blob: 9c505d3517cd1af753f32507ffb44651ccbc0e80 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc_ct.h"
#include <linux/bitfield.h>
#include <linux/circ_buf.h>
#include <linux/delay.h>
#include <kunit/static_stub.h>
#include <drm/drm_managed.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_actions_sriov_abi.h"
#include "abi/guc_klvs_abi.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_pagefault.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_pf_control.h"
#include "xe_gt_sriov_pf_monitor.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_guc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_map.h"
#include "xe_pm.h"
#include "xe_trace_guc.h"
/* Used when a CT send wants to block and / or receive data */
struct g2h_fence {
u32 *response_buffer;
u32 seqno;
u32 response_data;
u16 response_len;
u16 error;
u16 hint;
u16 reason;
bool retry;
bool fail;
bool done;
};
static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
{
g2h_fence->response_buffer = response_buffer;
g2h_fence->response_data = 0;
g2h_fence->response_len = 0;
g2h_fence->fail = false;
g2h_fence->retry = false;
g2h_fence->done = false;
g2h_fence->seqno = ~0x0;
}
static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
{
return g2h_fence->seqno == ~0x0;
}
static struct xe_guc *
ct_to_guc(struct xe_guc_ct *ct)
{
return container_of(ct, struct xe_guc, ct);
}
static struct xe_gt *
ct_to_gt(struct xe_guc_ct *ct)
{
return container_of(ct, struct xe_gt, uc.guc.ct);
}
static struct xe_device *
ct_to_xe(struct xe_guc_ct *ct)
{
return gt_to_xe(ct_to_gt(ct));
}
/**
* DOC: GuC CTB Blob
*
* We allocate single blob to hold both CTB descriptors and buffers:
*
* +--------+-----------------------------------------------+------+
* | offset | contents | size |
* +========+===============================================+======+
* | 0x0000 | H2G CTB Descriptor (send) | |
* +--------+-----------------------------------------------+ 4K |
* | 0x0800 | G2H CTB Descriptor (g2h) | |
* +--------+-----------------------------------------------+------+
* | 0x1000 | H2G CT Buffer (send) | n*4K |
* | | | |
* +--------+-----------------------------------------------+------+
* | 0x1000 | G2H CT Buffer (g2h) | m*4K |
* | + n*4K | | |
* +--------+-----------------------------------------------+------+
*
* Size of each ``CT Buffer`` must be multiple of 4K.
* We don't expect too many messages in flight at any time, unless we are
* using the GuC submission. In that case each request requires a minimum
* 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
* enough space to avoid backpressure on the driver. We increase the size
* of the receive buffer (relative to the send) to ensure a G2H response
* CTB has a landing spot.
*
* In addition to submissions, the G2H buffer needs to be able to hold
* enough space for recoverable page fault notifications. The number of
* page faults is interrupt driven and can be as much as the number of
* compute resources available. However, most of the actual work for these
* is in a separate page fault worker thread. Therefore we only need to
* make sure the queue has enough space to handle all of the submissions
* and responses and an extra buffer for incoming page faults.
*/
#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
#define CTB_H2G_BUFFER_SIZE (SZ_4K)
#define CTB_G2H_BUFFER_SIZE (SZ_128K)
#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2)
/**
* xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
* CT command queue
* @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
*
* Observation is that a 4KiB buffer full of commands takes a little over a
* second to process. Use that to calculate maximum time to process a full CT
* command queue.
*
* Return: Maximum time to process a full CT queue in jiffies.
*/
long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
{
BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
}
static size_t guc_ct_size(void)
{
return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
CTB_G2H_BUFFER_SIZE;
}
static void guc_ct_fini(struct drm_device *drm, void *arg)
{
struct xe_guc_ct *ct = arg;
destroy_workqueue(ct->g2h_wq);
xa_destroy(&ct->fence_lookup);
}
static void receive_g2h(struct xe_guc_ct *ct);
static void g2h_worker_func(struct work_struct *w);
static void safe_mode_worker_func(struct work_struct *w);
static void primelockdep(struct xe_guc_ct *ct)
{
if (!IS_ENABLED(CONFIG_LOCKDEP))
return;
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&ct->lock);
fs_reclaim_release(GFP_KERNEL);
}
int xe_guc_ct_init(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_bo *bo;
int err;
xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
if (!ct->g2h_wq)
return -ENOMEM;
spin_lock_init(&ct->fast_lock);
xa_init(&ct->fence_lookup);
INIT_WORK(&ct->g2h_worker, g2h_worker_func);
INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
init_waitqueue_head(&ct->wq);
init_waitqueue_head(&ct->g2h_fence_wq);
err = drmm_mutex_init(&xe->drm, &ct->lock);
if (err)
return err;
primelockdep(ct);
bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
XE_BO_FLAG_SYSTEM |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE);
if (IS_ERR(bo))
return PTR_ERR(bo);
ct->bo = bo;
err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
if (err)
return err;
xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
ct->state = XE_GUC_CT_STATE_DISABLED;
return 0;
}
#define desc_read(xe_, guc_ctb__, field_) \
xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \
struct guc_ct_buffer_desc, field_)
#define desc_write(xe_, guc_ctb__, field_, val_) \
xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \
struct guc_ct_buffer_desc, field_, val_)
static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
struct iosys_map *map)
{
h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
h2g->info.resv_space = 0;
h2g->info.tail = 0;
h2g->info.head = 0;
h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
h2g->info.size) -
h2g->info.resv_space;
h2g->info.broken = false;
h2g->desc = *map;
xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
}
static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
struct iosys_map *map)
{
g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
g2h->info.head = 0;
g2h->info.tail = 0;
g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
g2h->info.size) -
g2h->info.resv_space;
g2h->info.broken = false;
g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
CTB_H2G_BUFFER_SIZE);
}
static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
{
struct xe_guc *guc = ct_to_guc(ct);
u32 desc_addr, ctb_addr, size;
int err;
desc_addr = xe_bo_ggtt_addr(ct->bo);
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
size = ct->ctbs.h2g.info.size * sizeof(u32);
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
desc_addr);
if (err)
return err;
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
ctb_addr);
if (err)
return err;
return xe_guc_self_cfg32(guc,
GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
size);
}
static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
{
struct xe_guc *guc = ct_to_guc(ct);
u32 desc_addr, ctb_addr, size;
int err;
desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
CTB_H2G_BUFFER_SIZE;
size = ct->ctbs.g2h.info.size * sizeof(u32);
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
desc_addr);
if (err)
return err;
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
ctb_addr);
if (err)
return err;
return xe_guc_self_cfg32(guc,
GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
size);
}
static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
{
u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
GUC_ACTION_HOST2GUC_CONTROL_CTB),
FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
enable ? GUC_CTB_CONTROL_ENABLE :
GUC_CTB_CONTROL_DISABLE),
};
int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
return ret > 0 ? -EPROTO : ret;
}
static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
enum xe_guc_ct_state state)
{
mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */
spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */
xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
state == XE_GUC_CT_STATE_STOPPED);
if (ct->g2h_outstanding)
xe_pm_runtime_put(ct_to_xe(ct));
ct->g2h_outstanding = 0;
ct->state = state;
spin_unlock_irq(&ct->fast_lock);
/*
* Lockdep doesn't like this under the fast lock and he destroy only
* needs to be serialized with the send path which ct lock provides.
*/
xa_destroy(&ct->fence_lookup);
mutex_unlock(&ct->lock);
}
static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
{
return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
}
static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
{
if (!ct_needs_safe_mode(ct))
return false;
queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
return true;
}
static void safe_mode_worker_func(struct work_struct *w)
{
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
receive_g2h(ct);
if (!ct_restart_safe_mode_worker(ct))
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
}
static void ct_enter_safe_mode(struct xe_guc_ct *ct)
{
if (ct_restart_safe_mode_worker(ct))
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
}
static void ct_exit_safe_mode(struct xe_guc_ct *ct)
{
if (cancel_delayed_work_sync(&ct->safe_mode_worker))
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
}
int xe_guc_ct_enable(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
int err;
xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
err = guc_ct_ctb_h2g_register(ct);
if (err)
goto err_out;
err = guc_ct_ctb_g2h_register(ct);
if (err)
goto err_out;
err = guc_ct_control_toggle(ct, true);
if (err)
goto err_out;
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
smp_mb();
wake_up_all(&ct->wq);
xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
if (ct_needs_safe_mode(ct))
ct_enter_safe_mode(ct);
return 0;
err_out:
xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
return err;
}
static void stop_g2h_handler(struct xe_guc_ct *ct)
{
cancel_work_sync(&ct->g2h_worker);
}
/**
* xe_guc_ct_disable - Set GuC to disabled state
* @ct: the &xe_guc_ct
*
* Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
* in this transition.
*/
void xe_guc_ct_disable(struct xe_guc_ct *ct)
{
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
ct_exit_safe_mode(ct);
stop_g2h_handler(ct);
}
/**
* xe_guc_ct_stop - Set GuC to stopped state
* @ct: the &xe_guc_ct
*
* Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
*/
void xe_guc_ct_stop(struct xe_guc_ct *ct)
{
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
stop_g2h_handler(ct);
}
static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
{
struct guc_ctb *h2g = &ct->ctbs.h2g;
lockdep_assert_held(&ct->lock);
if (cmd_len > h2g->info.space) {
h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
h2g->info.size) -
h2g->info.resv_space;
if (cmd_len > h2g->info.space)
return false;
}
return true;
}
static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
{
if (!g2h_len)
return true;
lockdep_assert_held(&ct->fast_lock);
return ct->ctbs.g2h.info.space > g2h_len;
}
static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
{
lockdep_assert_held(&ct->lock);
if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
return -EBUSY;
return 0;
}
static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
{
lockdep_assert_held(&ct->lock);
ct->ctbs.h2g.info.space -= cmd_len;
}
static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
{
xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
(g2h_len && num_g2h));
if (g2h_len) {
lockdep_assert_held(&ct->fast_lock);
if (!ct->g2h_outstanding)
xe_pm_runtime_get_noresume(ct_to_xe(ct));
ct->ctbs.g2h.info.space -= g2h_len;
ct->g2h_outstanding += num_g2h;
}
}
static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
lockdep_assert_held(&ct->fast_lock);
xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding);
ct->ctbs.g2h.info.space += g2h_len;
if (!--ct->g2h_outstanding)
xe_pm_runtime_put(ct_to_xe(ct));
}
static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
spin_lock_irq(&ct->fast_lock);
__g2h_release_space(ct, g2h_len);
spin_unlock_irq(&ct->fast_lock);
}
#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 ct_fence_value, bool want_response)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
struct guc_ctb *h2g = &ct->ctbs.h2g;
u32 cmd[H2G_CT_HEADERS];
u32 tail = h2g->info.tail;
u32 full_len;
struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
tail * sizeof(u32));
full_len = len + GUC_CTB_HDR_LEN;
lockdep_assert_held(&ct->lock);
xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
xe_gt_assert(gt, tail <= h2g->info.size);
/* Command will wrap, zero fill (NOPs), return and check credits again */
if (tail + full_len > h2g->info.size) {
xe_map_memset(xe, &map, 0, 0,
(h2g->info.size - tail) * sizeof(u32));
h2g_reserve_space(ct, (h2g->info.size - tail));
h2g->info.tail = 0;
desc_write(xe, h2g, tail, h2g->info.tail);
return -EAGAIN;
}
/*
* dw0: CT header (including fence)
* dw1: HXG header (including action code)
* dw2+: action data
*/
cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
if (want_response) {
cmd[1] =
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
} else {
cmd[1] =
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
}
/* H2G header in cmd[1] replaces action[0] so: */
--len;
++action;
/* Write H2G ensuring visable before descriptor update */
xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
xe_device_wmb(xe);
/* Update local copies */
h2g->info.tail = (tail + full_len) % h2g->info.size;
h2g_reserve_space(ct, full_len);
/* Update descriptor */
desc_write(xe, h2g, tail, h2g->info.tail);
trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
desc_read(xe, h2g, head), h2g->info.tail);
return 0;
}
/*
* The CT protocol accepts a 16 bits fence. This field is fully owned by the
* driver, the GuC will just copy it to the reply message. Since we need to
* be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
* we use one bit of the seqno as an indicator for that and a rolling counter
* for the remaining 15 bits.
*/
#define CT_SEQNO_MASK GENMASK(14, 0)
#define CT_SEQNO_UNTRACKED BIT(15)
static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
{
u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
if (!is_g2h_fence)
seqno |= CT_SEQNO_UNTRACKED;
return seqno;
}
static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
u32 len, u32 g2h_len, u32 num_g2h,
struct g2h_fence *g2h_fence)
{
struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
u16 seqno;
int ret;
xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
xe_gt_assert(gt, !g2h_len || !g2h_fence);
xe_gt_assert(gt, !num_g2h || !g2h_fence);
xe_gt_assert(gt, !g2h_len || num_g2h);
xe_gt_assert(gt, g2h_len || !num_g2h);
lockdep_assert_held(&ct->lock);
if (unlikely(ct->ctbs.h2g.info.broken)) {
ret = -EPIPE;
goto out;
}
if (ct->state == XE_GUC_CT_STATE_DISABLED) {
ret = -ENODEV;
goto out;
}
if (ct->state == XE_GUC_CT_STATE_STOPPED) {
ret = -ECANCELED;
goto out;
}
xe_gt_assert(gt, xe_guc_ct_enabled(ct));
if (g2h_fence) {
g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
num_g2h = 1;
if (g2h_fence_needs_alloc(g2h_fence)) {
g2h_fence->seqno = next_ct_seqno(ct, true);
ret = xa_err(xa_store(&ct->fence_lookup,
g2h_fence->seqno, g2h_fence,
GFP_ATOMIC));
if (ret)
goto out;
}
seqno = g2h_fence->seqno;
} else {
seqno = next_ct_seqno(ct, false);
}
if (g2h_len)
spin_lock_irq(&ct->fast_lock);
retry:
ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
if (unlikely(ret))
goto out_unlock;
ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
if (unlikely(ret)) {
if (ret == -EAGAIN)
goto retry;
goto out_unlock;
}
__g2h_reserve_space(ct, g2h_len, num_g2h);
xe_guc_notify(ct_to_guc(ct));
out_unlock:
if (g2h_len)
spin_unlock_irq(&ct->fast_lock);
out:
return ret;
}
static void kick_reset(struct xe_guc_ct *ct)
{
xe_gt_reset_async(ct_to_gt(ct));
}
static int dequeue_one_g2h(struct xe_guc_ct *ct);
static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h,
struct g2h_fence *g2h_fence)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
struct drm_printer p = xe_gt_info_printer(gt);
unsigned int sleep_period_ms = 1;
int ret;
xe_gt_assert(gt, !g2h_len || !g2h_fence);
lockdep_assert_held(&ct->lock);
xe_device_assert_mem_access(ct_to_xe(ct));
try_again:
ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
g2h_fence);
/*
* We wait to try to restore credits for about 1 second before bailing.
* In the case of H2G credits we have no choice but just to wait for the
* GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
* the case of G2H we process any G2H in the channel, hopefully freeing
* credits as we consume the G2H messages.
*/
if (unlikely(ret == -EBUSY &&
!h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
struct guc_ctb *h2g = &ct->ctbs.h2g;
if (sleep_period_ms == 1024)
goto broken;
trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
h2g->info.size,
h2g->info.space,
len + GUC_CTB_HDR_LEN);
msleep(sleep_period_ms);
sleep_period_ms <<= 1;
goto try_again;
} else if (unlikely(ret == -EBUSY)) {
struct xe_device *xe = ct_to_xe(ct);
struct guc_ctb *g2h = &ct->ctbs.g2h;
trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
desc_read(xe, g2h, tail),
g2h->info.size,
g2h->info.space,
g2h_fence ?
GUC_CTB_HXG_MSG_MAX_LEN :
g2h_len);
#define g2h_avail(ct) \
(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
g2h_avail(ct), HZ))
goto broken;
#undef g2h_avail
if (dequeue_one_g2h(ct) < 0)
goto broken;
goto try_again;
}
return ret;
broken:
xe_gt_err(gt, "No forward process on H2G, reset required\n");
xe_guc_ct_print(ct, &p, true);
ct->ctbs.h2g.info.broken = true;
return -EDEADLK;
}
static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
{
int ret;
xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
mutex_lock(&ct->lock);
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
mutex_unlock(&ct->lock);
return ret;
}
int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h)
{
int ret;
ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h)
{
int ret;
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
{
int ret;
lockdep_assert_held(&ct->lock);
ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
/*
* Check if a GT reset is in progress or will occur and if GT reset brought the
* CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
*/
static bool retry_failure(struct xe_guc_ct *ct, int ret)
{
if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
return false;
#define ct_alive(ct) \
(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
!ct->ctbs.g2h.info.broken)
if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
return false;
#undef ct_alive
return true;
}
static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 *response_buffer, bool no_fail)
{
struct xe_gt *gt = ct_to_gt(ct);
struct g2h_fence g2h_fence;
int ret = 0;
/*
* We use a fence to implement blocking sends / receiving response data.
* The seqno of the fence is sent in the H2G, returned in the G2H, and
* an xarray is used as storage media with the seqno being to key.
* Fields in the fence hold success, failure, retry status and the
* response data. Safe to allocate on the stack as the xarray is the
* only reference and it cannot be present after this function exits.
*/
retry:
g2h_fence_init(&g2h_fence, response_buffer);
retry_same_fence:
ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
if (unlikely(ret == -ENOMEM)) {
/* Retry allocation /w GFP_KERNEL */
ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
&g2h_fence, GFP_KERNEL));
if (ret)
return ret;
goto retry_same_fence;
} else if (unlikely(ret)) {
if (ret == -EDEADLK)
kick_reset(ct);
if (no_fail && retry_failure(ct, ret))
goto retry_same_fence;
if (!g2h_fence_needs_alloc(&g2h_fence))
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
return ret;
}
ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
if (!ret) {
LNL_FLUSH_WORK(&ct->g2h_worker);
if (g2h_fence.done) {
xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
g2h_fence.seqno, action[0]);
ret = 1;
}
}
/*
* Ensure we serialize with completion side to prevent UAF with fence going out of scope on
* the stack, since we have no clue if it will fire after the timeout before we can erase
* from the xa. Also we have some dependent loads and stores below for which we need the
* correct ordering, and we lack the needed barriers.
*/
mutex_lock(&ct->lock);
if (!ret) {
xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
mutex_unlock(&ct->lock);
return -ETIME;
}
if (g2h_fence.retry) {
xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
action[0], g2h_fence.reason);
mutex_unlock(&ct->lock);
goto retry;
}
if (g2h_fence.fail) {
xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
action[0], g2h_fence.error, g2h_fence.hint);
ret = -EIO;
}
if (ret > 0)
ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
mutex_unlock(&ct->lock);
return ret;
}
/**
* xe_guc_ct_send_recv - Send and receive HXG to the GuC
* @ct: the &xe_guc_ct
* @action: the dword array with `HXG Request`_ message (can't be NULL)
* @len: length of the `HXG Request`_ message (in dwords, can't be 0)
* @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
*
* Send a `HXG Request`_ message to the GuC over CT communication channel and
* blocks until GuC replies with a `HXG Response`_ message.
*
* For non-blocking communication with GuC use xe_guc_ct_send().
*
* Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
*
* Return: response length (in dwords) if &response_buffer was not NULL, or
* DATA0 from `HXG Response`_ if &response_buffer was NULL, or
* a negative error code on failure.
*/
int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 *response_buffer)
{
KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
return guc_ct_send_recv(ct, action, len, response_buffer, false);
}
int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
u32 len, u32 *response_buffer)
{
return guc_ct_send_recv(ct, action, len, response_buffer, true);
}
static u32 *msg_to_hxg(u32 *msg)
{
return msg + GUC_CTB_MSG_MIN_LEN;
}
static u32 msg_len_to_hxg_len(u32 len)
{
return len - GUC_CTB_MSG_MIN_LEN;
}
static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
u32 *hxg = msg_to_hxg(msg);
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
lockdep_assert_held(&ct->lock);
switch (action) {
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
g2h_release_space(ct, len);
}
return 0;
}
static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_gt *gt = ct_to_gt(ct);
u32 *hxg = msg_to_hxg(msg);
u32 hxg_len = msg_len_to_hxg_len(len);
u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
struct g2h_fence *g2h_fence;
lockdep_assert_held(&ct->lock);
/*
* Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
* Those messages should never fail, so if we do get an error back it
* means we're likely doing an illegal operation and the GuC is
* rejecting it. We have no way to inform the code that submitted the
* H2G that the message was rejected, so we need to escalate the
* failure to trigger a reset.
*/
if (fence & CT_SEQNO_UNTRACKED) {
if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
fence,
FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
else
xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
type, fence);
return -EPROTO;
}
g2h_fence = xa_erase(&ct->fence_lookup, fence);
if (unlikely(!g2h_fence)) {
/* Don't tear down channel, as send could've timed out */
xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
return 0;
}
xe_gt_assert(gt, fence == g2h_fence->seqno);
if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
g2h_fence->fail = true;
g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
g2h_fence->retry = true;
g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
} else if (g2h_fence->response_buffer) {
g2h_fence->response_len = hxg_len;
memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
} else {
g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
}
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
g2h_fence->done = true;
smp_mb();
wake_up_all(&ct->g2h_fence_wq);
return 0;
}
static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_gt *gt = ct_to_gt(ct);
u32 *hxg = msg_to_hxg(msg);
u32 origin, type;
int ret;
lockdep_assert_held(&ct->lock);
origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
origin);
ct->ctbs.g2h.info.broken = true;
return -EPROTO;
}
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
switch (type) {
case GUC_HXG_TYPE_EVENT:
ret = parse_g2h_event(ct, msg, len);
break;
case GUC_HXG_TYPE_RESPONSE_SUCCESS:
case GUC_HXG_TYPE_RESPONSE_FAILURE:
case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
ret = parse_g2h_response(ct, msg, len);
break;
default:
xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
type);
ct->ctbs.g2h.info.broken = true;
ret = -EOPNOTSUPP;
}
return ret;
}
static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_guc *guc = ct_to_guc(ct);
struct xe_gt *gt = ct_to_gt(ct);
u32 hxg_len = msg_len_to_hxg_len(len);
u32 *hxg = msg_to_hxg(msg);
u32 action, adj_len;
u32 *payload;
int ret = 0;
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
return 0;
action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
switch (action) {
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
ret = xe_guc_sched_done_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
/* Selftest only at the moment */
break;
case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
/* FIXME: Handle this */
break;
case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
ret = xe_guc_access_counter_notify_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
break;
case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
break;
case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
break;
case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
break;
default:
xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
}
if (ret)
xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
action, ERR_PTR(ret));
return 0;
}
static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
struct guc_ctb *g2h = &ct->ctbs.g2h;
u32 tail, head, len;
s32 avail;
u32 action;
u32 *hxg;
xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
lockdep_assert_held(&ct->fast_lock);
if (ct->state == XE_GUC_CT_STATE_DISABLED)
return -ENODEV;
if (ct->state == XE_GUC_CT_STATE_STOPPED)
return -ECANCELED;
if (g2h->info.broken)
return -EPIPE;
xe_gt_assert(gt, xe_guc_ct_enabled(ct));
/* Calculate DW available to read */
tail = desc_read(xe, g2h, tail);
avail = tail - g2h->info.head;
if (unlikely(avail == 0))
return 0;
if (avail < 0)
avail += g2h->info.size;
/* Read header */
xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
sizeof(u32));
len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
if (len > avail) {
xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
avail, len);
g2h->info.broken = true;
return -EPROTO;
}
head = (g2h->info.head + 1) % g2h->info.size;
avail = len - 1;
/* Read G2H message */
if (avail + head > g2h->info.size) {
u32 avail_til_wrap = g2h->info.size - head;
xe_map_memcpy_from(xe, msg + 1,
&g2h->cmds, sizeof(u32) * head,
avail_til_wrap * sizeof(u32));
xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
&g2h->cmds, 0,
(avail - avail_til_wrap) * sizeof(u32));
} else {
xe_map_memcpy_from(xe, msg + 1,
&g2h->cmds, sizeof(u32) * head,
avail * sizeof(u32));
}
hxg = msg_to_hxg(msg);
action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
if (fast_path) {
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
return 0;
switch (action) {
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
break; /* Process these in fast-path */
default:
return 0;
}
}
/* Update local / descriptor header */
g2h->info.head = (head + avail) % g2h->info.size;
desc_write(xe, g2h, head, g2h->info.head);
trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
action, len, g2h->info.head, tail);
return len;
}
static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_gt *gt = ct_to_gt(ct);
struct xe_guc *guc = ct_to_guc(ct);
u32 hxg_len = msg_len_to_hxg_len(len);
u32 *hxg = msg_to_hxg(msg);
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
int ret = 0;
switch (action) {
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
__g2h_release_space(ct, len);
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
adj_len);
break;
default:
xe_gt_warn(gt, "NOT_POSSIBLE");
}
if (ret)
xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
action, ERR_PTR(ret));
}
/**
* xe_guc_ct_fast_path - process critical G2H in the IRQ handler
* @ct: GuC CT object
*
* Anything related to page faults is critical for performance, process these
* critical G2H in the IRQ. This is safe as these handlers either just wake up
* waiters or queue another worker.
*/
void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
bool ongoing;
int len;
ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
return;
spin_lock(&ct->fast_lock);
do {
len = g2h_read(ct, ct->fast_msg, true);
if (len > 0)
g2h_fast_path(ct, ct->fast_msg, len);
} while (len > 0);
spin_unlock(&ct->fast_lock);
if (ongoing)
xe_pm_runtime_put(xe);
}
/* Returns less than zero on error, 0 on done, 1 on more available */
static int dequeue_one_g2h(struct xe_guc_ct *ct)
{
int len;
int ret;
lockdep_assert_held(&ct->lock);
spin_lock_irq(&ct->fast_lock);
len = g2h_read(ct, ct->msg, false);
spin_unlock_irq(&ct->fast_lock);
if (len <= 0)
return len;
ret = parse_g2h_msg(ct, ct->msg, len);
if (unlikely(ret < 0))
return ret;
ret = process_g2h_msg(ct, ct->msg, len);
if (unlikely(ret < 0))
return ret;
return 1;
}
static void receive_g2h(struct xe_guc_ct *ct)
{
struct xe_gt *gt = ct_to_gt(ct);
bool ongoing;
int ret;
/*
* Normal users must always hold mem_access.ref around CT calls. However
* during the runtime pm callbacks we rely on CT to talk to the GuC, but
* at this stage we can't rely on mem_access.ref and even the
* callback_task will be different than current. For such cases we just
* need to ensure we always process the responses from any blocking
* ct_send requests or where we otherwise expect some response when
* initiated from those callbacks (which will need to wait for the below
* dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if
* the device has suspended to the point that the CT communication has
* been disabled.
*
* If we are inside the runtime pm callback, we can be the only task
* still issuing CT requests (since that requires having the
* mem_access.ref). It seems like it might in theory be possible to
* receive unsolicited events from the GuC just as we are
* suspending-resuming, but those will currently anyway be lost when
* eventually exiting from suspend, hence no need to wake up the device
* here. If we ever need something stronger than get_if_ongoing() then
* we need to be careful with blocking the pm callbacks from getting CT
* responses, if the worker here is blocked on those callbacks
* completing, creating a deadlock.
*/
ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
return;
do {
mutex_lock(&ct->lock);
ret = dequeue_one_g2h(ct);
mutex_unlock(&ct->lock);
if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
struct drm_printer p = xe_gt_info_printer(gt);
xe_guc_ct_print(ct, &p, false);
kick_reset(ct);
}
} while (ret == 1);
if (ongoing)
xe_pm_runtime_put(ct_to_xe(ct));
}
static void g2h_worker_func(struct work_struct *w)
{
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
receive_g2h(ct);
}
static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
struct guc_ctb_snapshot *snapshot,
bool atomic)
{
u32 head, tail;
xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
sizeof(struct guc_ct_buffer_desc));
memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!snapshot->cmds) {
drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
return;
}
head = snapshot->desc.head;
tail = snapshot->desc.tail;
if (head != tail) {
struct iosys_map map =
IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
while (head != tail) {
snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
++head;
if (head == ctb->info.size) {
head = 0;
map = ctb->cmds;
} else {
iosys_map_incr(&map, sizeof(u32));
}
}
}
}
static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
struct drm_printer *p)
{
u32 head, tail;
drm_printf(p, "\tsize: %d\n", snapshot->info.size);
drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
drm_printf(p, "\thead: %d\n", snapshot->info.head);
drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
drm_printf(p, "\tspace: %d\n", snapshot->info.space);
drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
if (!snapshot->cmds)
return;
head = snapshot->desc.head;
tail = snapshot->desc.tail;
while (head != tail) {
drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
snapshot->cmds[head]);
++head;
if (head == snapshot->info.size)
head = 0;
}
}
static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
{
kfree(snapshot->cmds);
}
/**
* xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
* @ct: GuC CT object.
* @atomic: Boolean to indicate if this is called from atomic context like
* reset or CTB handler or from some regular path like debugfs.
*
* This can be printed out in a later stage like during dev_coredump
* analysis.
*
* Returns: a GuC CT snapshot object that must be freed by the caller
* by using `xe_guc_ct_snapshot_free`.
*/
struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
bool atomic)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_guc_ct_snapshot *snapshot;
snapshot = kzalloc(sizeof(*snapshot),
atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!snapshot) {
drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
return NULL;
}
if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
snapshot->ct_enabled = true;
snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
&snapshot->h2g, atomic);
guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
&snapshot->g2h, atomic);
}
return snapshot;
}
/**
* xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
* @snapshot: GuC CT snapshot object.
* @p: drm_printer where it will be printed out.
*
* This function prints out a given GuC CT snapshot object.
*/
void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
struct drm_printer *p)
{
if (!snapshot)
return;
if (snapshot->ct_enabled) {
drm_puts(p, "H2G CTB (all sizes in DW):\n");
guc_ctb_snapshot_print(&snapshot->h2g, p);
drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
guc_ctb_snapshot_print(&snapshot->g2h, p);
drm_printf(p, "\tg2h outstanding: %d\n",
snapshot->g2h_outstanding);
} else {
drm_puts(p, "CT disabled\n");
}
}
/**
* xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
* @snapshot: GuC CT snapshot object.
*
* This function free all the memory that needed to be allocated at capture
* time.
*/
void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
{
if (!snapshot)
return;
guc_ctb_snapshot_free(&snapshot->h2g);
guc_ctb_snapshot_free(&snapshot->g2h);
kfree(snapshot);
}
/**
* xe_guc_ct_print - GuC CT Print.
* @ct: GuC CT.
* @p: drm_printer where it will be printed out.
* @atomic: Boolean to indicate if this is called from atomic context like
* reset or CTB handler or from some regular path like debugfs.
*
* This function quickly capture a snapshot and immediately print it out.
*/
void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
{
struct xe_guc_ct_snapshot *snapshot;
snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
xe_guc_ct_snapshot_print(snapshot, p);
xe_guc_ct_snapshot_free(snapshot);
}