blob: cab820ee9f27900846b03b48b66fffcc01ff2a5a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/printk.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Modified to make sys_syslog() more flexible: added commands to
* return the last 4k of kernel messages, regardless of whether
* they've been read or not. Added option to suppress kernel printk's
* to the console. Added hook for sending the console messages
* elsewhere, in preparation for a serial line console (someday).
* Ted Ts'o, 2/11/93.
* Modified for sysctl support, 1/8/97, Chris Horn.
* Fixed SMP synchronization, 08/08/99, Manfred Spraul
* manfred@colorfullife.com
* Rewrote bits to get rid of console_lock
* 01Mar01 Andrew Morton
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/memblock.h>
#include <linux/syscalls.h>
#include <linux/syscore_ops.h>
#include <linux/vmcore_info.h>
#include <linux/ratelimit.h>
#include <linux/kmsg_dump.h>
#include <linux/syslog.h>
#include <linux/cpu.h>
#include <linux/rculist.h>
#include <linux/poll.h>
#include <linux/irq_work.h>
#include <linux/ctype.h>
#include <linux/uio.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include <trace/events/initcall.h>
#define CREATE_TRACE_POINTS
#include <trace/events/printk.h>
#undef CREATE_TRACE_POINTS
#include <trace/hooks/printk.h>
#include "printk_ringbuffer.h"
#include "console_cmdline.h"
#include "braille.h"
#include "internal.h"
int console_printk[4] = {
CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
};
EXPORT_SYMBOL_GPL(console_printk);
atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
EXPORT_SYMBOL(ignore_console_lock_warning);
EXPORT_TRACEPOINT_SYMBOL_GPL(console);
/*
* Low level drivers may need that to know if they can schedule in
* their unblank() callback or not. So let's export it.
*/
int oops_in_progress;
EXPORT_SYMBOL(oops_in_progress);
/*
* console_mutex protects console_list updates and console->flags updates.
* The flags are synchronized only for consoles that are registered, i.e.
* accessible via the console list.
*/
static DEFINE_MUTEX(console_mutex);
/*
* console_sem protects updates to console->seq
* and also provides serialization for console printing.
*/
static DEFINE_SEMAPHORE(console_sem, 1);
HLIST_HEAD(console_list);
EXPORT_SYMBOL_GPL(console_list);
DEFINE_STATIC_SRCU(console_srcu);
/*
* System may need to suppress printk message under certain
* circumstances, like after kernel panic happens.
*/
int __read_mostly suppress_printk;
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_lock_dep_map = {
.name = "console_lock"
};
void lockdep_assert_console_list_lock_held(void)
{
lockdep_assert_held(&console_mutex);
}
EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
bool console_srcu_read_lock_is_held(void)
{
return srcu_read_lock_held(&console_srcu);
}
EXPORT_SYMBOL(console_srcu_read_lock_is_held);
#endif
enum devkmsg_log_bits {
__DEVKMSG_LOG_BIT_ON = 0,
__DEVKMSG_LOG_BIT_OFF,
__DEVKMSG_LOG_BIT_LOCK,
};
enum devkmsg_log_masks {
DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
};
/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
#define DEVKMSG_LOG_MASK_DEFAULT 0
static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
static int __control_devkmsg(char *str)
{
size_t len;
if (!str)
return -EINVAL;
len = str_has_prefix(str, "on");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_ON;
return len;
}
len = str_has_prefix(str, "off");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_OFF;
return len;
}
len = str_has_prefix(str, "ratelimit");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
return len;
}
return -EINVAL;
}
static int __init control_devkmsg(char *str)
{
if (__control_devkmsg(str) < 0) {
pr_warn("printk.devkmsg: bad option string '%s'\n", str);
return 1;
}
/*
* Set sysctl string accordingly:
*/
if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
strscpy(devkmsg_log_str, "on");
else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
strscpy(devkmsg_log_str, "off");
/* else "ratelimit" which is set by default. */
/*
* Sysctl cannot change it anymore. The kernel command line setting of
* this parameter is to force the setting to be permanent throughout the
* runtime of the system. This is a precation measure against userspace
* trying to be a smarta** and attempting to change it up on us.
*/
devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
return 1;
}
__setup("printk.devkmsg=", control_devkmsg);
char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
char old_str[DEVKMSG_STR_MAX_SIZE];
unsigned int old;
int err;
if (write) {
if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
return -EINVAL;
old = devkmsg_log;
strscpy(old_str, devkmsg_log_str);
}
err = proc_dostring(table, write, buffer, lenp, ppos);
if (err)
return err;
if (write) {
err = __control_devkmsg(devkmsg_log_str);
/*
* Do not accept an unknown string OR a known string with
* trailing crap...
*/
if (err < 0 || (err + 1 != *lenp)) {
/* ... and restore old setting. */
devkmsg_log = old;
strscpy(devkmsg_log_str, old_str);
return -EINVAL;
}
}
return 0;
}
#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
/**
* console_list_lock - Lock the console list
*
* For console list or console->flags updates
*/
void console_list_lock(void)
{
/*
* In unregister_console() and console_force_preferred_locked(),
* synchronize_srcu() is called with the console_list_lock held.
* Therefore it is not allowed that the console_list_lock is taken
* with the srcu_lock held.
*
* Detecting if this context is really in the read-side critical
* section is only possible if the appropriate debug options are
* enabled.
*/
WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
srcu_read_lock_held(&console_srcu));
mutex_lock(&console_mutex);
}
EXPORT_SYMBOL(console_list_lock);
/**
* console_list_unlock - Unlock the console list
*
* Counterpart to console_list_lock()
*/
void console_list_unlock(void)
{
mutex_unlock(&console_mutex);
}
EXPORT_SYMBOL(console_list_unlock);
/**
* console_srcu_read_lock - Register a new reader for the
* SRCU-protected console list
*
* Use for_each_console_srcu() to iterate the console list
*
* Context: Any context.
* Return: A cookie to pass to console_srcu_read_unlock().
*/
int console_srcu_read_lock(void)
__acquires(&console_srcu)
{
return srcu_read_lock_nmisafe(&console_srcu);
}
EXPORT_SYMBOL(console_srcu_read_lock);
/**
* console_srcu_read_unlock - Unregister an old reader from
* the SRCU-protected console list
* @cookie: cookie returned from console_srcu_read_lock()
*
* Counterpart to console_srcu_read_lock()
*/
void console_srcu_read_unlock(int cookie)
__releases(&console_srcu)
{
srcu_read_unlock_nmisafe(&console_srcu, cookie);
}
EXPORT_SYMBOL(console_srcu_read_unlock);
/*
* Helper macros to handle lockdep when locking/unlocking console_sem. We use
* macros instead of functions so that _RET_IP_ contains useful information.
*/
#define down_console_sem() do { \
down(&console_sem);\
mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
} while (0)
static int __down_trylock_console_sem(unsigned long ip)
{
int lock_failed;
unsigned long flags;
/*
* Here and in __up_console_sem() we need to be in safe mode,
* because spindump/WARN/etc from under console ->lock will
* deadlock in printk()->down_trylock_console_sem() otherwise.
*/
printk_safe_enter_irqsave(flags);
lock_failed = down_trylock(&console_sem);
printk_safe_exit_irqrestore(flags);
if (lock_failed)
return 1;
mutex_acquire(&console_lock_dep_map, 0, 1, ip);
return 0;
}
#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
static void __up_console_sem(unsigned long ip)
{
unsigned long flags;
mutex_release(&console_lock_dep_map, ip);
printk_safe_enter_irqsave(flags);
up(&console_sem);
printk_safe_exit_irqrestore(flags);
}
#define up_console_sem() __up_console_sem(_RET_IP_)
static bool panic_in_progress(void)
{
return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
}
/* Return true if a panic is in progress on the current CPU. */
bool this_cpu_in_panic(void)
{
/*
* We can use raw_smp_processor_id() here because it is impossible for
* the task to be migrated to the panic_cpu, or away from it. If
* panic_cpu has already been set, and we're not currently executing on
* that CPU, then we never will be.
*/
return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
}
/*
* Return true if a panic is in progress on a remote CPU.
*
* On true, the local CPU should immediately release any printing resources
* that may be needed by the panic CPU.
*/
bool other_cpu_in_panic(void)
{
return (panic_in_progress() && !this_cpu_in_panic());
}
/*
* This is used for debugging the mess that is the VT code by
* keeping track if we have the console semaphore held. It's
* definitely not the perfect debug tool (we don't know if _WE_
* hold it and are racing, but it helps tracking those weird code
* paths in the console code where we end up in places I want
* locked without the console semaphore held).
*/
static int console_locked;
/*
* Array of consoles built from command line options (console=)
*/
#define MAX_CMDLINECONSOLES 8
static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
static int preferred_console = -1;
int console_set_on_cmdline;
EXPORT_SYMBOL(console_set_on_cmdline);
/* Flag: console code may call schedule() */
static int console_may_schedule;
enum con_msg_format_flags {
MSG_FORMAT_DEFAULT = 0,
MSG_FORMAT_SYSLOG = (1 << 0),
};
static int console_msg_format = MSG_FORMAT_DEFAULT;
/*
* The printk log buffer consists of a sequenced collection of records, each
* containing variable length message text. Every record also contains its
* own meta-data (@info).
*
* Every record meta-data carries the timestamp in microseconds, as well as
* the standard userspace syslog level and syslog facility. The usual kernel
* messages use LOG_KERN; userspace-injected messages always carry a matching
* syslog facility, by default LOG_USER. The origin of every message can be
* reliably determined that way.
*
* The human readable log message of a record is available in @text, the
* length of the message text in @text_len. The stored message is not
* terminated.
*
* Optionally, a record can carry a dictionary of properties (key/value
* pairs), to provide userspace with a machine-readable message context.
*
* Examples for well-defined, commonly used property names are:
* DEVICE=b12:8 device identifier
* b12:8 block dev_t
* c127:3 char dev_t
* n8 netdev ifindex
* +sound:card0 subsystem:devname
* SUBSYSTEM=pci driver-core subsystem name
*
* Valid characters in property names are [a-zA-Z0-9.-_]. Property names
* and values are terminated by a '\0' character.
*
* Example of record values:
* record.text_buf = "it's a line" (unterminated)
* record.info.seq = 56
* record.info.ts_nsec = 36863
* record.info.text_len = 11
* record.info.facility = 0 (LOG_KERN)
* record.info.flags = 0
* record.info.level = 3 (LOG_ERR)
* record.info.caller_id = 299 (task 299)
* record.info.dev_info.subsystem = "pci" (terminated)
* record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
*
* The 'struct printk_info' buffer must never be directly exported to
* userspace, it is a kernel-private implementation detail that might
* need to be changed in the future, when the requirements change.
*
* /dev/kmsg exports the structured data in the following line format:
* "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
*
* Users of the export format should ignore possible additional values
* separated by ',', and find the message after the ';' character.
*
* The optional key/value pairs are attached as continuation lines starting
* with a space character and terminated by a newline. All possible
* non-prinatable characters are escaped in the "\xff" notation.
*/
/* syslog_lock protects syslog_* variables and write access to clear_seq. */
static DEFINE_MUTEX(syslog_lock);
/*
* Specifies if a legacy console is registered. If legacy consoles are
* present, it is necessary to perform the console lock/unlock dance
* whenever console flushing should occur.
*/
bool have_legacy_console;
/*
* Specifies if an nbcon console is registered. If nbcon consoles are present,
* synchronous printing of legacy consoles will not occur during panic until
* the backtrace has been stored to the ringbuffer.
*/
bool have_nbcon_console;
/*
* Specifies if a boot console is registered. If boot consoles are present,
* nbcon consoles cannot print simultaneously and must be synchronized by
* the console lock. This is because boot consoles and nbcon consoles may
* have mapped the same hardware.
*/
bool have_boot_console;
/* See printk_legacy_allow_panic_sync() for details. */
bool legacy_allow_panic_sync;
#ifdef CONFIG_PRINTK
DECLARE_WAIT_QUEUE_HEAD(log_wait);
static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
/* All 3 protected by @syslog_lock. */
/* the next printk record to read by syslog(READ) or /proc/kmsg */
static u64 syslog_seq;
static size_t syslog_partial;
static bool syslog_time;
/* True when _all_ printer threads are available for printing. */
bool printk_kthreads_running;
struct latched_seq {
seqcount_latch_t latch;
u64 val[2];
};
/*
* The next printk record to read after the last 'clear' command. There are
* two copies (updated with seqcount_latch) so that reads can locklessly
* access a valid value. Writers are synchronized by @syslog_lock.
*/
static struct latched_seq clear_seq = {
.latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
.val[0] = 0,
.val[1] = 0,
};
#define LOG_LEVEL(v) ((v) & 0x07)
#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
/* record buffer */
#define LOG_ALIGN __alignof__(unsigned long)
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
#define LOG_BUF_LEN_MAX (u32)(1 << 31)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __log_buf;
static u32 log_buf_len = __LOG_BUF_LEN;
/*
* Define the average message size. This only affects the number of
* descriptors that will be available. Underestimating is better than
* overestimating (too many available descriptors is better than not enough).
*/
#define PRB_AVGBITS 5 /* 32 character average length */
#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
#error CONFIG_LOG_BUF_SHIFT value too small.
#endif
_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
PRB_AVGBITS, &__log_buf[0]);
static struct printk_ringbuffer printk_rb_dynamic;
struct printk_ringbuffer *prb = &printk_rb_static;
/*
* We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
* per_cpu_areas are initialised. This variable is set to true when
* it's safe to access per-CPU data.
*/
static bool __printk_percpu_data_ready __ro_after_init;
bool printk_percpu_data_ready(void)
{
return __printk_percpu_data_ready;
}
/* Must be called under syslog_lock. */
static void latched_seq_write(struct latched_seq *ls, u64 val)
{
raw_write_seqcount_latch(&ls->latch);
ls->val[0] = val;
raw_write_seqcount_latch(&ls->latch);
ls->val[1] = val;
}
/* Can be called from any context. */
static u64 latched_seq_read_nolock(struct latched_seq *ls)
{
unsigned int seq;
unsigned int idx;
u64 val;
do {
seq = raw_read_seqcount_latch(&ls->latch);
idx = seq & 0x1;
val = ls->val[idx];
} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
return val;
}
/* Return log buffer address */
char *log_buf_addr_get(void)
{
return log_buf;
}
/* Return log buffer size */
u32 log_buf_len_get(void)
{
return log_buf_len;
}
/*
* Define how much of the log buffer we could take at maximum. The value
* must be greater than two. Note that only half of the buffer is available
* when the index points to the middle.
*/
#define MAX_LOG_TAKE_PART 4
static const char trunc_msg[] = "<truncated>";
static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
{
/*
* The message should not take the whole buffer. Otherwise, it might
* get removed too soon.
*/
u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
if (*text_len > max_text_len)
*text_len = max_text_len;
/* enable the warning message (if there is room) */
*trunc_msg_len = strlen(trunc_msg);
if (*text_len >= *trunc_msg_len)
*text_len -= *trunc_msg_len;
else
*trunc_msg_len = 0;
}
int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
static int syslog_action_restricted(int type)
{
if (dmesg_restrict)
return 1;
/*
* Unless restricted, we allow "read all" and "get buffer size"
* for everybody.
*/
return type != SYSLOG_ACTION_READ_ALL &&
type != SYSLOG_ACTION_SIZE_BUFFER;
}
static int check_syslog_permissions(int type, int source)
{
/*
* If this is from /proc/kmsg and we've already opened it, then we've
* already done the capabilities checks at open time.
*/
if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
goto ok;
if (syslog_action_restricted(type)) {
if (capable(CAP_SYSLOG))
goto ok;
return -EPERM;
}
ok:
return security_syslog(type);
}
static void append_char(char **pp, char *e, char c)
{
if (*pp < e)
*(*pp)++ = c;
}
static ssize_t info_print_ext_header(char *buf, size_t size,
struct printk_info *info)
{
u64 ts_usec = info->ts_nsec;
char caller[20];
#ifdef CONFIG_PRINTK_CALLER
int vh_ret = 0;
u32 id = info->caller_id;
trace_android_vh_printk_ext_header(caller, sizeof(caller), id, &vh_ret);
if (!vh_ret)
snprintf(caller, sizeof(caller), ",caller=%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
#else
caller[0] = '\0';
#endif
do_div(ts_usec, 1000);
return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
(info->facility << 3) | info->level, info->seq,
ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
}
static ssize_t msg_add_ext_text(char *buf, size_t size,
const char *text, size_t text_len,
unsigned char endc)
{
char *p = buf, *e = buf + size;
size_t i;
/* escape non-printable characters */
for (i = 0; i < text_len; i++) {
unsigned char c = text[i];
if (c < ' ' || c >= 127 || c == '\\')
p += scnprintf(p, e - p, "\\x%02x", c);
else
append_char(&p, e, c);
}
append_char(&p, e, endc);
return p - buf;
}
static ssize_t msg_add_dict_text(char *buf, size_t size,
const char *key, const char *val)
{
size_t val_len = strlen(val);
ssize_t len;
if (!val_len)
return 0;
len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
return len;
}
static ssize_t msg_print_ext_body(char *buf, size_t size,
char *text, size_t text_len,
struct dev_printk_info *dev_info)
{
ssize_t len;
len = msg_add_ext_text(buf, size, text, text_len, '\n');
if (!dev_info)
goto out;
len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
dev_info->subsystem);
len += msg_add_dict_text(buf + len, size - len, "DEVICE",
dev_info->device);
out:
return len;
}
/* /dev/kmsg - userspace message inject/listen interface */
struct devkmsg_user {
atomic64_t seq;
struct ratelimit_state rs;
struct mutex lock;
struct printk_buffers pbufs;
};
static __printf(3, 4) __cold
int devkmsg_emit(int facility, int level, const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_emit(facility, level, NULL, fmt, args);
va_end(args);
return r;
}
static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
{
char *buf, *line;
int level = default_message_loglevel;
int facility = 1; /* LOG_USER */
struct file *file = iocb->ki_filp;
struct devkmsg_user *user = file->private_data;
size_t len = iov_iter_count(from);
ssize_t ret = len;
if (len > PRINTKRB_RECORD_MAX)
return -EINVAL;
/* Ignore when user logging is disabled. */
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return len;
/* Ratelimit when not explicitly enabled. */
if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
if (!___ratelimit(&user->rs, current->comm))
return ret;
}
buf = kmalloc(len+1, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[len] = '\0';
if (!copy_from_iter_full(buf, len, from)) {
kfree(buf);
return -EFAULT;
}
/*
* Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
* the decimal value represents 32bit, the lower 3 bit are the log
* level, the rest are the log facility.
*
* If no prefix or no userspace facility is specified, we
* enforce LOG_USER, to be able to reliably distinguish
* kernel-generated messages from userspace-injected ones.
*/
line = buf;
if (line[0] == '<') {
char *endp = NULL;
unsigned int u;
u = simple_strtoul(line + 1, &endp, 10);
if (endp && endp[0] == '>') {
level = LOG_LEVEL(u);
if (LOG_FACILITY(u) != 0)
facility = LOG_FACILITY(u);
endp++;
line = endp;
}
}
devkmsg_emit(facility, level, "%s", line);
kfree(buf);
return ret;
}
static ssize_t devkmsg_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct devkmsg_user *user = file->private_data;
char *outbuf = &user->pbufs.outbuf[0];
struct printk_message pmsg = {
.pbufs = &user->pbufs,
};
ssize_t ret;
ret = mutex_lock_interruptible(&user->lock);
if (ret)
return ret;
if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out;
}
/*
* Guarantee this task is visible on the waitqueue before
* checking the wake condition.
*
* The full memory barrier within set_current_state() of
* prepare_to_wait_event() pairs with the full memory barrier
* within wq_has_sleeper().
*
* This pairs with __wake_up_klogd:A.
*/
ret = wait_event_interruptible(log_wait,
printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
false)); /* LMM(devkmsg_read:A) */
if (ret)
goto out;
}
if (pmsg.dropped) {
/* our last seen message is gone, return error and reset */
atomic64_set(&user->seq, pmsg.seq);
ret = -EPIPE;
goto out;
}
atomic64_set(&user->seq, pmsg.seq + 1);
if (pmsg.outbuf_len > count) {
ret = -EINVAL;
goto out;
}
if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
ret = -EFAULT;
goto out;
}
ret = pmsg.outbuf_len;
out:
mutex_unlock(&user->lock);
return ret;
}
/*
* Be careful when modifying this function!!!
*
* Only few operations are supported because the device works only with the
* entire variable length messages (records). Non-standard values are
* returned in the other cases and has been this way for quite some time.
* User space applications might depend on this behavior.
*/
static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
{
struct devkmsg_user *user = file->private_data;
loff_t ret = 0;
if (offset)
return -ESPIPE;
switch (whence) {
case SEEK_SET:
/* the first record */
atomic64_set(&user->seq, prb_first_valid_seq(prb));
break;
case SEEK_DATA:
/*
* The first record after the last SYSLOG_ACTION_CLEAR,
* like issued by 'dmesg -c'. Reading /dev/kmsg itself
* changes no global state, and does not clear anything.
*/
atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
break;
case SEEK_END:
/* after the last record */
atomic64_set(&user->seq, prb_next_seq(prb));
break;
default:
ret = -EINVAL;
}
return ret;
}
static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
{
struct devkmsg_user *user = file->private_data;
struct printk_info info;
__poll_t ret = 0;
poll_wait(file, &log_wait, wait);
if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
/* return error when data has vanished underneath us */
if (info.seq != atomic64_read(&user->seq))
ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
else
ret = EPOLLIN|EPOLLRDNORM;
}
return ret;
}
static int devkmsg_open(struct inode *inode, struct file *file)
{
struct devkmsg_user *user;
int err;
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return -EPERM;
/* write-only does not need any file context */
if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
SYSLOG_FROM_READER);
if (err)
return err;
}
user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
if (!user)
return -ENOMEM;
ratelimit_default_init(&user->rs);
ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
mutex_init(&user->lock);
atomic64_set(&user->seq, prb_first_valid_seq(prb));
file->private_data = user;
return 0;
}
static int devkmsg_release(struct inode *inode, struct file *file)
{
struct devkmsg_user *user = file->private_data;
ratelimit_state_exit(&user->rs);
mutex_destroy(&user->lock);
kvfree(user);
return 0;
}
const struct file_operations kmsg_fops = {
.open = devkmsg_open,
.read = devkmsg_read,
.write_iter = devkmsg_write,
.llseek = devkmsg_llseek,
.poll = devkmsg_poll,
.release = devkmsg_release,
};
#ifdef CONFIG_VMCORE_INFO
/*
* This appends the listed symbols to /proc/vmcore
*
* /proc/vmcore is used by various utilities, like crash and makedumpfile to
* obtain access to symbols that are otherwise very difficult to locate. These
* symbols are specifically used so that utilities can access and extract the
* dmesg log from a vmcore file after a crash.
*/
void log_buf_vmcoreinfo_setup(void)
{
struct dev_printk_info *dev_info = NULL;
VMCOREINFO_SYMBOL(prb);
VMCOREINFO_SYMBOL(printk_rb_static);
VMCOREINFO_SYMBOL(clear_seq);
/*
* Export struct size and field offsets. User space tools can
* parse it and detect any changes to structure down the line.
*/
VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, fail);
VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
VMCOREINFO_OFFSET(prb_desc_ring, descs);
VMCOREINFO_OFFSET(prb_desc_ring, infos);
VMCOREINFO_OFFSET(prb_desc_ring, head_id);
VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
VMCOREINFO_STRUCT_SIZE(prb_desc);
VMCOREINFO_OFFSET(prb_desc, state_var);
VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
VMCOREINFO_STRUCT_SIZE(printk_info);
VMCOREINFO_OFFSET(printk_info, seq);
VMCOREINFO_OFFSET(printk_info, ts_nsec);
VMCOREINFO_OFFSET(printk_info, text_len);
VMCOREINFO_OFFSET(printk_info, caller_id);
VMCOREINFO_OFFSET(printk_info, dev_info);
VMCOREINFO_STRUCT_SIZE(dev_printk_info);
VMCOREINFO_OFFSET(dev_printk_info, subsystem);
VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
VMCOREINFO_OFFSET(dev_printk_info, device);
VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
VMCOREINFO_STRUCT_SIZE(prb_data_ring);
VMCOREINFO_OFFSET(prb_data_ring, size_bits);
VMCOREINFO_OFFSET(prb_data_ring, data);
VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
VMCOREINFO_SIZE(atomic_long_t);
VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
VMCOREINFO_STRUCT_SIZE(latched_seq);
VMCOREINFO_OFFSET(latched_seq, val);
}
#endif
/* requested log_buf_len from kernel cmdline */
static unsigned long __initdata new_log_buf_len;
/* we practice scaling the ring buffer by powers of 2 */
static void __init log_buf_len_update(u64 size)
{
if (size > (u64)LOG_BUF_LEN_MAX) {
size = (u64)LOG_BUF_LEN_MAX;
pr_err("log_buf over 2G is not supported.\n");
}
if (size)
size = roundup_pow_of_two(size);
if (size > log_buf_len)
new_log_buf_len = (unsigned long)size;
}
/* save requested log_buf_len since it's too early to process it */
static int __init log_buf_len_setup(char *str)
{
u64 size;
if (!str)
return -EINVAL;
size = memparse(str, &str);
log_buf_len_update(size);
return 0;
}
early_param("log_buf_len", log_buf_len_setup);
#ifdef CONFIG_SMP
#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
static void __init log_buf_add_cpu(void)
{
unsigned int cpu_extra;
/*
* archs should set up cpu_possible_bits properly with
* set_cpu_possible() after setup_arch() but just in
* case lets ensure this is valid.
*/
if (num_possible_cpus() == 1)
return;
cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
/* by default this will only continue through for large > 64 CPUs */
if (cpu_extra <= __LOG_BUF_LEN / 2)
return;
pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
__LOG_CPU_MAX_BUF_LEN);
pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
cpu_extra);
pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
}
#else /* !CONFIG_SMP */
static inline void log_buf_add_cpu(void) {}
#endif /* CONFIG_SMP */
static void __init set_percpu_data_ready(void)
{
__printk_percpu_data_ready = true;
}
static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
struct printk_record *r)
{
struct prb_reserved_entry e;
struct printk_record dest_r;
prb_rec_init_wr(&dest_r, r->info->text_len);
if (!prb_reserve(&e, rb, &dest_r))
return 0;
memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
dest_r.info->text_len = r->info->text_len;
dest_r.info->facility = r->info->facility;
dest_r.info->level = r->info->level;
dest_r.info->flags = r->info->flags;
dest_r.info->ts_nsec = r->info->ts_nsec;
dest_r.info->caller_id = r->info->caller_id;
memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
prb_final_commit(&e);
return prb_record_text_space(&e);
}
static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
void __init setup_log_buf(int early)
{
struct printk_info *new_infos;
unsigned int new_descs_count;
struct prb_desc *new_descs;
struct printk_info info;
struct printk_record r;
unsigned int text_size;
size_t new_descs_size;
size_t new_infos_size;
unsigned long flags;
char *new_log_buf;
unsigned int free;
u64 seq;
/*
* Some archs call setup_log_buf() multiple times - first is very
* early, e.g. from setup_arch(), and second - when percpu_areas
* are initialised.
*/
if (!early)
set_percpu_data_ready();
if (log_buf != __log_buf)
return;
if (!early && !new_log_buf_len)
log_buf_add_cpu();
if (!new_log_buf_len)
return;
new_descs_count = new_log_buf_len >> PRB_AVGBITS;
if (new_descs_count == 0) {
pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
return;
}
new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %lu text bytes not available\n",
new_log_buf_len);
return;
}
new_descs_size = new_descs_count * sizeof(struct prb_desc);
new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
if (unlikely(!new_descs)) {
pr_err("log_buf_len: %zu desc bytes not available\n",
new_descs_size);
goto err_free_log_buf;
}
new_infos_size = new_descs_count * sizeof(struct printk_info);
new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
if (unlikely(!new_infos)) {
pr_err("log_buf_len: %zu info bytes not available\n",
new_infos_size);
goto err_free_descs;
}
prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
prb_init(&printk_rb_dynamic,
new_log_buf, ilog2(new_log_buf_len),
new_descs, ilog2(new_descs_count),
new_infos);
local_irq_save(flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN;
prb_for_each_record(0, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
prb = &printk_rb_dynamic;
local_irq_restore(flags);
/*
* Copy any remaining messages that might have appeared from
* NMI context after copying but before switching to the
* dynamic buffer.
*/
prb_for_each_record(seq, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
if (seq != prb_next_seq(&printk_rb_static)) {
pr_err("dropped %llu messages\n",
prb_next_seq(&printk_rb_static) - seq);
}
pr_info("log_buf_len: %u bytes\n", log_buf_len);
pr_info("early log buf free: %u(%u%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
return;
err_free_descs:
memblock_free(new_descs, new_descs_size);
err_free_log_buf:
memblock_free(new_log_buf, new_log_buf_len);
}
static bool __read_mostly ignore_loglevel;
static int __init ignore_loglevel_setup(char *str)
{
ignore_loglevel = true;
pr_info("debug: ignoring loglevel setting.\n");
return 0;
}
early_param("ignore_loglevel", ignore_loglevel_setup);
module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ignore_loglevel,
"ignore loglevel setting (prints all kernel messages to the console)");
static bool suppress_message_printing(int level)
{
return (level >= console_loglevel && !ignore_loglevel);
}
#ifdef CONFIG_BOOT_PRINTK_DELAY
static int boot_delay; /* msecs delay after each printk during bootup */
static unsigned long long loops_per_msec; /* based on boot_delay */
static int __init boot_delay_setup(char *str)
{
unsigned long lpj;
lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
get_option(&str, &boot_delay);
if (boot_delay > 10 * 1000)
boot_delay = 0;
pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
"HZ: %d, loops_per_msec: %llu\n",
boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
return 0;
}
early_param("boot_delay", boot_delay_setup);
static void boot_delay_msec(int level)
{
unsigned long long k;
unsigned long timeout;
if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
|| suppress_message_printing(level)) {
return;
}
k = (unsigned long long)loops_per_msec * boot_delay;
timeout = jiffies + msecs_to_jiffies(boot_delay);
while (k) {
k--;
cpu_relax();
/*
* use (volatile) jiffies to prevent
* compiler reduction; loop termination via jiffies
* is secondary and may or may not happen.
*/
if (time_after(jiffies, timeout))
break;
touch_nmi_watchdog();
}
}
#else
static inline void boot_delay_msec(int level)
{
}
#endif
static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
static size_t print_syslog(unsigned int level, char *buf)
{
return sprintf(buf, "<%u>", level);
}
static size_t print_time(u64 ts, char *buf)
{
unsigned long rem_nsec = do_div(ts, 1000000000);
return sprintf(buf, "[%5lu.%06lu]",
(unsigned long)ts, rem_nsec / 1000);
}
#ifdef CONFIG_PRINTK_CALLER
static size_t print_caller(u32 id, char *buf)
{
char caller[12];
int vh_ret = 0;
trace_android_vh_printk_caller(caller, sizeof(caller), id, &vh_ret);
if (!vh_ret)
snprintf(caller, sizeof(caller), "%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
return sprintf(buf, "[%6s]", caller);
}
#else
#define print_caller(id, buf) 0
#endif
static size_t info_print_prefix(const struct printk_info *info, bool syslog,
bool time, char *buf)
{
size_t len = 0;
if (syslog)
len = print_syslog((info->facility << 3) | info->level, buf);
if (time)
len += print_time(info->ts_nsec, buf + len);
len += print_caller(info->caller_id, buf + len);
if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
buf[len++] = ' ';
buf[len] = '\0';
}
return len;
}
/*
* Prepare the record for printing. The text is shifted within the given
* buffer to avoid a need for another one. The following operations are
* done:
*
* - Add prefix for each line.
* - Drop truncated lines that no longer fit into the buffer.
* - Add the trailing newline that has been removed in vprintk_store().
* - Add a string terminator.
*
* Since the produced string is always terminated, the maximum possible
* return value is @r->text_buf_size - 1;
*
* Return: The length of the updated/prepared text, including the added
* prefixes and the newline. The terminator is not counted. The dropped
* line(s) are not counted.
*/
static size_t record_print_text(struct printk_record *r, bool syslog,
bool time)
{
size_t text_len = r->info->text_len;
size_t buf_size = r->text_buf_size;
char *text = r->text_buf;
char prefix[PRINTK_PREFIX_MAX];
bool truncated = false;
size_t prefix_len;
size_t line_len;
size_t len = 0;
char *next;
/*
* If the message was truncated because the buffer was not large
* enough, treat the available text as if it were the full text.
*/
if (text_len > buf_size)
text_len = buf_size;
prefix_len = info_print_prefix(r->info, syslog, time, prefix);
/*
* @text_len: bytes of unprocessed text
* @line_len: bytes of current line _without_ newline
* @text: pointer to beginning of current line
* @len: number of bytes prepared in r->text_buf
*/
for (;;) {
next = memchr(text, '\n', text_len);
if (next) {
line_len = next - text;
} else {
/* Drop truncated line(s). */
if (truncated)
break;
line_len = text_len;
}
/*
* Truncate the text if there is not enough space to add the
* prefix and a trailing newline and a terminator.
*/
if (len + prefix_len + text_len + 1 + 1 > buf_size) {
/* Drop even the current line if no space. */
if (len + prefix_len + line_len + 1 + 1 > buf_size)
break;
text_len = buf_size - len - prefix_len - 1 - 1;
truncated = true;
}
memmove(text + prefix_len, text, text_len);
memcpy(text, prefix, prefix_len);
/*
* Increment the prepared length to include the text and
* prefix that were just moved+copied. Also increment for the
* newline at the end of this line. If this is the last line,
* there is no newline, but it will be added immediately below.
*/
len += prefix_len + line_len + 1;
if (text_len == line_len) {
/*
* This is the last line. Add the trailing newline
* removed in vprintk_store().
*/
text[prefix_len + line_len] = '\n';
break;
}
/*
* Advance beyond the added prefix and the related line with
* its newline.
*/
text += prefix_len + line_len + 1;
/*
* The remaining text has only decreased by the line with its
* newline.
*
* Note that @text_len can become zero. It happens when @text
* ended with a newline (either due to truncation or the
* original string ending with "\n\n"). The loop is correctly
* repeated and (if not truncated) an empty line with a prefix
* will be prepared.
*/
text_len -= line_len + 1;
}
/*
* If a buffer was provided, it will be terminated. Space for the
* string terminator is guaranteed to be available. The terminator is
* not counted in the return value.
*/
if (buf_size > 0)
r->text_buf[len] = 0;
return len;
}
static size_t get_record_print_text_size(struct printk_info *info,
unsigned int line_count,
bool syslog, bool time)
{
char prefix[PRINTK_PREFIX_MAX];
size_t prefix_len;
prefix_len = info_print_prefix(info, syslog, time, prefix);
/*
* Each line will be preceded with a prefix. The intermediate
* newlines are already within the text, but a final trailing
* newline will be added.
*/
return ((prefix_len * line_count) + info->text_len + 1);
}
/*
* Beginning with @start_seq, find the first record where it and all following
* records up to (but not including) @max_seq fit into @size.
*
* @max_seq is simply an upper bound and does not need to exist. If the caller
* does not require an upper bound, -1 can be used for @max_seq.
*/
static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
bool syslog, bool time)
{
struct printk_info info;
unsigned int line_count;
size_t len = 0;
u64 seq;
/* Determine the size of the records up to @max_seq. */
prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
if (info.seq >= max_seq)
break;
len += get_record_print_text_size(&info, line_count, syslog, time);
}
/*
* Adjust the upper bound for the next loop to avoid subtracting
* lengths that were never added.
*/
if (seq < max_seq)
max_seq = seq;
/*
* Move first record forward until length fits into the buffer. Ignore
* newest messages that were not counted in the above cycle. Messages
* might appear and get lost in the meantime. This is a best effort
* that prevents an infinite loop that could occur with a retry.
*/
prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
if (len <= size || info.seq >= max_seq)
break;
len -= get_record_print_text_size(&info, line_count, syslog, time);
}
return seq;
}
/* The caller is responsible for making sure @size is greater than 0. */
static int syslog_print(char __user *buf, int size)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
mutex_lock(&syslog_lock);
/*
* Wait for the @syslog_seq record to be available. @syslog_seq may
* change while waiting.
*/
do {
seq = syslog_seq;
mutex_unlock(&syslog_lock);
/*
* Guarantee this task is visible on the waitqueue before
* checking the wake condition.
*
* The full memory barrier within set_current_state() of
* prepare_to_wait_event() pairs with the full memory barrier
* within wq_has_sleeper().
*
* This pairs with __wake_up_klogd:A.
*/
len = wait_event_interruptible(log_wait,
prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
mutex_lock(&syslog_lock);
if (len)
goto out;
} while (syslog_seq != seq);
/*
* Copy records that fit into the buffer. The above cycle makes sure
* that the first record is always available.
*/
do {
size_t n;
size_t skip;
int err;
if (!prb_read_valid(prb, syslog_seq, &r))
break;
if (r.info->seq != syslog_seq) {
/* message is gone, move to next valid one */
syslog_seq = r.info->seq;
syslog_partial = 0;
}
/*
* To keep reading/counting partial line consistent,
* use printk_time value as of the beginning of a line.
*/
if (!syslog_partial)
syslog_time = printk_time;
skip = syslog_partial;
n = record_print_text(&r, true, syslog_time);
if (n - syslog_partial <= size) {
/* message fits into buffer, move forward */
syslog_seq = r.info->seq + 1;
n -= syslog_partial;
syslog_partial = 0;
} else if (!len){
/* partial read(), remember position */
n = size;
syslog_partial += n;
} else
n = 0;
if (!n)
break;
mutex_unlock(&syslog_lock);
err = copy_to_user(buf, text + skip, n);
mutex_lock(&syslog_lock);
if (err) {
if (!len)
len = -EFAULT;
break;
}
len += n;
size -= n;
buf += n;
} while (size);
out:
mutex_unlock(&syslog_lock);
kfree(text);
return len;
}
static int syslog_print_all(char __user *buf, int size, bool clear)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
bool time;
text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
time = printk_time;
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump.
*/
seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
size, true, time);
prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
prb_for_each_record(seq, prb, seq, &r) {
int textlen;
textlen = record_print_text(&r, true, time);
if (len + textlen > size) {
seq--;
break;
}
if (copy_to_user(buf + len, text, textlen))
len = -EFAULT;
else
len += textlen;
if (len < 0)
break;
}
if (clear) {
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, seq);
mutex_unlock(&syslog_lock);
}
kfree(text);
return len;
}
static void syslog_clear(void)
{
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, prb_next_seq(prb));
mutex_unlock(&syslog_lock);
}
int do_syslog(int type, char __user *buf, int len, int source)
{
struct printk_info info;
bool clear = false;
static int saved_console_loglevel = LOGLEVEL_DEFAULT;
int error;
error = check_syslog_permissions(type, source);
if (error)
return error;
switch (type) {
case SYSLOG_ACTION_CLOSE: /* Close log */
break;
case SYSLOG_ACTION_OPEN: /* Open log */
break;
case SYSLOG_ACTION_READ: /* Read from log */
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = syslog_print(buf, len);
break;
/* Read/clear last kernel messages */
case SYSLOG_ACTION_READ_CLEAR:
clear = true;
fallthrough;
/* Read last kernel messages */
case SYSLOG_ACTION_READ_ALL:
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = syslog_print_all(buf, len, clear);
break;
/* Clear ring buffer */
case SYSLOG_ACTION_CLEAR:
syslog_clear();
break;
/* Disable logging to console */
case SYSLOG_ACTION_CONSOLE_OFF:
if (saved_console_loglevel == LOGLEVEL_DEFAULT)
saved_console_loglevel = console_loglevel;
console_loglevel = minimum_console_loglevel;
break;
/* Enable logging to console */
case SYSLOG_ACTION_CONSOLE_ON:
if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
console_loglevel = saved_console_loglevel;
saved_console_loglevel = LOGLEVEL_DEFAULT;
}
break;
/* Set level of messages printed to console */
case SYSLOG_ACTION_CONSOLE_LEVEL:
if (len < 1 || len > 8)
return -EINVAL;
if (len < minimum_console_loglevel)
len = minimum_console_loglevel;
console_loglevel = len;
/* Implicitly re-enable logging to console */
saved_console_loglevel = LOGLEVEL_DEFAULT;
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
mutex_lock(&syslog_lock);
if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
/* No unread messages. */
mutex_unlock(&syslog_lock);
return 0;
}
if (info.seq != syslog_seq) {
/* messages are gone, move to first one */
syslog_seq = info.seq;
syslog_partial = 0;
}
if (source == SYSLOG_FROM_PROC) {
/*
* Short-cut for poll(/"proc/kmsg") which simply checks
* for pending data, not the size; return the count of
* records, not the length.
*/
error = prb_next_seq(prb) - syslog_seq;
} else {
bool time = syslog_partial ? syslog_time : printk_time;
unsigned int line_count;
u64 seq;
prb_for_each_info(syslog_seq, prb, seq, &info,
&line_count) {
error += get_record_print_text_size(&info, line_count,
true, time);
time = printk_time;
}
error -= syslog_partial;
}
mutex_unlock(&syslog_lock);
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
error = log_buf_len;
break;
default:
error = -EINVAL;
break;
}
return error;
}
SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
{
return do_syslog(type, buf, len, SYSLOG_FROM_READER);
}
/*
* Special console_lock variants that help to reduce the risk of soft-lockups.
* They allow to pass console_lock to another printk() call using a busy wait.
*/
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_owner_dep_map = {
.name = "console_owner"
};
#endif
static DEFINE_RAW_SPINLOCK(console_owner_lock);
static struct task_struct *console_owner;
static bool console_waiter;
/**
* console_lock_spinning_enable - mark beginning of code where another
* thread might safely busy wait
*
* This basically converts console_lock into a spinlock. This marks
* the section where the console_lock owner can not sleep, because
* there may be a waiter spinning (like a spinlock). Also it must be
* ready to hand over the lock at the end of the section.
*/
void console_lock_spinning_enable(void)
{
/*
* Do not use spinning in panic(). The panic CPU wants to keep the lock.
* Non-panic CPUs abandon the flush anyway.
*
* Just keep the lockdep annotation. The panic-CPU should avoid
* taking console_owner_lock because it might cause a deadlock.
* This looks like the easiest way how to prevent false lockdep
* reports without handling races a lockless way.
*/
if (panic_in_progress())
goto lockdep;
raw_spin_lock(&console_owner_lock);
console_owner = current;
raw_spin_unlock(&console_owner_lock);
lockdep:
/* The waiter may spin on us after setting console_owner */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
}
/**
* console_lock_spinning_disable_and_check - mark end of code where another
* thread was able to busy wait and check if there is a waiter
* @cookie: cookie returned from console_srcu_read_lock()
*
* This is called at the end of the section where spinning is allowed.
* It has two functions. First, it is a signal that it is no longer
* safe to start busy waiting for the lock. Second, it checks if
* there is a busy waiter and passes the lock rights to her.
*
* Important: Callers lose both the console_lock and the SRCU read lock if
* there was a busy waiter. They must not touch items synchronized by
* console_lock or SRCU read lock in this case.
*
* Return: 1 if the lock rights were passed, 0 otherwise.
*/
int console_lock_spinning_disable_and_check(int cookie)
{
int waiter;
/*
* Ignore spinning waiters during panic() because they might get stopped
* or blocked at any time,
*
* It is safe because nobody is allowed to start spinning during panic
* in the first place. If there has been a waiter then non panic CPUs
* might stay spinning. They would get stopped anyway. The panic context
* will never start spinning and an interrupted spin on panic CPU will
* never continue.
*/
if (panic_in_progress()) {
/* Keep lockdep happy. */
spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
raw_spin_lock(&console_owner_lock);
waiter = READ_ONCE(console_waiter);
console_owner = NULL;
raw_spin_unlock(&console_owner_lock);
if (!waiter) {
spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
/* The waiter is now free to continue */
WRITE_ONCE(console_waiter, false);
spin_release(&console_owner_dep_map, _THIS_IP_);
/*
* Preserve lockdep lock ordering. Release the SRCU read lock before
* releasing the console_lock.
*/
console_srcu_read_unlock(cookie);
/*
* Hand off console_lock to waiter. The waiter will perform
* the up(). After this, the waiter is the console_lock owner.
*/
mutex_release(&console_lock_dep_map, _THIS_IP_);
return 1;
}
/**
* console_trylock_spinning - try to get console_lock by busy waiting
*
* This allows to busy wait for the console_lock when the current
* owner is running in specially marked sections. It means that
* the current owner is running and cannot reschedule until it
* is ready to lose the lock.
*
* Return: 1 if we got the lock, 0 othrewise
*/
static int console_trylock_spinning(void)
{
struct task_struct *owner = NULL;
bool waiter;
bool spin = false;
unsigned long flags;
if (console_trylock())
return 1;
/*
* It's unsafe to spin once a panic has begun. If we are the
* panic CPU, we may have already halted the owner of the
* console_sem. If we are not the panic CPU, then we should
* avoid taking console_sem, so the panic CPU has a better
* chance of cleanly acquiring it later.
*/
if (panic_in_progress())
return 0;
printk_safe_enter_irqsave(flags);
raw_spin_lock(&console_owner_lock);
owner = READ_ONCE(console_owner);
waiter = READ_ONCE(console_waiter);
if (!waiter && owner && owner != current) {
WRITE_ONCE(console_waiter, true);
spin = true;
}
raw_spin_unlock(&console_owner_lock);
/*
* If there is an active printk() writing to the
* consoles, instead of having it write our data too,
* see if we can offload that load from the active
* printer, and do some printing ourselves.
* Go into a spin only if there isn't already a waiter
* spinning, and there is an active printer, and
* that active printer isn't us (recursive printk?).
*/
if (!spin) {
printk_safe_exit_irqrestore(flags);
return 0;
}
/* We spin waiting for the owner to release us */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
/* Owner will clear console_waiter on hand off */
while (READ_ONCE(console_waiter))
cpu_relax();
spin_release(&console_owner_dep_map, _THIS_IP_);
printk_safe_exit_irqrestore(flags);
/*
* The owner passed the console lock to us.
* Since we did not spin on console lock, annotate
* this as a trylock. Otherwise lockdep will
* complain.
*/
mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
/*
* Update @console_may_schedule for trylock because the previous
* owner may have been schedulable.
*/
console_may_schedule = 0;
return 1;
}
/*
* Recursion is tracked separately on each CPU. If NMIs are supported, an
* additional NMI context per CPU is also separately tracked. Until per-CPU
* is available, a separate "early tracking" is performed.
*/
static DEFINE_PER_CPU(u8, printk_count);
static u8 printk_count_early;
#ifdef CONFIG_HAVE_NMI
static DEFINE_PER_CPU(u8, printk_count_nmi);
static u8 printk_count_nmi_early;
#endif
/*
* Recursion is limited to keep the output sane. printk() should not require
* more than 1 level of recursion (allowing, for example, printk() to trigger
* a WARN), but a higher value is used in case some printk-internal errors
* exist, such as the ringbuffer validation checks failing.
*/
#define PRINTK_MAX_RECURSION 3
/*
* Return a pointer to the dedicated counter for the CPU+context of the
* caller.
*/
static u8 *__printk_recursion_counter(void)
{
#ifdef CONFIG_HAVE_NMI
if (in_nmi()) {
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count_nmi);
return &printk_count_nmi_early;
}
#endif
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count);
return &printk_count_early;
}
/*
* Enter recursion tracking. Interrupts are disabled to simplify tracking.
* The caller must check the boolean return value to see if the recursion is
* allowed. On failure, interrupts are not disabled.
*
* @recursion_ptr must be a variable of type (u8 *) and is the same variable
* that is passed to printk_exit_irqrestore().
*/
#define printk_enter_irqsave(recursion_ptr, flags) \
({ \
bool success = true; \
\
typecheck(u8 *, recursion_ptr); \
local_irq_save(flags); \
(recursion_ptr) = __printk_recursion_counter(); \
if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
local_irq_restore(flags); \
success = false; \
} else { \
(*(recursion_ptr))++; \
} \
success; \
})
/* Exit recursion tracking, restoring interrupts. */
#define printk_exit_irqrestore(recursion_ptr, flags) \
do { \
typecheck(u8 *, recursion_ptr); \
(*(recursion_ptr))--; \
local_irq_restore(flags); \
} while (0)
int printk_delay_msec __read_mostly;
static inline void printk_delay(int level)
{
boot_delay_msec(level);
if (unlikely(printk_delay_msec)) {
int m = printk_delay_msec;
while (m--) {
mdelay(1);
touch_nmi_watchdog();
}
}
}
static inline u32 printk_caller_id(void)
{
u32 caller_id = 0;
trace_android_vh_printk_caller_id(&caller_id);
if (caller_id)
return caller_id;
return in_task() ? task_pid_nr(current) :
0x80000000 + smp_processor_id();
}
/**
* printk_parse_prefix - Parse level and control flags.
*
* @text: The terminated text message.
* @level: A pointer to the current level value, will be updated.
* @flags: A pointer to the current printk_info flags, will be updated.
*
* @level may be NULL if the caller is not interested in the parsed value.
* Otherwise the variable pointed to by @level must be set to
* LOGLEVEL_DEFAULT in order to be updated with the parsed value.
*
* @flags may be NULL if the caller is not interested in the parsed value.
* Otherwise the variable pointed to by @flags will be OR'd with the parsed
* value.
*
* Return: The length of the parsed level and control flags.
*/
u16 printk_parse_prefix(const char *text, int *level,
enum printk_info_flags *flags)
{
u16 prefix_len = 0;
int kern_level;
while (*text) {
kern_level = printk_get_level(text);
if (!kern_level)
break;
switch (kern_level) {
case '0' ... '7':
if (level && *level == LOGLEVEL_DEFAULT)
*level = kern_level - '0';
break;
case 'c': /* KERN_CONT */
if (flags)
*flags |= LOG_CONT;
}
prefix_len += 2;
text += 2;
}
return prefix_len;
}
__printf(5, 0)
static u16 printk_sprint(char *text, u16 size, int facility,
enum printk_info_flags *flags, const char *fmt,
va_list args)
{
u16 text_len;
text_len = vscnprintf(text, size, fmt, args);
/* Mark and strip a trailing newline. */
if (text_len && text[text_len - 1] == '\n') {
text_len--;
*flags |= LOG_NEWLINE;
}
/* Strip log level and control flags. */
if (facility == 0) {
u16 prefix_len;
prefix_len = printk_parse_prefix(text, NULL, NULL);
if (prefix_len) {
text_len -= prefix_len;
memmove(text, text + prefix_len, text_len);
}
}
trace_console(text, text_len);
return text_len;
}
__printf(4, 0)
int vprintk_store(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
struct prb_reserved_entry e;
enum printk_info_flags flags = 0;
struct printk_record r;
unsigned long irqflags;
u16 trunc_msg_len = 0;
char prefix_buf[8];
u8 *recursion_ptr;
u16 reserve_size;
va_list args2;
u32 caller_id;
u16 text_len;
int ret = 0;
u64 ts_nsec;
if (!printk_enter_irqsave(recursion_ptr, irqflags))
return 0;
/*
* Since the duration of printk() can vary depending on the message
* and state of the ringbuffer, grab the timestamp now so that it is
* close to the call of printk(). This provides a more deterministic
* timestamp with respect to the caller.
*/
ts_nsec = local_clock();
caller_id = printk_caller_id();
/*
* The sprintf needs to come first since the syslog prefix might be
* passed in as a parameter. An extra byte must be reserved so that
* later the vscnprintf() into the reserved buffer has room for the
* terminating '\0', which is not counted by vsnprintf().
*/
va_copy(args2, args);
reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
va_end(args2);
if (reserve_size > PRINTKRB_RECORD_MAX)
reserve_size = PRINTKRB_RECORD_MAX;
/* Extract log level or control flags. */
if (facility == 0)
printk_parse_prefix(&prefix_buf[0], &level, &flags);
if (level == LOGLEVEL_DEFAULT)
level = default_message_loglevel;
if (dev_info)
flags |= LOG_NEWLINE;
if (flags & LOG_CONT) {
prb_rec_init_wr(&r, reserve_size);
if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
facility, &flags, fmt, args);
r.info->text_len += text_len;
if (flags & LOG_NEWLINE) {
r.info->flags |= LOG_NEWLINE;
prb_final_commit(&e);
} else {
prb_commit(&e);
}
ret = text_len;
goto out;
}
}
/*
* Explicitly initialize the record before every prb_reserve() call.
* prb_reserve_in_last() and prb_reserve() purposely invalidate the
* structure when they fail.
*/
prb_rec_init_wr(&r, reserve_size);
if (!prb_reserve(&e, prb, &r)) {
/* truncate the message if it is too long for empty buffer */
truncate_msg(&reserve_size, &trunc_msg_len);
prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
if (!prb_reserve(&e, prb, &r))
goto out;
}
/* fill message */
text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
if (trunc_msg_len)
memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
r.info->text_len = text_len + trunc_msg_len;
r.info->facility = facility;
r.info->level = level & 7;
r.info->flags = flags & 0x1f;
r.info->ts_nsec = ts_nsec;
r.info->caller_id = caller_id;
if (dev_info)
memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
/* A message without a trailing newline can be continued. */
if (!(flags & LOG_NEWLINE))
prb_commit(&e);
else
prb_final_commit(&e);
ret = text_len + trunc_msg_len;
out:
printk_exit_irqrestore(recursion_ptr, irqflags);
return ret;
}
/*
* This acts as a one-way switch to allow legacy consoles to print from
* the printk() caller context on a panic CPU. It also attempts to flush
* the legacy consoles in this context.
*/
void printk_legacy_allow_panic_sync(void)
{
struct console_flush_type ft;
legacy_allow_panic_sync = true;
printk_get_console_flush_type(&ft);
if (ft.legacy_direct) {
if (console_trylock())
console_unlock();
}
}
asmlinkage int vprintk_emit(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
struct console_flush_type ft;
int printed_len;
/* Suppress unimportant messages after panic happens */
if (unlikely(suppress_printk))
return 0;
/*
* The messages on the panic CPU are the most important. If
* non-panic CPUs are generating any messages, they will be
* silently dropped.
*/
if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace)
return 0;
printk_get_console_flush_type(&ft);
/* If called from the scheduler, we can not call up(). */
if (level == LOGLEVEL_SCHED) {
level = LOGLEVEL_DEFAULT;
ft.legacy_offload |= ft.legacy_direct;
ft.legacy_direct = false;
}
printk_delay(level);
printed_len = vprintk_store(facility, level, dev_info, fmt, args);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_direct) {
/*
* The caller may be holding system-critical or
* timing-sensitive locks. Disable preemption during
* printing of all remaining records to all consoles so that
* this context can return as soon as possible. Hopefully
* another printk() caller will take over the printing.
*/
preempt_disable();
/*
* Try to acquire and then immediately release the console
* semaphore. The release will print out buffers. With the
* spinning variant, this context tries to take over the
* printing from another printing context.
*/
if (console_trylock_spinning())
console_unlock();
preempt_enable();
}
if (ft.legacy_offload)
defer_console_output();
else
wake_up_klogd();
return printed_len;
}
EXPORT_SYMBOL(vprintk_emit);
int vprintk_default(const char *fmt, va_list args)
{
return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
}
EXPORT_SYMBOL_GPL(vprintk_default);
asmlinkage __visible int _printk(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk(fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL(_printk);
static bool pr_flush(int timeout_ms, bool reset_on_progress);
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
#else /* CONFIG_PRINTK */
#define printk_time false
#define prb_read_valid(rb, seq, r) false
#define prb_first_valid_seq(rb) 0
#define prb_next_seq(rb) 0
static u64 syslog_seq;
static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
#endif /* CONFIG_PRINTK */
#ifdef CONFIG_EARLY_PRINTK
struct console *early_console;
asmlinkage __visible void early_printk(const char *fmt, ...)
{
va_list ap;
char buf[512];
int n;
if (!early_console)
return;
va_start(ap, fmt);
n = vscnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
early_console->write(early_console, buf, n);
}
#endif
static void set_user_specified(struct console_cmdline *c, bool user_specified)
{
if (!user_specified)
return;
/*
* @c console was defined by the user on the command line.
* Do not clear when added twice also by SPCR or the device tree.
*/
c->user_specified = true;
/* At least one console defined by the user on the command line. */
console_set_on_cmdline = 1;
}
static int __add_preferred_console(const char *name, const short idx,
const char *devname, char *options,
char *brl_options, bool user_specified)
{
struct console_cmdline *c;
int i;
if (!name && !devname)
return -EINVAL;
/*
* We use a signed short index for struct console for device drivers to
* indicate a not yet assigned index or port. However, a negative index
* value is not valid when the console name and index are defined on
* the command line.
*/
if (name && idx < 0)
return -EINVAL;
/*
* See if this tty is not yet registered, and
* if we have a slot free.
*/
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
(devname && strcmp(c->devname, devname) == 0)) {
if (!brl_options)
preferred_console = i;
set_user_specified(c, user_specified);
return 0;
}
}
if (i == MAX_CMDLINECONSOLES)
return -E2BIG;
if (!brl_options)
preferred_console = i;
if (name)
strscpy(c->name, name);
if (devname)
strscpy(c->devname, devname);
c->options = options;
set_user_specified(c, user_specified);
braille_set_options(c, brl_options);
c->index = idx;
return 0;
}
static int __init console_msg_format_setup(char *str)
{
if (!strcmp(str, "syslog"))
console_msg_format = MSG_FORMAT_SYSLOG;
if (!strcmp(str, "default"))
console_msg_format = MSG_FORMAT_DEFAULT;
return 1;
}
__setup("console_msg_format=", console_msg_format_setup);
/*
* Set up a console. Called via do_early_param() in init/main.c
* for each "console=" parameter in the boot command line.
*/
static int __init console_setup(char *str)
{
static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
char buf[sizeof(console_cmdline[0].devname)];
char *brl_options = NULL;
char *ttyname = NULL;
char *devname = NULL;
char *options;
char *s;
int idx;
/*
* console="" or console=null have been suggested as a way to
* disable console output. Use ttynull that has been created
* for exactly this purpose.
*/
if (str[0] == 0 || strcmp(str, "null") == 0) {
__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
return 1;
}
if (_braille_console_setup(&str, &brl_options))
return 1;
/* For a DEVNAME:0.0 style console the character device is unknown early */
if (strchr(str, ':'))
devname = buf;
else
ttyname = buf;
/*
* Decode str into name, index, options.
*/
if (ttyname && isdigit(str[0]))
scnprintf(buf, sizeof(buf), "ttyS%s", str);
else
strscpy(buf, str);
options = strchr(str, ',');
if (options)
*(options++) = 0;
#ifdef __sparc__
if (!strcmp(str, "ttya"))
strscpy(buf, "ttyS0");
if (!strcmp(str, "ttyb"))
strscpy(buf, "ttyS1");
#endif
for (s = buf; *s; s++)
if ((ttyname && isdigit(*s)) || *s == ',')
break;
/* @idx will get defined when devname matches. */
if (devname)
idx = -1;
else
idx = simple_strtoul(s, NULL, 10);
*s = 0;
__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
return 1;
}
__setup("console=", console_setup);
/**
* add_preferred_console - add a device to the list of preferred consoles.
* @name: device name
* @idx: device index
* @options: options for this console
*
* The last preferred console added will be used for kernel messages
* and stdin/out/err for init. Normally this is used by console_setup
* above to handle user-supplied console arguments; however it can also
* be used by arch-specific code either to override the user or more
* commonly to provide a default console (ie from PROM variables) when
* the user has not supplied one.
*/
int add_preferred_console(const char *name, const short idx, char *options)
{
return __add_preferred_console(name, idx, NULL, options, NULL, false);
}
/**
* match_devname_and_update_preferred_console - Update a preferred console
* when matching devname is found.
* @devname: DEVNAME:0.0 style device name
* @name: Name of the corresponding console driver, e.g. "ttyS"
* @idx: Console index, e.g. port number.
*
* The function checks whether a device with the given @devname is
* preferred via the console=DEVNAME:0.0 command line option.
* It fills the missing console driver name and console index
* so that a later register_console() call could find (match)
* and enable this device.
*
* It might be used when a driver subsystem initializes particular
* devices with already known DEVNAME:0.0 style names. And it
* could predict which console driver name and index this device
* would later get associated with.
*
* Return: 0 on success, negative error code on failure.
*/
int match_devname_and_update_preferred_console(const char *devname,
const char *name,
const short idx)
{
struct console_cmdline *c = console_cmdline;
int i;
if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
return -EINVAL;
for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
if (!strcmp(devname, c->devname)) {
pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
devname, name, idx);
strscpy(c->name, name);
c->index = idx;
return 0;
}
}
return -ENOENT;
}
EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
bool console_suspend_enabled = true;
EXPORT_SYMBOL(console_suspend_enabled);
static int __init console_suspend_disable(char *str)
{
console_suspend_enabled = false;
return 1;
}
__setup("no_console_suspend", console_suspend_disable);
module_param_named(console_suspend, console_suspend_enabled,
bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
" and hibernate operations");
static bool printk_console_no_auto_verbose;
void console_verbose(void)
{
if (console_loglevel && !printk_console_no_auto_verbose)
console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
}
EXPORT_SYMBOL_GPL(console_verbose);
module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
/**
* suspend_console - suspend the console subsystem
*
* This disables printk() while we go into suspend states
*/
void suspend_console(void)
{
struct console *con;
if (!console_suspend_enabled)
return;
pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
pr_flush(1000, true);
console_list_lock();
for_each_console(con)
console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All printing
* contexts must be able to see that they are suspended so that it
* is guaranteed that all printing has stopped when this function
* completes.
*/
synchronize_srcu(&console_srcu);
}
void resume_console(void)
{
struct console_flush_type ft;
struct console *con;
if (!console_suspend_enabled)
return;
console_list_lock();
for_each_console(con)
console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All printing
* contexts must be able to see they are no longer suspended so
* that they are guaranteed to wake up and resume printing.
*/
synchronize_srcu(&console_srcu);
printk_get_console_flush_type(&ft);
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_offload)
defer_console_output();
pr_flush(1000, true);
}
/**
* console_cpu_notify - print deferred console messages after CPU hotplug
* @cpu: unused
*
* If printk() is called from a CPU that is not online yet, the messages
* will be printed on the console only if there are CON_ANYTIME consoles.
* This function is called when a new CPU comes online (or fails to come
* up) or goes offline.
*/
static int console_cpu_notify(unsigned int cpu)
{
int flag = 0;
trace_android_vh_printk_hotplug(&flag);
if (flag)
return 0;
struct console_flush_type ft;
if (!cpuhp_tasks_frozen) {
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.legacy_direct) {
if (console_trylock())
console_unlock();
}
}
return 0;
}
/**
* console_lock - block the console subsystem from printing
*
* Acquires a lock which guarantees that no consoles will
* be in or enter their write() callback.
*
* Can sleep, returns nothing.
*/
void console_lock(void)
{
might_sleep();
/* On panic, the console_lock must be left to the panic cpu. */
while (other_cpu_in_panic())
msleep(1000);
down_console_sem();
console_locked = 1;
console_may_schedule = 1;
}
EXPORT_SYMBOL(console_lock);
/**
* console_trylock - try to block the console subsystem from printing
*
* Try to acquire a lock which guarantees that no consoles will
* be in or enter their write() callback.
*
* returns 1 on success, and 0 on failure to acquire the lock.
*/
int console_trylock(void)
{
/* On panic, the console_lock must be left to the panic cpu. */
if (other_cpu_in_panic())
return 0;
if (down_trylock_console_sem())
return 0;
console_locked = 1;
console_may_schedule = 0;
return 1;
}
EXPORT_SYMBOL(console_trylock);
int is_console_locked(void)
{
return console_locked;
}
EXPORT_SYMBOL(is_console_locked);
static void __console_unlock(void)
{
console_locked = 0;
up_console_sem();
}
#ifdef CONFIG_PRINTK
/*
* Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
* the existing message over and inserting the scratchbuf message.
*
* @pmsg is the original printk message.
* @fmt is the printf format of the message which will prepend the existing one.
*
* If there is not enough space in @pmsg->pbufs->outbuf, the existing
* message text will be sufficiently truncated.
*
* If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
*/
__printf(2, 3)
static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
{
struct printk_buffers *pbufs = pmsg->pbufs;
const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
const size_t outbuf_sz = sizeof(pbufs->outbuf);
char *scratchbuf = &pbufs->scratchbuf[0];
char *outbuf = &pbufs->outbuf[0];
va_list args;
size_t len;
va_start(args, fmt);
len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
va_end(args);
/*
* Make sure outbuf is sufficiently large before prepending.
* Keep at least the prefix when the message must be truncated.
* It is a rather theoretical problem when someone tries to
* use a minimalist buffer.
*/
if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
return;
if (pmsg->outbuf_len + len >= outbuf_sz) {
/* Truncate the message, but keep it terminated. */
pmsg->outbuf_len = outbuf_sz - (len + 1);
outbuf[pmsg->outbuf_len] = 0;
}
memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
memcpy(outbuf, scratchbuf, len);
pmsg->outbuf_len += len;
}
/*
* Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
* @pmsg->outbuf_len is updated appropriately.
*
* @pmsg is the printk message to prepend.
*
* @dropped is the dropped count to report in the dropped message.
*/
void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
{
console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
}
/*
* Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
* @pmsg->outbuf_len is updated appropriately.
*
* @pmsg is the printk message to prepend.
*/
void console_prepend_replay(struct printk_message *pmsg)
{
console_prepend_message(pmsg, "** replaying previous printk message **\n");
}
/*
* Read and format the specified record (or a later record if the specified
* record is not available).
*
* @pmsg will contain the formatted result. @pmsg->pbufs must point to a
* struct printk_buffers.
*
* @seq is the record to read and format. If it is not available, the next
* valid record is read.
*
* @is_extended specifies if the message should be formatted for extended
* console output.
*
* @may_supress specifies if records may be skipped based on loglevel.
*
* Returns false if no record is available. Otherwise true and all fields
* of @pmsg are valid. (See the documentation of struct printk_message
* for information about the @pmsg fields.)
*/
bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
bool is_extended, bool may_suppress)
{
struct printk_buffers *pbufs = pmsg->pbufs;
const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
const size_t outbuf_sz = sizeof(pbufs->outbuf);
char *scratchbuf = &pbufs->scratchbuf[0];
char *outbuf = &pbufs->outbuf[0];
struct printk_info info;
struct printk_record r;
size_t len = 0;
/*
* Formatting extended messages requires a separate buffer, so use the
* scratch buffer to read in the ringbuffer text.
*
* Formatting normal messages is done in-place, so read the ringbuffer
* text directly into the output buffer.
*/
if (is_extended)
prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
else
prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
if (!prb_read_valid(prb, seq, &r))
return false;
pmsg->seq = r.info->seq;
pmsg->dropped = r.info->seq - seq;
/* Skip record that has level above the console loglevel. */
if (may_suppress && suppress_message_printing(r.info->level))
goto out;
if (is_extended) {
len = info_print_ext_header(outbuf, outbuf_sz, r.info);
len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
&r.text_buf[0], r.info->text_len, &r.info->dev_info);
} else {
len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
}
out:
pmsg->outbuf_len = len;
return true;
}
/*
* Legacy console printing from printk() caller context does not respect
* raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
* false positive. For PREEMPT_RT the false positive condition does not
* occur.
*
* This map is used to temporarily establish LD_WAIT_SLEEP context for the
* console write() callback when legacy printing to avoid false positive
* lockdep complaints, thus allowing lockdep to continue to function for
* real issues.
*/
#ifdef CONFIG_PREEMPT_RT
static inline void printk_legacy_allow_spinlock_enter(void) { }
static inline void printk_legacy_allow_spinlock_exit(void) { }
#else
static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
static inline void printk_legacy_allow_spinlock_enter(void)
{
lock_map_acquire_try(&printk_legacy_map);
}
static inline void printk_legacy_allow_spinlock_exit(void)
{
lock_map_release(&printk_legacy_map);
}
#endif /* CONFIG_PREEMPT_RT */
/*
* Used as the printk buffers for non-panic, serialized console printing.
* This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
* Its usage requires the console_lock held.
*/
struct printk_buffers printk_shared_pbufs;
/*
* Print one record for the given console. The record printed is whatever
* record is the next available record for the given console.
*
* @handover will be set to true if a printk waiter has taken over the
* console_lock, in which case the caller is no longer holding both the
* console_lock and the SRCU read lock. Otherwise it is set to false.
*
* @cookie is the cookie from the SRCU read lock.
*
* Returns false if the given console has no next record to print, otherwise
* true.
*
* Requires the console_lock and the SRCU read lock.
*/
static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
{
bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
char *outbuf = &printk_shared_pbufs.outbuf[0];
struct printk_message pmsg = {
.pbufs = &printk_shared_pbufs,
};
unsigned long flags;
*handover = false;
if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
return false;
con->dropped += pmsg.dropped;
/* Skip messages of formatted length 0. */
if (pmsg.outbuf_len == 0) {
con->seq = pmsg.seq + 1;
goto skip;
}
if (con->dropped && !is_extended) {
console_prepend_dropped(&pmsg, con->dropped);
con->dropped = 0;
}
/* Write everything out to the hardware. */
if (force_legacy_kthread() && !panic_in_progress()) {
/*
* With forced threading this function is in a task context
* (either legacy kthread or get_init_console_seq()). There
* is no need for concern about printk reentrance, handovers,
* or lockdep complaints.
*/
con->write(con, outbuf, pmsg.outbuf_len);
con->seq = pmsg.seq + 1;
} else {
/*
* While actively printing out messages, if another printk()
* were to occur on another CPU, it may wait for this one to
* finish. This task can not be preempted if there is a
* waiter waiting to take over.
*
* Interrupts are disabled because the hand over to a waiter
* must not be interrupted until the hand over is completed
* (@console_waiter is cleared).
*/
printk_safe_enter_irqsave(flags);
console_lock_spinning_enable();
/* Do not trace print latency. */
stop_critical_timings();
printk_legacy_allow_spinlock_enter();
con->write(con, outbuf, pmsg.outbuf_len);
printk_legacy_allow_spinlock_exit();
start_critical_timings();
con->seq = pmsg.seq + 1;
*handover = console_lock_spinning_disable_and_check(cookie);
printk_safe_exit_irqrestore(flags);
}
skip:
return true;
}
#else
static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
{
*handover = false;
return false;
}
static inline void printk_kthreads_check_locked(void) { }
#endif /* CONFIG_PRINTK */
/*
* Print out all remaining records to all consoles.
*
* @do_cond_resched is set by the caller. It can be true only in schedulable
* context.
*
* @next_seq is set to the sequence number after the last available record.
* The value is valid only when this function returns true. It means that all
* usable consoles are completely flushed.
*
* @handover will be set to true if a printk waiter has taken over the
* console_lock, in which case the caller is no longer holding the
* console_lock. Otherwise it is set to false.
*
* Returns true when there was at least one usable console and all messages
* were flushed to all usable consoles. A returned false informs the caller
* that everything was not flushed (either there were no usable consoles or
* another context has taken over printing or it is a panic situation and this
* is not the panic CPU). Regardless the reason, the caller should assume it
* is not useful to immediately try again.
*
* Requires the console_lock.
*/
static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
{
struct console_flush_type ft;
bool any_usable = false;
struct console *con;
bool any_progress;
int cookie;
*next_seq = 0;
*handover = false;
do {
any_progress = false;
printk_get_console_flush_type(&ft);
cookie = console_srcu_read_lock();
for_each_console_srcu(con) {
short flags = console_srcu_read_flags(con);
u64 printk_seq;
bool progress;
/*
* console_flush_all() is only responsible for nbcon
* consoles when the nbcon consoles cannot print via
* their atomic or threaded flushing.
*/
if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
continue;
if (!console_is_usable(con, flags, !do_cond_resched))
continue;
any_usable = true;
if (flags & CON_NBCON) {
progress = nbcon_legacy_emit_next_record(con, handover, cookie,
!do_cond_resched);
printk_seq = nbcon_seq_read(con);
} else {
progress = console_emit_next_record(con, handover, cookie);
printk_seq = con->seq;
}
/*
* If a handover has occurred, the SRCU read lock
* is already released.
*/
if (*handover)
return false;
/* Track the next of the highest seq flushed. */
if (printk_seq > *next_seq)
*next_seq = printk_seq;
if (!progress)
continue;
any_progress = true;
/* Allow panic_cpu to take over the consoles safely. */
if (other_cpu_in_panic())
goto abandon;
if (do_cond_resched)
cond_resched();
}
console_srcu_read_unlock(cookie);
} while (any_progress);
return any_usable;
abandon:
console_srcu_read_unlock(cookie);
return false;
}
static void __console_flush_and_unlock(void)
{
bool do_cond_resched;
bool handover;
bool flushed;
u64 next_seq;
/*
* Console drivers are called with interrupts disabled, so
* @console_may_schedule should be cleared before; however, we may
* end up dumping a lot of lines, for example, if called from
* console registration path, and should invoke cond_resched()
* between lines if allowable. Not doing so can cause a very long
* scheduling stall on a slow console leading to RCU stall and
* softlockup warnings which exacerbate the issue with more
* messages practically incapacitating the system. Therefore, create
* a local to use for the printing loop.
*/
do_cond_resched = console_may_schedule;
do {
console_may_schedule = 0;
flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
if (!handover)
__console_unlock();
/*
* Abort if there was a failure to flush all messages to all
* usable consoles. Either it is not possible to flush (in
* which case it would be an infinite loop of retrying) or
* another context has taken over printing.
*/
if (!flushed)
break;
/*
* Some context may have added new records after
* console_flush_all() but before unlocking the console.
* Re-check if there is a new record to flush. If the trylock
* fails, another context is already handling the printing.
*/
} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
}
/**
* console_unlock - unblock the legacy console subsystem from printing
*
* Releases the console_lock which the caller holds to block printing of
* the legacy console subsystem.
*
* While the console_lock was held, console output may have been buffered
* by printk(). If this is the case, console_unlock() emits the output on
* legacy consoles prior to releasing the lock.
*
* console_unlock(); may be called from any context.
*/
void console_unlock(void)
{
struct console_flush_type ft;
printk_get_console_flush_type(&ft);
if (ft.legacy_direct)
__console_flush_and_unlock();
else
__console_unlock();
}
EXPORT_SYMBOL(console_unlock);
/**
* console_conditional_schedule - yield the CPU if required
*
* If the console code is currently allowed to sleep, and
* if this CPU should yield the CPU to another task, do
* so here.
*
* Must be called within console_lock();.
*/
void __sched console_conditional_schedule(void)
{
if (console_may_schedule)
cond_resched();
}
EXPORT_SYMBOL(console_conditional_schedule);
void console_unblank(void)
{
bool found_unblank = false;
struct console *c;
int cookie;
/*
* First check if there are any consoles implementing the unblank()
* callback. If not, there is no reason to continue and take the
* console lock, which in particular can be dangerous if
* @oops_in_progress is set.
*/
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
found_unblank = true;
break;
}
}
console_srcu_read_unlock(cookie);
if (!found_unblank)
return;
/*
* Stop console printing because the unblank() callback may
* assume the console is not within its write() callback.
*
* If @oops_in_progress is set, this may be an atomic context.
* In that case, attempt a trylock as best-effort.
*/
if (oops_in_progress) {
/* Semaphores are not NMI-safe. */
if (in_nmi())
return;
/*
* Attempting to trylock the console lock can deadlock
* if another CPU was stopped while modifying the
* semaphore. "Hope and pray" that this is not the
* current situation.
*/
if (down_trylock_console_sem() != 0)
return;
} else
console_lock();
console_locked = 1;
console_may_schedule = 0;
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
c->unblank();
}
console_srcu_read_unlock(cookie);
console_unlock();
if (!oops_in_progress)
pr_flush(1000, true);
}
/*
* Rewind all consoles to the oldest available record.
*
* IMPORTANT: The function is safe only when called under
* console_lock(). It is not enforced because
* it is used as a best effort in panic().
*/
static void __console_rewind_all(void)
{
struct console *c;
short flags;
int cookie;
u64 seq;
seq = prb_first_valid_seq(prb);
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
flags = console_srcu_read_flags(c);
if (flags & CON_NBCON) {
nbcon_seq_force(c, seq);
} else {
/*
* This assignment is safe only when called under
* console_lock(). On panic, legacy consoles are
* only best effort.
*/
c->seq = seq;
}
}
console_srcu_read_unlock(cookie);
}
/**
* console_flush_on_panic - flush console content on panic
* @mode: flush all messages in buffer or just the pending ones
*
* Immediately output all pending messages no matter what.
*/
void console_flush_on_panic(enum con_flush_mode mode)
{
struct console_flush_type ft;
bool handover;
u64 next_seq;
/*
* Ignore the console lock and flush out the messages. Attempting a
* trylock would not be useful because:
*
* - if it is contended, it must be ignored anyway
* - console_lock() and console_trylock() block and fail
* respectively in panic for non-panic CPUs
* - semaphores are not NMI-safe
*/
/*
* If another context is holding the console lock,
* @console_may_schedule might be set. Clear it so that
* this context does not call cond_resched() while flushing.
*/
console_may_schedule = 0;
if (mode == CONSOLE_REPLAY_ALL)
__console_rewind_all();
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
/* Flush legacy consoles once allowed, even when dangerous. */
if (legacy_allow_panic_sync)
console_flush_all(false, &next_seq, &handover);
}
/*
* Return the console tty driver structure and its associated index
*/
struct tty_driver *console_device(int *index)
{
struct console *c;
struct tty_driver *driver = NULL;
int cookie;
/*
* Take console_lock to serialize device() callback with
* other console operations. For example, fg_console is
* modified under console_lock when switching vt.
*/
console_lock();
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if (!c->device)
continue;
driver = c->device(c, index);
if (driver)
break;
}
console_srcu_read_unlock(cookie);
console_unlock();
return driver;
}
/*
* Prevent further output on the passed console device so that (for example)
* serial drivers can disable console output before suspending a port, and can
* re-enable output afterwards.
*/
void console_stop(struct console *console)
{
__pr_flush(console, 1000, true);
console_list_lock();
console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All contexts must
* be able to see that this console is disabled so that (for example)
* the caller can suspend the port without risk of another context
* using the port.
*/
synchronize_srcu(&console_srcu);
}
EXPORT_SYMBOL(console_stop);
void console_start(struct console *console)
{
struct console_flush_type ft;
bool is_nbcon;
console_list_lock();
console_srcu_write_flags(console, console->flags | CON_ENABLED);
is_nbcon = console->flags & CON_NBCON;
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. The related
* printing context must be able to see it is enabled so that
* it is guaranteed to wake up and resume printing.
*/
synchronize_srcu(&console_srcu);
printk_get_console_flush_type(&ft);
if (is_nbcon && ft.nbcon_offload)
nbcon_kthread_wake(console);
else if (ft.legacy_offload)
defer_console_output();
__pr_flush(console, 1000, true);
}
EXPORT_SYMBOL(console_start);
#ifdef CONFIG_PRINTK
static int unregister_console_locked(struct console *console);
/* True when system boot is far enough to create printer threads. */
static bool printk_kthreads_ready __ro_after_init;
static struct task_struct *printk_legacy_kthread;
static bool legacy_kthread_should_wakeup(void)
{
struct console_flush_type ft;
struct console *con;
bool ret = false;
int cookie;
if (kthread_should_stop())
return true;
printk_get_console_flush_type(&ft);
cookie = console_srcu_read_lock();
for_each_console_srcu(con) {
short flags = console_srcu_read_flags(con);
u64 printk_seq;
/*
* The legacy printer thread is only responsible for nbcon
* consoles when the nbcon consoles cannot print via their
* atomic or threaded flushing.
*/
if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
continue;
if (!console_is_usable(con, flags, false))
continue;
if (flags & CON_NBCON) {
printk_seq = nbcon_seq_read(con);
} else {
/*
* It is safe to read @seq because only this
* thread context updates @seq.
*/
printk_seq = con->seq;
}
if (prb_read_valid(prb, printk_seq, NULL)) {
ret = true;
break;
}
}
console_srcu_read_unlock(cookie);
return ret;
}
static int legacy_kthread_func(void *unused)
{
for (;;) {
wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
if (kthread_should_stop())
break;
console_lock();
__console_flush_and_unlock();
}
return 0;
}
static bool legacy_kthread_create(void)
{
struct task_struct *kt;
lockdep_assert_console_list_lock_held();
kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
if (WARN_ON(IS_ERR(kt))) {
pr_err("failed to start legacy printing thread\n");
return false;
}
printk_legacy_kthread = kt;
/*
* It is important that console printing threads are scheduled
* shortly after a printk call and with generous runtime budgets.
*/
sched_set_normal(printk_legacy_kthread, -20);
return true;
}
/**
* printk_kthreads_shutdown - shutdown all threaded printers
*
* On system shutdown all threaded printers are stopped. This allows printk
* to transition back to atomic printing, thus providing a robust mechanism
* for the final shutdown/reboot messages to be output.
*/
static void printk_kthreads_shutdown(void)
{
struct console *con;
console_list_lock();
if (printk_kthreads_running) {
printk_kthreads_running = false;
for_each_console(con) {
if (con->flags & CON_NBCON)
nbcon_kthread_stop(con);
}
/*
* The threads may have been stopped while printing a
* backlog. Flush any records left over.
*/
nbcon_atomic_flush_pending();
}
console_list_unlock();
}
static struct syscore_ops printk_syscore_ops = {
.shutdown = printk_kthreads_shutdown,
};
/*
* If appropriate, start nbcon kthreads and set @printk_kthreads_running.
* If any kthreads fail to start, those consoles are unregistered.
*
* Must be called under console_list_lock().
*/
static void printk_kthreads_check_locked(void)
{
struct hlist_node *tmp;
struct console *con;
lockdep_assert_console_list_lock_held();
if (!printk_kthreads_ready)
return;
if (have_legacy_console || have_boot_console) {
if (!printk_legacy_kthread &&
force_legacy_kthread() &&
!legacy_kthread_create()) {
/*
* All legacy consoles must be unregistered. If there
* are any nbcon consoles, they will set up their own
* kthread.
*/
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (con->flags & CON_NBCON)
continue;
unregister_console_locked(con);
}
}
} else if (printk_legacy_kthread) {
kthread_stop(printk_legacy_kthread);
printk_legacy_kthread = NULL;
}
/*
* Printer threads cannot be started as long as any boot console is
* registered because there is no way to synchronize the hardware
* registers between boot console code and regular console code.
* It can only be known that there will be no new boot consoles when
* an nbcon console is registered.
*/
if (have_boot_console || !have_nbcon_console) {
/* Clear flag in case all nbcon consoles unregistered. */
printk_kthreads_running = false;
return;
}
if (printk_kthreads_running)
return;
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (!(con->flags & CON_NBCON))
continue;
if (!nbcon_kthread_create(con))
unregister_console_locked(con);
}
printk_kthreads_running = true;
}
static int __init printk_set_kthreads_ready(void)
{
register_syscore_ops(&printk_syscore_ops);
console_list_lock();
printk_kthreads_ready = true;
printk_kthreads_check_locked();
console_list_unlock();
return 0;
}
early_initcall(printk_set_kthreads_ready);
#endif /* CONFIG_PRINTK */
static int __read_mostly keep_bootcon;
static int __init keep_bootcon_setup(char *str)
{
keep_bootcon = 1;
pr_info("debug: skip boot console de-registration.\n");
return 0;
}
early_param("keep_bootcon", keep_bootcon_setup);
static int console_call_setup(struct console *newcon, char *options)
{
int err;
if (!newcon->setup)
return 0;
/* Synchronize with possible boot console. */
console_lock();
err = newcon->setup(newcon, options);
console_unlock();
return err;
}
/*
* This is called by register_console() to try to match
* the newly registered console with any of the ones selected
* by either the command line or add_preferred_console() and
* setup/enable it.
*
* Care need to be taken with consoles that are statically
* enabled such as netconsole
*/
static int try_enable_preferred_console(struct console *newcon,
bool user_specified)
{
struct console_cmdline *c;
int i, err;
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
/* Console not yet initialized? */
if (!c->name[0])
continue;
if (c->user_specified != user_specified)
continue;
if (!newcon->match ||
newcon->match(newcon, c->name, c->index, c->options) != 0) {
/* default matching */
BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
if (strcmp(c->name, newcon->name) != 0)
continue;
if (newcon->index >= 0 &&
newcon->index != c->index)
continue;
if (newcon->index < 0)
newcon->index = c->index;
if (_braille_register_console(newcon, c))
return 0;
err = console_call_setup(newcon, c->options);
if (err)
return err;
}
newcon->flags |= CON_ENABLED;
if (i == preferred_console)
newcon->flags |= CON_CONSDEV;
return 0;
}
/*
* Some consoles, such as pstore and netconsole, can be enabled even
* without matching. Accept the pre-enabled consoles only when match()
* and setup() had a chance to be called.
*/
if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
return 0;
return -ENOENT;
}
/* Try to enable the console unconditionally */
static void try_enable_default_console(struct console *newcon)
{
if (newcon->index < 0)
newcon->index = 0;
if (console_call_setup(newcon, NULL) != 0)
return;
newcon->flags |= CON_ENABLED;
if (newcon->device)
newcon->flags |= CON_CONSDEV;
}
/* Return the starting sequence number for a newly registered console. */
static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
{
struct console *con;
bool handover;
u64 init_seq;
if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
/* Get a consistent copy of @syslog_seq. */
mutex_lock(&syslog_lock);
init_seq = syslog_seq;
mutex_unlock(&syslog_lock);
} else {
/* Begin with next message added to ringbuffer. */
init_seq = prb_next_seq(prb);
/*
* If any enabled boot consoles are due to be unregistered
* shortly, some may not be caught up and may be the same
* device as @newcon. Since it is not known which boot console
* is the same device, flush all consoles and, if necessary,
* start with the message of the enabled boot console that is
* the furthest behind.
*/
if (bootcon_registered && !keep_bootcon) {
/*
* Hold the console_lock to stop console printing and
* guarantee safe access to console->seq.
*/
console_lock();
/*
* Flush all consoles and set the console to start at
* the next unprinted sequence number.
*/
if (!console_flush_all(true, &init_seq, &handover)) {
/*
* Flushing failed. Just choose the lowest
* sequence of the enabled boot consoles.
*/
/*
* If there was a handover, this context no
* longer holds the console_lock.
*/
if (handover)
console_lock();
init_seq = prb_next_seq(prb);
for_each_console(con) {
u64 seq;
if (!(con->flags & CON_BOOT) ||
!(con->flags & CON_ENABLED)) {
continue;
}
if (con->flags & CON_NBCON)
seq = nbcon_seq_read(con);
else
seq = con->seq;
if (seq < init_seq)
init_seq = seq;
}
}
console_unlock();
}
}
return init_seq;
}
#define console_first() \
hlist_entry(console_list.first, struct console, node)
static int unregister_console_locked(struct console *console);
/*
* The console driver calls this routine during kernel initialization
* to register the console printing procedure with printk() and to
* print any messages that were printed by the kernel before the
* console driver was initialized.
*
* This can happen pretty early during the boot process (because of
* early_printk) - sometimes before setup_arch() completes - be careful
* of what kernel features are used - they may not be initialised yet.
*
* There are two types of consoles - bootconsoles (early_printk) and
* "real" consoles (everything which is not a bootconsole) which are
* handled differently.
* - Any number of bootconsoles can be registered at any time.
* - As soon as a "real" console is registered, all bootconsoles
* will be unregistered automatically.
* - Once a "real" console is registered, any attempt to register a
* bootconsoles will be rejected
*/
void register_console(struct console *newcon)
{
bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
bool bootcon_registered = false;
bool realcon_registered = false;
struct console *con;
unsigned long flags;
u64 init_seq;
int err;
console_list_lock();
for_each_console(con) {
if (WARN(con == newcon, "console '%s%d' already registered\n",
con->name, con->index)) {
goto unlock;
}
if (con->flags & CON_BOOT)
bootcon_registered = true;
else
realcon_registered = true;
}
/* Do not register boot consoles when there already is a real one. */
if ((newcon->flags & CON_BOOT) && realcon_registered) {
pr_info("Too late to register bootconsole %s%d\n",
newcon->name, newcon->index);
goto unlock;
}
if (newcon->flags & CON_NBCON) {
/*
* Ensure the nbcon console buffers can be allocated
* before modifying any global data.
*/
if (!nbcon_alloc(newcon))
goto unlock;
}
/*
* See if we want to enable this console driver by default.
*
* Nope when a console is preferred by the command line, device
* tree, or SPCR.
*
* The first real console with tty binding (driver) wins. More
* consoles might get enabled before the right one is found.
*
* Note that a console with tty binding will have CON_CONSDEV
* flag set and will be first in the list.
*/
if (preferred_console < 0) {
if (hlist_empty(&console_list) || !console_first()->device ||
console_first()->flags & CON_BOOT) {
try_enable_default_console(newcon);
}
}
/* See if this console matches one we selected on the command line */
err = try_enable_preferred_console(newcon, true);
/* If not, try to match against the platform default(s) */
if (err == -ENOENT)
err = try_enable_preferred_console(newcon, false);
/* printk() messages are not printed to the Braille console. */
if (err || newcon->flags & CON_BRL) {
if (newcon->flags & CON_NBCON)
nbcon_free(newcon);
goto unlock;
}
/*
* If we have a bootconsole, and are switching to a real console,
* don't print everything out again, since when the boot console, and
* the real console are the same physical device, it's annoying to
* see the beginning boot messages twice
*/
if (bootcon_registered &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
newcon->flags &= ~CON_PRINTBUFFER;
}
newcon->dropped = 0;
init_seq = get_init_console_seq(newcon, bootcon_registered);
if (newcon->flags & CON_NBCON) {
have_nbcon_console = true;
nbcon_seq_force(newcon, init_seq);
} else {
have_legacy_console = true;
newcon->seq = init_seq;
}
if (newcon->flags & CON_BOOT)
have_boot_console = true;
/*
* If another context is actively using the hardware of this new
* console, it will not be aware of the nbcon synchronization. This
* is a risk that two contexts could access the hardware
* simultaneously if this new console is used for atomic printing
* and the other context is still using the hardware.
*
* Use the driver synchronization to ensure that the hardware is not
* in use while this new console transitions to being registered.
*/
if (use_device_lock)
newcon->device_lock(newcon, &flags);
/*
* Put this console in the list - keep the
* preferred driver at the head of the list.
*/
if (hlist_empty(&console_list)) {
/* Ensure CON_CONSDEV is always set for the head. */
newcon->flags |= CON_CONSDEV;
hlist_add_head_rcu(&newcon->node, &console_list);
} else if (newcon->flags & CON_CONSDEV) {
/* Only the new head can have CON_CONSDEV set. */
console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
hlist_add_head_rcu(&newcon->node, &console_list);
} else {
hlist_add_behind_rcu(&newcon->node, console_list.first);
}
/*
* No need to synchronize SRCU here! The caller does not rely
* on all contexts being able to see the new console before
* register_console() completes.
*/
/* This new console is now registered. */
if (use_device_lock)
newcon->device_unlock(newcon, flags);
console_sysfs_notify();
/*
* By unregistering the bootconsoles after we enable the real console
* we get the "console xxx enabled" message on all the consoles -
* boot consoles, real consoles, etc - this is to ensure that end
* users know there might be something in the kernel's log buffer that
* went to the bootconsole (that they do not see on the real console)
*/
con_printk(KERN_INFO, newcon, "enabled\n");
if (bootcon_registered &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
!keep_bootcon) {
struct hlist_node *tmp;
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (con->flags & CON_BOOT)
unregister_console_locked(con);
}
}
/* Changed console list, may require printer threads to start/stop. */
printk_kthreads_check_locked();
unlock:
console_list_unlock();
}
EXPORT_SYMBOL(register_console);
/* Must be called under console_list_lock(). */
static int unregister_console_locked(struct console *console)
{
bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
bool found_legacy_con = false;
bool found_nbcon_con = false;
bool found_boot_con = false;
unsigned long flags;
struct console *c;
int res;
lockdep_assert_console_list_lock_held();
con_printk(KERN_INFO, console, "disabled\n");
res = _braille_unregister_console(console);
if (res < 0)
return res;
if (res > 0)
return 0;
if (!console_is_registered_locked(console))
res = -ENODEV;
else if (console_is_usable(console, console->flags, true))
__pr_flush(console, 1000, true);
/* Disable it unconditionally */
console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
if (res < 0)
return res;
/*
* Use the driver synchronization to ensure that the hardware is not
* in use while this console transitions to being unregistered.
*/
if (use_device_lock)
console->device_lock(console, &flags);
hlist_del_init_rcu(&console->node);
if (use_device_lock)
console->device_unlock(console, flags);
/*
* <HISTORICAL>
* If this isn't the last console and it has CON_CONSDEV set, we
* need to set it on the next preferred console.
* </HISTORICAL>
*
* The above makes no sense as there is no guarantee that the next
* console has any device attached. Oh well....
*/
if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
/*
* Ensure that all SRCU list walks have completed. All contexts
* must not be able to see this console in the list so that any
* exit/cleanup routines can be performed safely.
*/
synchronize_srcu(&console_srcu);
if (console->flags & CON_NBCON)
nbcon_free(console);
console_sysfs_notify();
if (console->exit)
res = console->exit(console);
/*
* With this console gone, the global flags tracking registered
* console types may have changed. Update them.
*/
for_each_console(c) {
if (c->flags & CON_BOOT)
found_boot_con = true;
if (c->flags & CON_NBCON)
found_nbcon_con = true;
else
found_legacy_con = true;
}
if (!found_boot_con)
have_boot_console = found_boot_con;
if (!found_legacy_con)
have_legacy_console = found_legacy_con;
if (!found_nbcon_con)
have_nbcon_console = found_nbcon_con;
/* Changed console list, may require printer threads to start/stop. */
printk_kthreads_check_locked();
return res;
}
int unregister_console(struct console *console)
{
int res;
console_list_lock();
res = unregister_console_locked(console);
console_list_unlock();
return res;
}
EXPORT_SYMBOL(unregister_console);
/**
* console_force_preferred_locked - force a registered console preferred
* @con: The registered console to force preferred.
*
* Must be called under console_list_lock().
*/
void console_force_preferred_locked(struct console *con)
{
struct console *cur_pref_con;
if (!console_is_registered_locked(con))
return;
cur_pref_con = console_first();
/* Already preferred? */
if (cur_pref_con == con)
return;
/*
* Delete, but do not re-initialize the entry. This allows the console
* to continue to appear registered (via any hlist_unhashed_lockless()
* checks), even though it was briefly removed from the console list.
*/
hlist_del_rcu(&con->node);
/*
* Ensure that all SRCU list walks have completed so that the console
* can be added to the beginning of the console list and its forward
* list pointer can be re-initialized.
*/
synchronize_srcu(&console_srcu);
con->flags |= CON_CONSDEV;
WARN_ON(!con->device);
/* Only the new head can have CON_CONSDEV set. */
console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
hlist_add_head_rcu(&con->node, &console_list);
}
EXPORT_SYMBOL(console_force_preferred_locked);
/*
* Initialize the console device. This is called *early*, so
* we can't necessarily depend on lots of kernel help here.
* Just do some early initializations, and do the complex setup
* later.
*/
void __init console_init(void)
{
int ret;
initcall_t call;
initcall_entry_t *ce;
/* Setup the default TTY line discipline. */
n_tty_init();
/*
* set up the console device so that later boot sequences can
* inform about problems etc..
*/
ce = __con_initcall_start;
trace_initcall_level("console");
while (ce < __con_initcall_end) {
call = initcall_from_entry(ce);
trace_initcall_start(call);
ret = call();
trace_initcall_finish(call, ret);
ce++;
}
}
/*
* Some boot consoles access data that is in the init section and which will
* be discarded after the initcalls have been run. To make sure that no code
* will access this data, unregister the boot consoles in a late initcall.
*
* If for some reason, such as deferred probe or the driver being a loadable
* module, the real console hasn't registered yet at this point, there will
* be a brief interval in which no messages are logged to the console, which
* makes it difficult to diagnose problems that occur during this time.
*
* To mitigate this problem somewhat, only unregister consoles whose memory
* intersects with the init section. Note that all other boot consoles will
* get unregistered when the real preferred console is registered.
*/
static int __init printk_late_init(void)
{
struct hlist_node *tmp;
struct console *con;
int ret;
console_list_lock();
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (!(con->flags & CON_BOOT))
continue;
/* Check addresses that might be used for enabled consoles. */
if (init_section_intersects(con, sizeof(*con)) ||
init_section_contains(con->write, 0) ||
init_section_contains(con->read, 0) ||
init_section_contains(con->device, 0) ||
init_section_contains(con->unblank, 0) ||
init_section_contains(con->data, 0)) {
/*
* Please, consider moving the reported consoles out
* of the init section.
*/
pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
con->name, con->index);
unregister_console_locked(con);
}
}
console_list_unlock();
ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
console_cpu_notify);
WARN_ON(ret < 0);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
console_cpu_notify, NULL);
WARN_ON(ret < 0);
printk_sysctl_init();
return 0;
}
late_initcall(printk_late_init);
#if defined CONFIG_PRINTK
/* If @con is specified, only wait for that console. Otherwise wait for all. */
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
{
unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
unsigned long remaining_jiffies = timeout_jiffies;
struct console_flush_type ft;
struct console *c;
u64 last_diff = 0;
u64 printk_seq;
short flags;
int cookie;
u64 diff;
u64 seq;
/* Sorry, pr_flush() will not work this early. */
if (system_state < SYSTEM_SCHEDULING)
return false;
might_sleep();
seq = prb_next_reserve_seq(prb);
/* Flush the consoles so that records up to @seq are printed. */
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.legacy_direct) {
console_lock();
console_unlock();
}
for (;;) {
unsigned long begin_jiffies;
unsigned long slept_jiffies;
diff = 0;
/*
* Hold the console_lock to guarantee safe access to
* console->seq. Releasing console_lock flushes more
* records in case @seq is still not printed on all
* usable consoles.
*
* Holding the console_lock is not necessary if there
* are no legacy or boot consoles. However, such a
* console could register at any time. Always hold the
* console_lock as a precaution rather than
* synchronizing against register_console().
*/
console_lock();
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if (con && con != c)
continue;
flags = console_srcu_read_flags(c);
/*
* If consoles are not usable, it cannot be expected
* that they make forward progress, so only increment
* @diff for usable consoles.
*/
if (!console_is_usable(c, flags, true) &&
!console_is_usable(c, flags, false)) {
continue;
}
if (flags & CON_NBCON) {
printk_seq = nbcon_seq_read(c);
} else {
printk_seq = c->seq;
}
if (printk_seq < seq)
diff += seq - printk_seq;
}
console_srcu_read_unlock(cookie);
if (diff != last_diff && reset_on_progress)
remaining_jiffies = timeout_jiffies;
console_unlock();
/* Note: @diff is 0 if there are no usable consoles. */
if (diff == 0 || remaining_jiffies == 0)
break;
/* msleep(1) might sleep much longer. Check time by jiffies. */
begin_jiffies = jiffies;
msleep(1);
slept_jiffies = jiffies - begin_jiffies;
remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
last_diff = diff;
}
return (diff == 0);
}
/**
* pr_flush() - Wait for printing threads to catch up.
*
* @timeout_ms: The maximum time (in ms) to wait.
* @reset_on_progress: Reset the timeout if forward progress is seen.
*
* A value of 0 for @timeout_ms means no waiting will occur. A value of -1
* represents infinite waiting.
*
* If @reset_on_progress is true, the timeout will be reset whenever any
* printer has been seen to make some forward progress.
*
* Context: Process context. May sleep while acquiring console lock.
* Return: true if all usable printers are caught up.
*/
static bool pr_flush(int timeout_ms, bool reset_on_progress)
{
return __pr_flush(NULL, timeout_ms, reset_on_progress);
}
/*
* Delayed printk version, for scheduler-internal messages:
*/
#define PRINTK_PENDING_WAKEUP 0x01
#define PRINTK_PENDING_OUTPUT 0x02
static DEFINE_PER_CPU(int, printk_pending);
static void wake_up_klogd_work_func(struct irq_work *irq_work)
{
int pending = this_cpu_xchg(printk_pending, 0);
if (pending & PRINTK_PENDING_OUTPUT) {
if (force_legacy_kthread()) {
if (printk_legacy_kthread)
wake_up_interruptible(&legacy_wait);
} else {
if (console_trylock())
console_unlock();
}
}
if (pending & PRINTK_PENDING_WAKEUP)
wake_up_interruptible(&log_wait);
}
static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
static void __wake_up_klogd(int val)
{
if (!printk_percpu_data_ready())
return;
preempt_disable();
/*
* Guarantee any new records can be seen by tasks preparing to wait
* before this context checks if the wait queue is empty.
*
* The full memory barrier within wq_has_sleeper() pairs with the full
* memory barrier within set_current_state() of
* prepare_to_wait_event(), which is called after ___wait_event() adds
* the waiter but before it has checked the wait condition.
*
* This pairs with devkmsg_read:A and syslog_print:A.
*/
if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
(val & PRINTK_PENDING_OUTPUT)) {
this_cpu_or(printk_pending, val);
irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
}
preempt_enable();
}
/**
* wake_up_klogd - Wake kernel logging daemon
*
* Use this function when new records have been added to the ringbuffer
* and the console printing of those records has already occurred or is
* known to be handled by some other context. This function will only
* wake the logging daemon.
*
* Context: Any context.
*/
void wake_up_klogd(void)
{
__wake_up_klogd(PRINTK_PENDING_WAKEUP);
}
/**
* defer_console_output - Wake kernel logging daemon and trigger
* console printing in a deferred context
*
* Use this function when new records have been added to the ringbuffer,
* this context is responsible for console printing those records, but
* the current context is not allowed to perform the console printing.
* Trigger an irq_work context to perform the console printing. This
* function also wakes the logging daemon.
*
* Context: Any context.
*/
void defer_console_output(void)
{
/*
* New messages may have been added directly to the ringbuffer
* using vprintk_store(), so wake any waiters as well.
*/
__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
}
void printk_trigger_flush(void)
{
defer_console_output();
}
int vprintk_deferred(const char *fmt, va_list args)
{
return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
}
int _printk_deferred(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_deferred(fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL_GPL(_printk_deferred);
/*
* printk rate limiting, lifted from the networking subsystem.
*
* This enforces a rate limit: not more than 10 kernel messages
* every 5s to make a denial-of-service attack impossible.
*/
DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
int __printk_ratelimit(const char *func)
{
return ___ratelimit(&printk_ratelimit_state, func);
}
EXPORT_SYMBOL(__printk_ratelimit);
/**
* printk_timed_ratelimit - caller-controlled printk ratelimiting
* @caller_jiffies: pointer to caller's state
* @interval_msecs: minimum interval between prints
*
* printk_timed_ratelimit() returns true if more than @interval_msecs
* milliseconds have elapsed since the last time printk_timed_ratelimit()
* returned true.
*/
bool printk_timed_ratelimit(unsigned long *caller_jiffies,
unsigned int interval_msecs)
{
unsigned long elapsed = jiffies - *caller_jiffies;
if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
return false;
*caller_jiffies = jiffies;
return true;
}
EXPORT_SYMBOL(printk_timed_ratelimit);
static DEFINE_SPINLOCK(dump_list_lock);
static LIST_HEAD(dump_list);
/**
* kmsg_dump_register - register a kernel log dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Adds a kernel log dumper to the system. The dump callback in the
* structure will be called when the kernel oopses or panics and must be
* set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
*/
int kmsg_dump_register(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EBUSY;
/* The dump callback needs to be set */
if (!dumper->dump)
return -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
/* Don't allow registering multiple times */
if (!dumper->registered) {
dumper->registered = 1;
list_add_tail_rcu(&dumper->list, &dump_list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_register);
/**
* kmsg_dump_unregister - unregister a kmsg dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Removes a dump device from the system. Returns zero on success and
* %-EINVAL otherwise.
*/
int kmsg_dump_unregister(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
if (dumper->registered) {
dumper->registered = 0;
list_del_rcu(&dumper->list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
static bool always_kmsg_dump;
module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
{
switch (reason) {
case KMSG_DUMP_PANIC:
return "Panic";
case KMSG_DUMP_OOPS:
return "Oops";
case KMSG_DUMP_EMERG:
return "Emergency";
case KMSG_DUMP_SHUTDOWN:
return "Shutdown";
default:
return "Unknown";
}
}
EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
/**
* kmsg_dump_desc - dump kernel log to kernel message dumpers.
* @reason: the reason (oops, panic etc) for dumping
* @desc: a short string to describe what caused the panic or oops. Can be NULL
* if no additional description is available.
*
* Call each of the registered dumper's dump() callback, which can
* retrieve the kmsg records with kmsg_dump_get_line() or
* kmsg_dump_get_buffer().
*/
void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
{
struct kmsg_dumper *dumper;
struct kmsg_dump_detail detail = {
.reason = reason,
.description = desc};
rcu_read_lock();
list_for_each_entry_rcu(dumper, &dump_list, list) {
enum kmsg_dump_reason max_reason = dumper->max_reason;
/*
* If client has not provided a specific max_reason, default
* to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
*/
if (max_reason == KMSG_DUMP_UNDEF) {
max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
KMSG_DUMP_OOPS;
}
if (reason > max_reason)
continue;
/* invoke dumper which will iterate over records */
dumper->dump(dumper, &detail);
}
rcu_read_unlock();
}
/**
* kmsg_dump_get_line - retrieve one kmsg log line
* @iter: kmsg dump iterator
* @syslog: include the "<4>" prefixes
* @line: buffer to copy the line to
* @size: maximum size of the buffer
* @len: length of line placed into buffer
*
* Start at the beginning of the kmsg buffer, with the oldest kmsg
* record, and copy one record into the provided buffer.
*
* Consecutive calls will return the next available record moving
* towards the end of the buffer with the youngest messages.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
char *line, size_t size, size_t *len)
{
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
unsigned int line_count;
struct printk_record r;
size_t l = 0;
bool ret = false;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
prb_rec_init_rd(&r, &info, line, size);
/* Read text or count text lines? */
if (line) {
if (!prb_read_valid(prb, iter->cur_seq, &r))
goto out;
l = record_print_text(&r, syslog, printk_time);
} else {
if (!prb_read_valid_info(prb, iter->cur_seq,
&info, &line_count)) {
goto out;
}
l = get_record_print_text_size(&info, line_count, syslog,
printk_time);
}
iter->cur_seq = r.info->seq + 1;
ret = true;
out:
if (len)
*len = l;
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
/**
* kmsg_dump_get_buffer - copy kmsg log lines
* @iter: kmsg dump iterator
* @syslog: include the "<4>" prefixes
* @buf: buffer to copy the line to
* @size: maximum size of the buffer
* @len_out: length of line placed into buffer
*
* Start at the end of the kmsg buffer and fill the provided buffer
* with as many of the *youngest* kmsg records that fit into it.
* If the buffer is large enough, all available kmsg records will be
* copied with a single call.
*
* Consecutive calls will fill the buffer with the next block of
* available older records, not including the earlier retrieved ones.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
char *buf, size_t size, size_t *len_out)
{
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
struct printk_record r;
u64 seq;
u64 next_seq;
size_t len = 0;
bool ret = false;
bool time = printk_time;
if (!buf || !size)
goto out;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
if (info.seq != iter->cur_seq) {
/* messages are gone, move to first available one */
iter->cur_seq = info.seq;
}
}
/* last entry */
if (iter->cur_seq >= iter->next_seq)
goto out;
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump. Pass in size-1
* because this function (by way of record_print_text()) will
* not write more than size-1 bytes of text into @buf.
*/
seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
size - 1, syslog, time);
/*
* Next kmsg_dump_get_buffer() invocation will dump block of
* older records stored right before this one.
*/
next_seq = seq;
prb_rec_init_rd(&r, &info, buf, size);
prb_for_each_record(seq, prb, seq, &r) {
if (r.info->seq >= iter->next_seq)
break;
len += record_print_text(&r, syslog, time);
/* Adjust record to store to remaining buffer space. */
prb_rec_init_rd(&r, &info, buf + len, size - len);
}
iter->next_seq = next_seq;
ret = true;
out:
if (len_out)
*len_out = len;
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
/**
* kmsg_dump_rewind - reset the iterator
* @iter: kmsg dump iterator
*
* Reset the dumper's iterator so that kmsg_dump_get_line() and
* kmsg_dump_get_buffer() can be called again and used multiple
* times within the same dumper.dump() callback.
*/
void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
{
iter->cur_seq = latched_seq_read_nolock(&clear_seq);
iter->next_seq = prb_next_seq(prb);
}
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
/**
* console_try_replay_all - try to replay kernel log on consoles
*
* Try to obtain lock on console subsystem and replay all
* available records in printk buffer on the consoles.
* Does nothing if lock is not obtained.
*
* Context: Any, except for NMI.
*/
void console_try_replay_all(void)
{
struct console_flush_type ft;
printk_get_console_flush_type(&ft);
if (console_trylock()) {
__console_rewind_all();
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_offload)
defer_console_output();
/* Consoles are flushed as part of console_unlock(). */
console_unlock();
}
}
#endif
#ifdef CONFIG_SMP
static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
/**
* __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
* spinning lock is not owned by any CPU.
*
* Context: Any context.
*/
void __printk_cpu_sync_wait(void)
{
do {
cpu_relax();
} while (atomic_read(&printk_cpu_sync_owner) != -1);
}
EXPORT_SYMBOL(__printk_cpu_sync_wait);
/**
* __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
* spinning lock.
*
* If no processor has the lock, the calling processor takes the lock and
* becomes the owner. If the calling processor is already the owner of the
* lock, this function succeeds immediately.
*
* Context: Any context. Expects interrupts to be disabled.
* Return: 1 on success, otherwise 0.
*/
int __printk_cpu_sync_try_get(void)
{
int cpu;
int old;
cpu = smp_processor_id();
/*
* Guarantee loads and stores from this CPU when it is the lock owner
* are _not_ visible to the previous lock owner. This pairs with
* __printk_cpu_sync_put:B.
*
* Memory barrier involvement:
*
* If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
* then __printk_cpu_sync_put:A can never read from
* __printk_cpu_sync_try_get:B.
*
* Relies on:
*
* RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
* of the previous CPU
* matching
* ACQUIRE from __printk_cpu_sync_try_get:A to
* __printk_cpu_sync_try_get:B of this CPU
*/
old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
cpu); /* LMM(__printk_cpu_sync_try_get:A) */
if (old == -1) {
/*
* This CPU is now the owner and begins loading/storing
* data: LMM(__printk_cpu_sync_try_get:B)
*/
return 1;
} else if (old == cpu) {
/* This CPU is already the owner. */
atomic_inc(&printk_cpu_sync_nested);
return 1;
}
return 0;
}
EXPORT_SYMBOL(__printk_cpu_sync_try_get);
/**
* __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
*
* The calling processor must be the owner of the lock.
*
* Context: Any context. Expects interrupts to be disabled.
*/
void __printk_cpu_sync_put(void)
{
if (atomic_read(&printk_cpu_sync_nested)) {
atomic_dec(&printk_cpu_sync_nested);
return;
}
/*
* This CPU is finished loading/storing data:
* LMM(__printk_cpu_sync_put:A)
*/
/*
* Guarantee loads and stores from this CPU when it was the
* lock owner are visible to the next lock owner. This pairs
* with __printk_cpu_sync_try_get:A.
*
* Memory barrier involvement:
*
* If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
* then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
*
* Relies on:
*
* RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
* of this CPU
* matching
* ACQUIRE from __printk_cpu_sync_try_get:A to
* __printk_cpu_sync_try_get:B of the next CPU
*/
atomic_set_release(&printk_cpu_sync_owner,
-1); /* LMM(__printk_cpu_sync_put:B) */
}
EXPORT_SYMBOL(__printk_cpu_sync_put);
#endif /* CONFIG_SMP */