| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kprobes.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/kdebug.h> |
| #include <linux/sched.h> |
| #include <linux/uaccess.h> |
| #include <asm/cacheflush.h> |
| #include <asm/current.h> |
| #include <asm/disasm.h> |
| |
| #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \ |
| (unsigned long)current_thread_info() + THREAD_SIZE - (addr)) |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| /* Attempt to probe at unaligned address */ |
| if ((unsigned long)p->addr & 0x01) |
| return -EINVAL; |
| |
| /* Address should not be in exception handling code */ |
| |
| p->ainsn.is_short = is_short_instr((unsigned long)p->addr); |
| p->opcode = *p->addr; |
| |
| return 0; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = UNIMP_S_INSTRUCTION; |
| |
| flush_icache_range((unsigned long)p->addr, |
| (unsigned long)p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| |
| flush_icache_range((unsigned long)p->addr, |
| (unsigned long)p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| arch_disarm_kprobe(p); |
| |
| /* Can we remove the kprobe in the middle of kprobe handling? */ |
| if (p->ainsn.t1_addr) { |
| *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; |
| |
| flush_icache_range((unsigned long)p->ainsn.t1_addr, |
| (unsigned long)p->ainsn.t1_addr + |
| sizeof(kprobe_opcode_t)); |
| |
| p->ainsn.t1_addr = NULL; |
| } |
| |
| if (p->ainsn.t2_addr) { |
| *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; |
| |
| flush_icache_range((unsigned long)p->ainsn.t2_addr, |
| (unsigned long)p->ainsn.t2_addr + |
| sizeof(kprobe_opcode_t)); |
| |
| p->ainsn.t2_addr = NULL; |
| } |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| |
| static inline void __kprobes set_current_kprobe(struct kprobe *p) |
| { |
| __this_cpu_write(current_kprobe, p); |
| } |
| |
| static void __kprobes resume_execution(struct kprobe *p, unsigned long addr, |
| struct pt_regs *regs) |
| { |
| /* Remove the trap instructions inserted for single step and |
| * restore the original instructions |
| */ |
| if (p->ainsn.t1_addr) { |
| *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; |
| |
| flush_icache_range((unsigned long)p->ainsn.t1_addr, |
| (unsigned long)p->ainsn.t1_addr + |
| sizeof(kprobe_opcode_t)); |
| |
| p->ainsn.t1_addr = NULL; |
| } |
| |
| if (p->ainsn.t2_addr) { |
| *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; |
| |
| flush_icache_range((unsigned long)p->ainsn.t2_addr, |
| (unsigned long)p->ainsn.t2_addr + |
| sizeof(kprobe_opcode_t)); |
| |
| p->ainsn.t2_addr = NULL; |
| } |
| |
| return; |
| } |
| |
| static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long next_pc; |
| unsigned long tgt_if_br = 0; |
| int is_branch; |
| unsigned long bta; |
| |
| /* Copy the opcode back to the kprobe location and execute the |
| * instruction. Because of this we will not be able to get into the |
| * same kprobe until this kprobe is done |
| */ |
| *(p->addr) = p->opcode; |
| |
| flush_icache_range((unsigned long)p->addr, |
| (unsigned long)p->addr + sizeof(kprobe_opcode_t)); |
| |
| /* Now we insert the trap at the next location after this instruction to |
| * single step. If it is a branch we insert the trap at possible branch |
| * targets |
| */ |
| |
| bta = regs->bta; |
| |
| if (regs->status32 & 0x40) { |
| /* We are in a delay slot with the branch taken */ |
| |
| next_pc = bta & ~0x01; |
| |
| if (!p->ainsn.is_short) { |
| if (bta & 0x01) |
| regs->blink += 2; |
| else { |
| /* Branch not taken */ |
| next_pc += 2; |
| |
| /* next pc is taken from bta after executing the |
| * delay slot instruction |
| */ |
| regs->bta += 2; |
| } |
| } |
| |
| is_branch = 0; |
| } else |
| is_branch = |
| disasm_next_pc((unsigned long)p->addr, regs, |
| (struct callee_regs *) current->thread.callee_reg, |
| &next_pc, &tgt_if_br); |
| |
| p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc; |
| p->ainsn.t1_opcode = *(p->ainsn.t1_addr); |
| *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION; |
| |
| flush_icache_range((unsigned long)p->ainsn.t1_addr, |
| (unsigned long)p->ainsn.t1_addr + |
| sizeof(kprobe_opcode_t)); |
| |
| if (is_branch) { |
| p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br; |
| p->ainsn.t2_opcode = *(p->ainsn.t2_addr); |
| *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION; |
| |
| flush_icache_range((unsigned long)p->ainsn.t2_addr, |
| (unsigned long)p->ainsn.t2_addr + |
| sizeof(kprobe_opcode_t)); |
| } |
| } |
| |
| static int |
| __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| struct kprobe_ctlblk *kcb; |
| |
| preempt_disable(); |
| |
| kcb = get_kprobe_ctlblk(); |
| p = get_kprobe((unsigned long *)addr); |
| |
| if (p) { |
| /* |
| * We have reentered the kprobe_handler, since another kprobe |
| * was hit while within the handler, we save the original |
| * kprobes and single step on the instruction of the new probe |
| * without calling any user handlers to avoid recursive |
| * kprobes. |
| */ |
| if (kprobe_running()) { |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p); |
| kprobes_inc_nmissed_count(p); |
| setup_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } |
| |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* If we have no pre-handler or it returned 0, we continue with |
| * normal processing. If we have a pre-handler and it returned |
| * non-zero - which means user handler setup registers to exit |
| * to another instruction, we must skip the single stepping. |
| */ |
| if (!p->pre_handler || !p->pre_handler(p, regs)) { |
| setup_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| } else { |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } |
| |
| return 1; |
| } |
| |
| /* no_kprobe: */ |
| preempt_enable_no_resched(); |
| return 0; |
| } |
| |
| static int |
| __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| resume_execution(cur, addr, regs); |
| |
| /* Rearm the kprobe */ |
| arch_arm_kprobe(cur); |
| |
| /* |
| * When we return from trap instruction we go to the next instruction |
| * We restored the actual instruction in resume_exectuiont and we to |
| * return to the same address and execute it |
| */ |
| regs->ret = addr; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| |
| reset_current_kprobe(); |
| |
| out: |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| /* |
| * Fault can be for the instruction being single stepped or for the |
| * pre/post handlers in the module. |
| * This is applicable for applications like user probes, where we have the |
| * probe in user space and the handlers in the kernel |
| */ |
| |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single stepped |
| * caused the fault. We reset the current kprobe and allow the |
| * exception handler as if it is regular exception. In our |
| * case it doesn't matter because the system will be halted |
| */ |
| resume_execution(cur, (unsigned long)cur->addr, regs); |
| |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| |
| preempt_enable_no_resched(); |
| break; |
| |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We are here because the instructions in the pre/post handler |
| * caused the fault. |
| */ |
| |
| /* |
| * In case the user-specified fault handler returned zero, |
| * try to fix up. |
| */ |
| if (fixup_exception(regs)) |
| return 1; |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = data; |
| unsigned long addr = args->err; |
| int ret = NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_IERR: |
| if (arc_kprobe_handler(addr, args->regs)) |
| return NOTIFY_STOP; |
| break; |
| |
| case DIE_TRAP: |
| if (arc_post_kprobe_handler(addr, args->regs)) |
| return NOTIFY_STOP; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void __used kretprobe_trampoline_holder(void) |
| { |
| __asm__ __volatile__(".global __kretprobe_trampoline\n" |
| "__kretprobe_trampoline:\n" |
| "nop\n"); |
| } |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| |
| ri->ret_addr = (kprobe_opcode_t *) regs->blink; |
| ri->fp = NULL; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->blink = (unsigned long)&__kretprobe_trampoline; |
| } |
| |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| regs->ret = __kretprobe_trampoline_handler(regs, NULL); |
| |
| /* By returning a non zero value, we are telling the kprobe handler |
| * that we don't want the post_handler to run |
| */ |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &__kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| /* Registering the trampoline code for the kret probe */ |
| return register_kprobe(&trampoline_p); |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline) |
| return 1; |
| |
| return 0; |
| } |
| |
| void trap_is_kprobe(unsigned long address, struct pt_regs *regs) |
| { |
| notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP); |
| } |