;
stats = &netdev->stats;
if (status) {
if (net_ratelimit())
netdev_warn(netdev, "Tx status %d\n", status);
stats->tx_errors += agg->skb_num;
} else {
stats->tx_packets += agg->skb_num;
stats->tx_bytes += agg->skb_len;
}
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
usb_autopm_put_interface_async(tp->intf);
if (!netif_carrier_ok(netdev))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!skb_queue_empty(&tp->tx_queue))
tasklet_schedule(&tp->tx_tl);
}
static void intr_callback(struct urb *urb)
{
struct r8152 *tp;
__le16 *d;
int status = urb->status;
int res;
tp = urb->context;
if (!tp)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
switch (status) {
case 0: /* success */
break;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN:
netif_device_detach(tp->netdev);
fallthrough;
case -ENOENT:
case -EPROTO:
netif_info(tp, intr, tp->netdev,
"Stop submitting intr, status %d\n", status);
return;
case -EOVERFLOW:
netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
goto resubmit;
/* -EPIPE: should clear the halt */
default:
netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
goto resubmit;
}
d = urb->transfer_buffer;
if (INTR_LINK & __le16_to_cpu(d[0])) {
if (!netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
} else {
if (netif_carrier_ok(tp->netdev)) {
netif_stop_queue(tp->netdev);
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
resubmit:
res = usb_submit_urb(urb, GFP_ATOMIC);
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (res) {
netif_err(tp, intr, tp->netdev,
"can't resubmit intr, status %d\n", res);
}
}
static inline void *rx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}
static inline void *tx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}
static void free_rx_agg(struct r8152 *tp, struct rx_agg *agg)
{
list_del(&agg->info_list);
usb_free_urb(agg->urb);
put_page(agg->page);
kfree(agg);
atomic_dec(&tp->rx_count);
}
static struct rx_agg *alloc_rx_agg(struct r8152 *tp, gfp_t mflags)
{
struct net_device *netdev = tp->netdev;
int node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
unsigned int order = get_order(tp->rx_buf_sz);
struct rx_agg *rx_agg;
unsigned long flags;
rx_agg = kmalloc_node(sizeof(*rx_agg), mflags, node);
if (!rx_agg)
return NULL;
rx_agg->page = alloc_pages(mflags | __GFP_COMP, order);
if (!rx_agg->page)
goto free_rx;
rx_agg->buffer = page_address(rx_agg->page);
rx_agg->urb = usb_alloc_urb(0, mflags);
if (!rx_agg->urb)
goto free_buf;
rx_agg->context = tp;
INIT_LIST_HEAD(&rx_agg->list);
INIT_LIST_HEAD(&rx_agg->info_list);
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&rx_agg->info_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
atomic_inc(&tp->rx_count);
return rx_agg;
free_buf:
__free_pages(rx_agg->page, order);
free_rx:
kfree(rx_agg);
return NULL;
}
static void free_all_mem(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
unsigned long flags;
int i;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_info, info_list)
free_rx_agg(tp, agg);
spin_unlock_irqrestore(&tp->rx_lock, flags);
WARN_ON(atomic_read(&tp->rx_count));
for (i = 0; i < RTL8152_MAX_TX; i++) {
usb_free_urb(tp->tx_info[i].urb);
tp->tx_info[i].urb = NULL;
kfree(tp->tx_info[i].buffer);
tp->tx_info[i].buffer = NULL;
tp->tx_info[i].head = NULL;
}
usb_free_urb(tp->intr_urb);
tp->intr_urb = NULL;
kfree(tp->intr_buff);
tp->intr_buff = NULL;
}
static int alloc_all_mem(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct usb_interface *intf = tp->intf;
struct usb_host_interface *alt = intf->cur_altsetting;
struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
int node, i;
node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
spin_lock_init(&tp->rx_lock);
spin_lock_init(&tp->tx_lock);
INIT_LIST_HEAD(&tp->rx_info);
INIT_LIST_HEAD(&tp->tx_free);
INIT_LIST_HEAD(&tp->rx_done);
skb_queue_head_init(&tp->tx_queue);
skb_queue_head_init(&tp->rx_queue);
atomic_set(&tp->rx_count, 0);
for (i = 0; i < RTL8152_MAX_RX; i++) {
if (!alloc_rx_agg(tp, GFP_KERNEL))
goto err1;
}
for (i = 0; i < RTL8152_MAX_TX; i++) {
struct urb *urb;
u8 *buf;
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;
if (buf != tx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}
INIT_LIST_HEAD(&tp->tx_info[i].list);
tp->tx_info[i].context = tp;
tp->tx_info[i].urb = urb;
tp->tx_info[i].buffer = buf;
tp->tx_info[i].head = tx_agg_align(buf);
list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
}
tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tp->intr_urb)
goto err1;
tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
if (!tp->intr_buff)
goto err1;
tp->intr_interval = (int)ep_intr->desc.bInterval;
usb_fill_int_urb(tp->intr_urb, tp->udev, tp->pipe_intr,
tp->intr_buff, INTBUFSIZE, intr_callback,
tp, tp->intr_interval);
return 0;
err1:
free_all_mem(tp);
return -ENOMEM;
}
static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
struct tx_agg *agg = NULL;
unsigned long flags;
if (list_empty(&tp->tx_free))
return NULL;
spin_lock_irqsave(&tp->tx_lock, flags);
if (!list_empty(&tp->tx_free)) {
struct list_head *cursor;
cursor = tp->tx_free.next;
list_del_init(cursor);
agg = list_entry(cursor, struct tx_agg, list);
}
spin_unlock_irqrestore(&tp->tx_lock, flags);
return agg;
}
/* r8152_csum_workaround()
* The hw limits the value of the transport offset. When the offset is out of
* range, calculate the checksum by sw.
*/
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
struct sk_buff_head *list)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->netdev->features;
struct sk_buff *segs, *seg, *next;
struct sk_buff_head seg_list;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
__skb_queue_head_init(&seg_list);
skb_list_walk_safe(segs, seg, next) {
skb_mark_not_on_list(seg);
__skb_queue_tail(&seg_list, seg);
}
skb_queue_splice(&seg_list, list);
dev_kfree_skb(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
__skb_queue_head(list, skb);
} else {
struct net_device_stats *stats;
drop:
stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb(skb);
}
}
static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
if (skb_vlan_tag_present(skb)) {
u32 opts2;
opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
desc->opts2 |= cpu_to_le32(opts2);
}
}
static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RX_VLAN_TAG)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & 0xffff));
}
static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
struct sk_buff *skb, u32 len, u32 transport_offset)
{
u32 mss = skb_shinfo(skb)->gso_size;
u32 opts1, opts2 = 0;
int ret = TX_CSUM_SUCCESS;
WARN_ON_ONCE(len > TX_LEN_MAX);
opts1 = len | TX_FS | TX_LS;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
ret = TX_CSUM_TSO;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts1 |= GTSENDV4;
break;
case htons(ETH_P_IPV6):
if (skb_cow_head(skb, 0)) {
ret = TX_CSUM_TSO;
goto unavailable;
}
tcp_v6_gso_csum_prep(skb);
opts1 |= GTSENDV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts1 |= transport_offset << GTTCPHO_SHIFT;
opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x\n",
transport_offset);
ret = TX_CSUM_NONE;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts2 |= IPV4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts2 |= IPV6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts2 |= TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts2 |= UDP_CS;
else
WARN_ON_ONCE(1);
opts2 |= transport_offset << TCPHO_SHIFT;
}
desc->opts2 = cpu_to_le32(opts2);
desc->opts1 = cpu_to_le32(opts1);
unavailable:
return ret;
}
static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
int remain, ret;
u8 *tx_data;
__skb_queue_head_init(&skb_head);
spin_lock(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock(&tx_queue->lock);
tx_data = agg->head;
agg->skb_num = 0;
agg->skb_len = 0;
remain = agg_buf_sz;
while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
struct tx_desc *tx_desc;
struct sk_buff *skb;
unsigned int len;
u32 offset;
skb = __skb_dequeue(&skb_head);
if (!skb)
break;
len = skb->len + sizeof(*tx_desc);
if (len > remain) {
__skb_queue_head(&skb_head, skb);
break;
}
tx_data = tx_agg_align(tx_data);
tx_desc = (struct tx_desc *)tx_data;
offset = (u32)skb_transport_offset(skb);
if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
r8152_csum_workaround(tp, skb, &skb_head);
continue;
}
rtl_tx_vlan_tag(tx_desc, skb);
tx_data += sizeof(*tx_desc);
len = skb->len;
if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
struct net_device_stats *stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb_any(skb);
tx_data -= sizeof(*tx_desc);
continue;
}
tx_data += len;
agg->skb_len += len;
agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1;
dev_kfree_skb_any(skb);
remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
if (tp->dell_tb_rx_agg_bug)
break;
}
if (!skb_queue_empty(&skb_head)) {
spin_lock(&tx_queue->lock);
skb_queue_splice(&skb_head, tx_queue);
spin_unlock(&tx_queue->lock);
}
netif_tx_lock(tp->netdev);
if (netif_queue_stopped(tp->netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
netif_wake_queue(tp->netdev);
netif_tx_unlock(tp->netdev);
ret = usb_autopm_get_interface_async(tp->intf);
if (ret < 0)
goto out_tx_fill;
usb_fill_bulk_urb(agg->urb, tp->udev, tp->pipe_out,
agg->head, (int)(tx_data - (u8 *)agg->head),
(usb_complete_t)write_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
if (ret < 0)
usb_autopm_put_interface_async(tp->intf);
out_tx_fill:
return ret;
}
static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
u8 checksum = CHECKSUM_NONE;
u32 opts2, opts3;
if (!(tp->netdev->features & NETIF_F_RXCSUM))
goto return_result;
opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);
if (opts2 & RD_IPV4_CS) {
if (opts3 & IPF)
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
} else if (opts2 & RD_IPV6_CS) {
if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
}
return_result:
return checksum;
}
static inline bool rx_count_exceed(struct r8152 *tp)
{
return atomic_read(&tp->rx_count) > RTL8152_MAX_RX;
}
static inline int agg_offset(struct rx_agg *agg, void *addr)
{
return (int)(addr - agg->buffer);
}
static struct rx_agg *rtl_get_free_rx(struct r8152 *tp, gfp_t mflags)
{
struct rx_agg *agg, *agg_next, *agg_free = NULL;
unsigned long flags;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_used, list) {
if (page_count(agg->page) == 1) {
if (!agg_free) {
list_del_init(&agg->list);
agg_free = agg;
continue;
}
if (rx_count_exceed(tp)) {
list_del_init(&agg->list);
free_rx_agg(tp, agg);
}
break;
}
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
if (!agg_free && atomic_read(&tp->rx_count) < tp->rx_pending)
agg_free = alloc_rx_agg(tp, mflags);
return agg_free;
}
static int rx_bottom(struct r8152 *tp, int budget)
{
unsigned long flags;
struct list_head *cursor, *next, rx_queue;
int ret = 0, work_done = 0;
struct napi_struct *napi = &tp->napi;
if (!skb_queue_empty(&tp->rx_queue)) {
while (work_done < budget) {
struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
if (!skb)
break;
pkt_len = skb->len;
napi_gro_receive(napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
}
if (list_empty(&tp->rx_done))
goto out1;
clear_bit(RX_EPROTO, &tp->flags);
INIT_LIST_HEAD(&rx_queue);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_done, &rx_queue);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_safe(cursor, next, &rx_queue) {
struct rx_desc *rx_desc;
struct rx_agg *agg, *agg_free;
int len_used = 0;
struct urb *urb;
u8 *rx_data;
list_del_init(cursor);
agg = list_entry(cursor, struct rx_agg, list);
urb = agg->urb;
if (urb->status != 0 || urb->actual_length < ETH_ZLEN)
goto submit;
agg_free = rtl_get_free_rx(tp, GFP_ATOMIC);
rx_desc = agg->buffer;
rx_data = agg->buffer;
len_used += sizeof(struct rx_desc);
while (urb->actual_length > len_used) {
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len, rx_frag_head_sz;
struct sk_buff *skb;
/* limit the skb numbers for rx_queue */
if (unlikely(skb_queue_len(&tp->rx_queue) >= 1000))
break;
pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
if (pkt_len < ETH_ZLEN)
break;
len_used += pkt_len;
if (urb->actual_length < len_used)
break;
pkt_len -= ETH_FCS_LEN;
rx_data += sizeof(struct rx_desc);
if (!agg_free || tp->rx_copybreak > pkt_len)
rx_frag_head_sz = pkt_len;
else
rx_frag_head_sz = tp->rx_copybreak;
skb = napi_alloc_skb(napi, rx_frag_head_sz);
if (!skb) {
stats->rx_dropped++;
goto find_next_rx;
}
skb->ip_summed = r8152_rx_csum(tp, rx_desc);
memcpy(skb->data, rx_data, rx_frag_head_sz);
skb_put(skb, rx_frag_head_sz);
pkt_len -= rx_frag_head_sz;
rx_data += rx_frag_head_sz;
if (pkt_len) {
skb_add_rx_frag(skb, 0, agg->page,
agg_offset(agg, rx_data),
pkt_len,
SKB_DATA_ALIGN(pkt_len));
get_page(agg->page);
}
skb->protocol = eth_type_trans(skb, netdev);
rtl_rx_vlan_tag(rx_desc, skb);
if (work_done < budget) {
work_done++;
stats->rx_packets++;
stats->rx_bytes += skb->len;
napi_gro_receive(napi, skb);
} else {
__skb_queue_tail(&tp->rx_queue, skb);
}
find_next_rx:
rx_data = rx_agg_align(rx_data + pkt_len + ETH_FCS_LEN);
rx_desc = (struct rx_desc *)rx_data;
len_used = agg_offset(agg, rx_data);
len_used += sizeof(struct rx_desc);
}
WARN_ON(!agg_free && page_count(agg->page) > 1);
if (agg_free) {
spin_lock_irqsave(&tp->rx_lock, flags);
if (page_count(agg->page) == 1) {
list_add(&agg_free->list, &tp->rx_used);
} else {
list_add_tail(&agg->list, &tp->rx_used);
agg = agg_free;
urb = agg->urb;
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
submit:
if (!ret) {
ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
} else {
urb->actual_length = 0;
list_add_tail(&agg->list, next);
}
}
if (!list_empty(&rx_queue)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
out1:
return work_done;
}
static void tx_bottom(struct r8152 *tp)
{
int res;
do {
struct net_device *netdev = tp->netdev;
struct tx_agg *agg;
if (skb_queue_empty(&tp->tx_queue))
break;
agg = r8152_get_tx_agg(tp);
if (!agg)
break;
res = r8152_tx_agg_fill(tp, agg);
if (!res)
continue;
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(netdev);
} else {
struct net_device_stats *stats = &netdev->stats;
unsigned long flags;
netif_warn(tp, tx_err, netdev,
"failed tx_urb %d\n", res);
stats->tx_dropped += agg->skb_num;
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
}
} while (res == 0);
}
static void bottom_half(struct tasklet_struct *t)
{
struct r8152 *tp = from_tasklet(tp, t, tx_tl);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(tp->netdev))
return;
clear_bit(SCHEDULE_TASKLET, &tp->flags);
tx_bottom(tp);
}
static int r8152_poll(struct napi_struct *napi, int budget)
{
struct r8152 *tp = container_of(napi, struct r8152, napi);
int work_done;
work_done = rx_bottom(tp, budget);
if (work_done < budget) {
if (!napi_complete_done(napi, work_done))
goto out;
if (!list_empty(&tp->rx_done))
napi_schedule(napi);
}
out:
return work_done;
}
static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
int ret;
/* The rx would be stopped, so skip submitting */
if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
!test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
return 0;
usb_fill_bulk_urb(agg->urb, tp->udev, tp->pipe_in,
agg->buffer, tp->rx_buf_sz,
(usb_complete_t)read_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, mem_flags);
if (ret == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (ret) {
struct urb *urb = agg->urb;
unsigned long flags;
urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
netif_err(tp, rx_err, tp->netdev,
"Couldn't submit rx[%p], ret = %d\n", agg, ret);
napi_schedule(&tp->napi);
}
return ret;
}
static void rtl_drop_queued_tx(struct r8152 *tp)
{
struct net_device_stats *stats = &tp->netdev->stats;
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
struct sk_buff *skb;
if (skb_queue_empty(tx_queue))
return;
__skb_queue_head_init(&skb_head);
spin_lock_bh(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock_bh(&tx_queue->lock);
while ((skb = __skb_dequeue(&skb_head))) {
dev_kfree_skb(skb);
stats->tx_dropped++;
}
}
static void rtl8152_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct r8152 *tp = netdev_priv(netdev);
netif_warn(tp, tx_err, netdev, "Tx timeout\n");
usb_queue_reset_device(tp->intf);
}
static void rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
if (netif_carrier_ok(netdev)) {
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
u32 mc_filter[2]; /* Multicast hash filter */
__le32 tmp[2];
u32 ocp_data;
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_data |= RCR_AB | RCR_APM;
if (netdev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
ocp_data |= RCR_AM | RCR_AAP;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
(netdev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
ocp_data |= RCR_AM;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = 0;
mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, netdev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
ocp_data |= RCR_AM;
}
}
tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));
pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
netif_wake_queue(netdev);
}
static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u32 mss = skb_shinfo(skb)->gso_size;
int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
int offset = skb_transport_offset(skb);
if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
features &= ~NETIF_F_GSO_MASK;
return features;
}
static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
skb_tx_timestamp(skb);
skb_queue_tail(&tp->tx_queue, skb);
if (!list_empty(&tp->tx_free)) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
set_bit(SCHEDULE_TASKLET, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
} else {
usb_mark_last_busy(tp->udev);
tasklet_schedule(&tp->tx_tl);
}
} else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
netif_stop_queue(netdev);
}
return NETDEV_TX_OK;
}
static void r8152b_reset_packet_filter(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
ocp_data &= ~FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
ocp_data |= FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}
static void rtl8152_nic_reset(struct r8152 *tp)
{
u32 ocp_data;
int i;
switch (tp->version) {
case RTL_TEST_01:
case RTL_VER_10:
case RTL_VER_11:
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data &= ~CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_BMU_RESET);
ocp_data &= ~BMU_RESET_EP_IN;
ocp_write_word(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data |= CDC_ECM_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data &= ~CR_RE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_BMU_RESET);
ocp_data |= BMU_RESET_EP_IN;
ocp_write_word(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~CDC_ECM_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
break;
default:
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);
for (i = 0; i < 1000; i++) {
if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
break;
usleep_range(100, 400);
}
break;
}
}
static void set_tx_qlen(struct r8152 *tp)
{
tp->tx_qlen = agg_buf_sz / (mtu_to_size(tp->netdev->mtu) + sizeof(struct tx_desc));
}
static inline u16 rtl8152_get_speed(struct r8152 *tp)
{
return ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}
static void rtl_eee_plus_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
if (enable)
ocp_data |= EEEP_CR_EEEP_TX;
else
ocp_data &= ~EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
}
static void rtl_set_eee_plus(struct r8152 *tp)
{
if (rtl8152_get_speed(tp) & _10bps)
rtl_eee_plus_en(tp, true);
else
rtl_eee_plus_en(tp, false);
}
static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
if (enable)
ocp_data |= RXDY_GATED_EN;
else
ocp_data &= ~RXDY_GATED_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}
static int rtl_start_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
int ret = 0, i = 0;
INIT_LIST_HEAD(&tmp_list);
spin_lock_irqsave(&tp->rx_lock, flags);
INIT_LIST_HEAD(&tp->rx_done);
INIT_LIST_HEAD(&tp->rx_used);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
INIT_LIST_HEAD(&agg->list);
/* Only RTL8152_MAX_RX rx_agg need to be submitted. */
if (++i > RTL8152_MAX_RX) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_used);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else if (unlikely(ret < 0)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else {
ret = r8152_submit_rx(tp, agg, GFP_KERNEL);
}
}
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
return ret;
}
static int rtl_stop_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
INIT_LIST_HEAD(&tmp_list);
/* The usb_kill_urb() couldn't be used in atomic.
* Therefore, move the list of rx_info to a tmp one.
* Then, list_for_each_entry_safe could be used without
* spin lock.
*/
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
/* At least RTL8152_MAX_RX rx_agg have the page_count being
* equal to 1, so the other ones could be freed safely.
*/
if (page_count(agg->page) > 1)
free_rx_agg(tp, agg);
else
usb_kill_urb(agg->urb);
}
/* Move back the list of temp to the rx_info */
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
while (!skb_queue_empty(&tp->rx_queue))
dev_kfree_skb(__skb_dequeue(&tp->rx_queue));
return 0;
}
static void rtl_set_ifg(struct r8152 *tp, u16 speed)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR1);
ocp_data &= ~IFG_MASK;
if ((speed & (_10bps | _100bps)) && !(speed & FULL_DUP)) {
ocp_data |= IFG_144NS;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR1, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4);
ocp_data &= ~TX10MIDLE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data);
} else {
ocp_data |= IFG_96NS;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR1, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4);
ocp_data |= TX10MIDLE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data);
}
}
static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp)
{
ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN,
OWN_UPDATE | OWN_CLEAR);
}
static int rtl_enable(struct r8152 *tp)
{
u32 ocp_data;
r8152b_reset_packet_filter(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data |= CR_RE | CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
switch (tp->version) {
case RTL_VER_08:
case RTL_VER_09:
case RTL_VER_14:
r8153b_rx_agg_chg_indicate(tp);
break;
default:
break;
}
rxdy_gated_en(tp, false);
return 0;
}
static int rtl8152_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
return rtl_enable(tp);
}
static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
u32 ocp_data = tp->coalesce / 8;
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
case RTL_VER_14:
/* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout
* primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns.
*/
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
128 / 8);
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR,
ocp_data);
break;
case RTL_VER_10:
case RTL_VER_11:
case RTL_VER_12:
case RTL_VER_13:
case RTL_VER_15:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
640 / 8);
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR,
ocp_data);
r8153b_rx_agg_chg_indicate(tp);
break;
default:
break;
}
}
static void r8153_set_rx_early_size(struct r8152 *tp)
{
u32 ocp_data = tp->rx_buf_sz - rx_reserved_size(tp->netdev->mtu);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 4);
break;
case RTL_VER_08:
case RTL_VER_09:
case RTL_VER_14:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 8);
break;
case RTL_TEST_01:
case RTL_VER_10:
case RTL_VER_11:
case RTL_VER_12:
case RTL_VER_13:
case RTL_VER_15:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 8);
r8153b_rx_agg_chg_indicate(tp);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static int rtl8153_enable(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
r8153_set_rx_early_timeout(tp);
r8153_set_rx_early_size(tp);
rtl_set_ifg(tp, rtl8152_get_speed(tp));
switch (tp->version) {
case RTL_VER_09:
case RTL_VER_14:
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK);
ocp_data &= ~FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
usleep_range(1000, 2000);
ocp_data |= FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
break;
default:
break;
}
return rtl_enable(tp);
}
static void rtl_disable(struct r8152 *tp)
{
u32 ocp_data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl_drop_queued_tx(tp);
for (i = 0; i < RTL8152_MAX_TX; i++)
usb_kill_urb(tp->tx_info[i].urb);
rxdy_gated_en(tp, true);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
break;
usleep_range(1000, 2000);
}
for (i = 0; i < 1000; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
break;
usleep_range(1000, 2000);
}
rtl_stop_rx(tp);
rtl8152_nic_reset(tp);
}
static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
if (enable)
ocp_data |= POWER_CUT;
else
ocp_data &= ~POWER_CUT;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
ocp_data &= ~RESUME_INDICATE;
ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}
static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_07:
case RTL_VER_08:
case RTL_VER_09:
case RTL_VER_14:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
if (enable)
ocp_data |= CPCR_RX_VLAN;
else
ocp_data &= ~CPCR_RX_VLAN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
break;
case RTL_TEST_01:
case RTL_VER_10:
case RTL_VER_11:
case RTL_VER_12:
case RTL_VER_13:
case RTL_VER_15:
default:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RCR1);
if (enable)
ocp_data |= OUTER_VLAN | INNER_VLAN;
else
ocp_data &= ~(OUTER_VLAN | INNER_VLAN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RCR1, ocp_data);
break;
}
}
static int rtl8152_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct r8152 *tp = netdev_priv(