blob: e1a1735c00c1c66a707a546e0cc04689793442af [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Huawei HiNIC PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/atomic.h>
#include <linux/semaphore.h>
#include <linux/errno.h>
#include <linux/vmalloc.h>
#include <linux/err.h>
#include <asm/byteorder.h>
#include "hinic_hw_if.h"
#include "hinic_hw_wqe.h"
#include "hinic_hw_wq.h"
#include "hinic_hw_cmdq.h"
#define WQS_BLOCKS_PER_PAGE 4
#define WQ_BLOCK_SIZE 4096
#define WQS_PAGE_SIZE (WQS_BLOCKS_PER_PAGE * WQ_BLOCK_SIZE)
#define WQS_MAX_NUM_BLOCKS 128
#define WQS_FREE_BLOCKS_SIZE(wqs) (WQS_MAX_NUM_BLOCKS * \
sizeof((wqs)->free_blocks[0]))
#define WQ_SIZE(wq) ((wq)->q_depth * (wq)->wqebb_size)
#define WQ_PAGE_ADDR_SIZE sizeof(u64)
#define WQ_MAX_PAGES (WQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
#define CMDQ_BLOCK_SIZE 512
#define CMDQ_PAGE_SIZE 4096
#define CMDQ_WQ_MAX_PAGES (CMDQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
#define WQ_BASE_VADDR(wqs, wq) \
((void *)((wqs)->page_vaddr[(wq)->page_idx]) \
+ (wq)->block_idx * WQ_BLOCK_SIZE)
#define WQ_BASE_PADDR(wqs, wq) \
((wqs)->page_paddr[(wq)->page_idx] \
+ (wq)->block_idx * WQ_BLOCK_SIZE)
#define WQ_BASE_ADDR(wqs, wq) \
((void *)((wqs)->shadow_page_vaddr[(wq)->page_idx]) \
+ (wq)->block_idx * WQ_BLOCK_SIZE)
#define CMDQ_BASE_VADDR(cmdq_pages, wq) \
((void *)((cmdq_pages)->page_vaddr) \
+ (wq)->block_idx * CMDQ_BLOCK_SIZE)
#define CMDQ_BASE_PADDR(cmdq_pages, wq) \
((cmdq_pages)->page_paddr \
+ (wq)->block_idx * CMDQ_BLOCK_SIZE)
#define CMDQ_BASE_ADDR(cmdq_pages, wq) \
((void *)((cmdq_pages)->shadow_page_vaddr) \
+ (wq)->block_idx * CMDQ_BLOCK_SIZE)
#define WQ_PAGE_ADDR(wq, idx) \
((wq)->shadow_block_vaddr[WQE_PAGE_NUM(wq, idx)])
#define MASKED_WQE_IDX(wq, idx) ((idx) & (wq)->mask)
#define WQE_IN_RANGE(wqe, start, end) \
(((unsigned long)(wqe) >= (unsigned long)(start)) && \
((unsigned long)(wqe) < (unsigned long)(end)))
#define WQE_SHADOW_PAGE(wq, wqe) \
(((unsigned long)(wqe) - (unsigned long)(wq)->shadow_wqe) \
/ (wq)->max_wqe_size)
static inline int WQE_PAGE_OFF(struct hinic_wq *wq, u16 idx)
{
return (((idx) & ((wq)->num_wqebbs_per_page - 1))
<< (wq)->wqebb_size_shift);
}
static inline int WQE_PAGE_NUM(struct hinic_wq *wq, u16 idx)
{
return (((idx) >> ((wq)->wqebbs_per_page_shift))
& ((wq)->num_q_pages - 1));
}
/**
* queue_alloc_page - allocate page for Queue
* @hwif: HW interface for allocating DMA
* @vaddr: virtual address will be returned in this address
* @paddr: physical address will be returned in this address
* @shadow_vaddr: VM area will be return here for holding WQ page addresses
* @page_sz: page size of each WQ page
*
* Return 0 - Success, negative - Failure
**/
static int queue_alloc_page(struct hinic_hwif *hwif, u64 **vaddr, u64 *paddr,
void ***shadow_vaddr, size_t page_sz)
{
struct pci_dev *pdev = hwif->pdev;
dma_addr_t dma_addr;
*vaddr = dma_alloc_coherent(&pdev->dev, page_sz, &dma_addr,
GFP_KERNEL);
if (!*vaddr) {
dev_err(&pdev->dev, "Failed to allocate dma for wqs page\n");
return -ENOMEM;
}
*paddr = (u64)dma_addr;
/* use vzalloc for big mem */
*shadow_vaddr = vzalloc(page_sz);
if (!*shadow_vaddr)
goto err_shadow_vaddr;
return 0;
err_shadow_vaddr:
dma_free_coherent(&pdev->dev, page_sz, *vaddr, dma_addr);
return -ENOMEM;
}
/**
* wqs_allocate_page - allocate page for WQ set
* @wqs: Work Queue Set
* @page_idx: the page index of the page will be allocated
*
* Return 0 - Success, negative - Failure
**/
static int wqs_allocate_page(struct hinic_wqs *wqs, int page_idx)
{
return queue_alloc_page(wqs->hwif, &wqs->page_vaddr[page_idx],
&wqs->page_paddr[page_idx],
&wqs->shadow_page_vaddr[page_idx],
WQS_PAGE_SIZE);
}
/**
* wqs_free_page - free page of WQ set
* @wqs: Work Queue Set
* @page_idx: the page index of the page will be freed
**/
static void wqs_free_page(struct hinic_wqs *wqs, int page_idx)
{
struct hinic_hwif *hwif = wqs->hwif;
struct pci_dev *pdev = hwif->pdev;
dma_free_coherent(&pdev->dev, WQS_PAGE_SIZE,
wqs->page_vaddr[page_idx],
(dma_addr_t)wqs->page_paddr[page_idx]);
vfree(wqs->shadow_page_vaddr[page_idx]);
}
/**
* cmdq_allocate_page - allocate page for cmdq
* @cmdq_pages: the pages of the cmdq queue struct to hold the page
*
* Return 0 - Success, negative - Failure
**/
static int cmdq_allocate_page(struct hinic_cmdq_pages *cmdq_pages)
{
return queue_alloc_page(cmdq_pages->hwif, &cmdq_pages->page_vaddr,
&cmdq_pages->page_paddr,
&cmdq_pages->shadow_page_vaddr,
CMDQ_PAGE_SIZE);
}
/**
* cmdq_free_page - free page from cmdq
* @cmdq_pages: the pages of the cmdq queue struct that hold the page
**/
static void cmdq_free_page(struct hinic_cmdq_pages *cmdq_pages)
{
struct hinic_hwif *hwif = cmdq_pages->hwif;
struct pci_dev *pdev = hwif->pdev;
dma_free_coherent(&pdev->dev, CMDQ_PAGE_SIZE,
cmdq_pages->page_vaddr,
(dma_addr_t)cmdq_pages->page_paddr);
vfree(cmdq_pages->shadow_page_vaddr);
}
static int alloc_page_arrays(struct hinic_wqs *wqs)
{
struct hinic_hwif *hwif = wqs->hwif;
struct pci_dev *pdev = hwif->pdev;
wqs->page_paddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
sizeof(*wqs->page_paddr), GFP_KERNEL);
if (!wqs->page_paddr)
return -ENOMEM;
wqs->page_vaddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
sizeof(*wqs->page_vaddr), GFP_KERNEL);
if (!wqs->page_vaddr)
goto err_page_vaddr;
wqs->shadow_page_vaddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
sizeof(*wqs->shadow_page_vaddr),
GFP_KERNEL);
if (!wqs->shadow_page_vaddr)
goto err_page_shadow_vaddr;
return 0;
err_page_shadow_vaddr:
devm_kfree(&pdev->dev, wqs->page_vaddr);
err_page_vaddr:
devm_kfree(&pdev->dev, wqs->page_paddr);
return -ENOMEM;
}
static void free_page_arrays(struct hinic_wqs *wqs)
{
struct hinic_hwif *hwif = wqs->hwif;
struct pci_dev *pdev = hwif->pdev;
devm_kfree(&pdev->dev, wqs->shadow_page_vaddr);
devm_kfree(&pdev->dev, wqs->page_vaddr);
devm_kfree(&pdev->dev, wqs->page_paddr);
}
static int wqs_next_block(struct hinic_wqs *wqs, int *page_idx,
int *block_idx)
{
int pos;
down(&wqs->alloc_blocks_lock);
wqs->num_free_blks--;
if (wqs->num_free_blks < 0) {
wqs->num_free_blks++;
up(&wqs->alloc_blocks_lock);
return -ENOMEM;
}
pos = wqs->alloc_blk_pos++;
pos &= WQS_MAX_NUM_BLOCKS - 1;
*page_idx = wqs->free_blocks[pos].page_idx;
*block_idx = wqs->free_blocks[pos].block_idx;
wqs->free_blocks[pos].page_idx = -1;
wqs->free_blocks[pos].block_idx = -1;
up(&wqs->alloc_blocks_lock);
return 0;
}
static void wqs_return_block(struct hinic_wqs *wqs, int page_idx,
int block_idx)
{
int pos;
down(&wqs->alloc_blocks_lock);
pos = wqs->return_blk_pos++;
pos &= WQS_MAX_NUM_BLOCKS - 1;
wqs->free_blocks[pos].page_idx = page_idx;
wqs->free_blocks[pos].block_idx = block_idx;
wqs->num_free_blks++;
up(&wqs->alloc_blocks_lock);
}
static void init_wqs_blocks_arr(struct hinic_wqs *wqs)
{
int page_idx, blk_idx, pos = 0;
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
for (blk_idx = 0; blk_idx < WQS_BLOCKS_PER_PAGE; blk_idx++) {
wqs->free_blocks[pos].page_idx = page_idx;
wqs->free_blocks[pos].block_idx = blk_idx;
pos++;
}
}
wqs->alloc_blk_pos = 0;
wqs->return_blk_pos = pos;
wqs->num_free_blks = pos;
sema_init(&wqs->alloc_blocks_lock, 1);
}
/**
* hinic_wqs_alloc - allocate Work Queues set
* @wqs: Work Queue Set
* @max_wqs: maximum wqs to allocate
* @hwif: HW interface for use for the allocation
*
* Return 0 - Success, negative - Failure
**/
int hinic_wqs_alloc(struct hinic_wqs *wqs, int max_wqs,
struct hinic_hwif *hwif)
{
struct pci_dev *pdev = hwif->pdev;
int err, i, page_idx;
max_wqs = ALIGN(max_wqs, WQS_BLOCKS_PER_PAGE);
if (max_wqs > WQS_MAX_NUM_BLOCKS) {
dev_err(&pdev->dev, "Invalid max_wqs = %d\n", max_wqs);
return -EINVAL;
}
wqs->hwif = hwif;
wqs->num_pages = max_wqs / WQS_BLOCKS_PER_PAGE;
if (alloc_page_arrays(wqs)) {
dev_err(&pdev->dev,
"Failed to allocate mem for page addresses\n");
return -ENOMEM;
}
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
err = wqs_allocate_page(wqs, page_idx);
if (err) {
dev_err(&pdev->dev, "Failed wq page allocation\n");
goto err_wq_allocate_page;
}
}
wqs->free_blocks = devm_kzalloc(&pdev->dev, WQS_FREE_BLOCKS_SIZE(wqs),
GFP_KERNEL);
if (!wqs->free_blocks) {
err = -ENOMEM;
goto err_alloc_blocks;
}
init_wqs_blocks_arr(wqs);
return 0;
err_alloc_blocks:
err_wq_allocate_page:
for (i = 0; i < page_idx; i++)
wqs_free_page(wqs, i);
free_page_arrays(wqs);
return err;
}
/**
* hinic_wqs_free - free Work Queues set
* @wqs: Work Queue Set
**/
void hinic_wqs_free(struct hinic_wqs *wqs)
{
struct hinic_hwif *hwif = wqs->hwif;
struct pci_dev *pdev = hwif->pdev;
int page_idx;
devm_kfree(&pdev->dev, wqs->free_blocks);
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++)
wqs_free_page(wqs, page_idx);
free_page_arrays(wqs);
}
/**
* alloc_wqes_shadow - allocate WQE shadows for WQ
* @wq: WQ to allocate shadows for
*
* Return 0 - Success, negative - Failure
**/
static int alloc_wqes_shadow(struct hinic_wq *wq)
{
struct hinic_hwif *hwif = wq->hwif;
struct pci_dev *pdev = hwif->pdev;
wq->shadow_wqe = devm_kcalloc(&pdev->dev, wq->num_q_pages,
wq->max_wqe_size, GFP_KERNEL);
if (!wq->shadow_wqe)
return -ENOMEM;
wq->shadow_idx = devm_kcalloc(&pdev->dev, wq->num_q_pages,
sizeof(*wq->shadow_idx), GFP_KERNEL);
if (!wq->shadow_idx)
goto err_shadow_idx;
return 0;
err_shadow_idx:
devm_kfree(&pdev->dev, wq->shadow_wqe);
return -ENOMEM;
}
/**
* free_wqes_shadow - free WQE shadows of WQ
* @wq: WQ to free shadows from
**/
static void free_wqes_shadow(struct hinic_wq *wq)
{
struct hinic_hwif *hwif = wq->hwif;
struct pci_dev *pdev = hwif->pdev;
devm_kfree(&pdev->dev, wq->shadow_idx);
devm_kfree(&pdev->dev, wq->shadow_wqe);
}
/**
* free_wq_pages - free pages of WQ
* @hwif: HW interface for releasing dma addresses
* @wq: WQ to free pages from
* @num_q_pages: number pages to free
**/
static void free_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
int num_q_pages)
{
struct pci_dev *pdev = hwif->pdev;
int i;
for (i = 0; i < num_q_pages; i++) {
void **vaddr = &wq->shadow_block_vaddr[i];
u64 *paddr = &wq->block_vaddr[i];
dma_addr_t dma_addr;
dma_addr = (dma_addr_t)be64_to_cpu(*paddr);
dma_free_coherent(&pdev->dev, wq->wq_page_size, *vaddr,
dma_addr);
}
free_wqes_shadow(wq);
}
/**
* alloc_wq_pages - alloc pages for WQ
* @hwif: HW interface for allocating dma addresses
* @wq: WQ to allocate pages for
* @max_pages: maximum pages allowed
*
* Return 0 - Success, negative - Failure
**/
static int alloc_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
int max_pages)
{
struct pci_dev *pdev = hwif->pdev;
int i, err, num_q_pages;
num_q_pages = ALIGN(WQ_SIZE(wq), wq->wq_page_size) / wq->wq_page_size;
if (num_q_pages > max_pages) {
dev_err(&pdev->dev, "Number wq pages exceeds the limit\n");
return -EINVAL;
}
if (num_q_pages & (num_q_pages - 1)) {
dev_err(&pdev->dev, "Number wq pages must be power of 2\n");
return -EINVAL;
}
wq->num_q_pages = num_q_pages;
err = alloc_wqes_shadow(wq);
if (err) {
dev_err(&pdev->dev, "Failed to allocate wqe shadow\n");
return err;
}
for (i = 0; i < num_q_pages; i++) {
void **vaddr = &wq->shadow_block_vaddr[i];
u64 *paddr = &wq->block_vaddr[i];
dma_addr_t dma_addr;
*vaddr = dma_alloc_coherent(&pdev->dev, wq->wq_page_size,
&dma_addr, GFP_KERNEL);
if (!*vaddr) {
dev_err(&pdev->dev, "Failed to allocate wq page\n");
goto err_alloc_wq_pages;
}
/* HW uses Big Endian Format */
*paddr = cpu_to_be64(dma_addr);
}
return 0;
err_alloc_wq_pages:
free_wq_pages(wq, hwif, i);
return -ENOMEM;
}
/**
* hinic_wq_allocate - Allocate the WQ resources from the WQS
* @wqs: WQ set from which to allocate the WQ resources
* @wq: WQ to allocate resources for it from the WQ set
* @wqebb_size: Work Queue Block Byte Size
* @wq_page_size: the page size in the Work Queue
* @q_depth: number of wqebbs in WQ
* @max_wqe_size: maximum WQE size that will be used in the WQ
*
* Return 0 - Success, negative - Failure
**/
int hinic_wq_allocate(struct hinic_wqs *wqs, struct hinic_wq *wq,
u16 wqebb_size, u32 wq_page_size, u16 q_depth,
u16 max_wqe_size)
{
struct hinic_hwif *hwif = wqs->hwif;
struct pci_dev *pdev = hwif->pdev;
u16 num_wqebbs_per_page;
u16 wqebb_size_shift;
int err;
if (!is_power_of_2(wqebb_size)) {
dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
return -EINVAL;
}
if (wq_page_size == 0) {
dev_err(&pdev->dev, "wq_page_size must be > 0\n");
return -EINVAL;
}
if (q_depth & (q_depth - 1)) {
dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
return -EINVAL;
}
wqebb_size_shift = ilog2(wqebb_size);
num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
>> wqebb_size_shift;
if (!is_power_of_2(num_wqebbs_per_page)) {
dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
return -EINVAL;
}
wq->hwif = hwif;
err = wqs_next_block(wqs, &wq->page_idx, &wq->block_idx);
if (err) {
dev_err(&pdev->dev, "Failed to get free wqs next block\n");
return err;
}
wq->wqebb_size = wqebb_size;
wq->wq_page_size = wq_page_size;
wq->q_depth = q_depth;
wq->max_wqe_size = max_wqe_size;
wq->num_wqebbs_per_page = num_wqebbs_per_page;
wq->wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
wq->wqebb_size_shift = wqebb_size_shift;
wq->block_vaddr = WQ_BASE_VADDR(wqs, wq);
wq->shadow_block_vaddr = WQ_BASE_ADDR(wqs, wq);
wq->block_paddr = WQ_BASE_PADDR(wqs, wq);
err = alloc_wq_pages(wq, wqs->hwif, WQ_MAX_PAGES);
if (err) {
dev_err(&pdev->dev, "Failed to allocate wq pages\n");
goto err_alloc_wq_pages;
}
atomic_set(&wq->cons_idx, 0);
atomic_set(&wq->prod_idx, 0);
atomic_set(&wq->delta, q_depth);
wq->mask = q_depth - 1;
return 0;
err_alloc_wq_pages:
wqs_return_block(wqs, wq->page_idx, wq->block_idx);
return err;
}
/**
* hinic_wq_free - Free the WQ resources to the WQS
* @wqs: WQ set to free the WQ resources to it
* @wq: WQ to free its resources to the WQ set resources
**/
void hinic_wq_free(struct hinic_wqs *wqs, struct hinic_wq *wq)
{
free_wq_pages(wq, wqs->hwif, wq->num_q_pages);
wqs_return_block(wqs, wq->page_idx, wq->block_idx);
}
/**
* hinic_wqs_cmdq_alloc - Allocate wqs for cmdqs
* @cmdq_pages: will hold the pages of the cmdq
* @wq: returned wqs
* @hwif: HW interface
* @cmdq_blocks: number of cmdq blocks/wq to allocate
* @wqebb_size: Work Queue Block Byte Size
* @wq_page_size: the page size in the Work Queue
* @q_depth: number of wqebbs in WQ
* @max_wqe_size: maximum WQE size that will be used in the WQ
*
* Return 0 - Success, negative - Failure
**/
int hinic_wqs_cmdq_alloc(struct hinic_cmdq_pages *cmdq_pages,
struct hinic_wq *wq, struct hinic_hwif *hwif,
int cmdq_blocks, u16 wqebb_size, u32 wq_page_size,
u16 q_depth, u16 max_wqe_size)
{
struct pci_dev *pdev = hwif->pdev;
u16 num_wqebbs_per_page_shift;
u16 num_wqebbs_per_page;
u16 wqebb_size_shift;
int i, j, err = -ENOMEM;
if (!is_power_of_2(wqebb_size)) {
dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
return -EINVAL;
}
if (wq_page_size == 0) {
dev_err(&pdev->dev, "wq_page_size must be > 0\n");
return -EINVAL;
}
if (q_depth & (q_depth - 1)) {
dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
return -EINVAL;
}
wqebb_size_shift = ilog2(wqebb_size);
num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
>> wqebb_size_shift;
if (!is_power_of_2(num_wqebbs_per_page)) {
dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
return -EINVAL;
}
cmdq_pages->hwif = hwif;
err = cmdq_allocate_page(cmdq_pages);
if (err) {
dev_err(&pdev->dev, "Failed to allocate CMDQ page\n");
return err;
}
num_wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
for (i = 0; i < cmdq_blocks; i++) {
wq[i].hwif = hwif;
wq[i].page_idx = 0;
wq[i].block_idx = i;
wq[i].wqebb_size = wqebb_size;
wq[i].wq_page_size = wq_page_size;
wq[i].q_depth = q_depth;
wq[i].max_wqe_size = max_wqe_size;
wq[i].num_wqebbs_per_page = num_wqebbs_per_page;
wq[i].wqebbs_per_page_shift = num_wqebbs_per_page_shift;
wq[i].wqebb_size_shift = wqebb_size_shift;
wq[i].block_vaddr = CMDQ_BASE_VADDR(cmdq_pages, &wq[i]);
wq[i].shadow_block_vaddr = CMDQ_BASE_ADDR(cmdq_pages, &wq[i]);
wq[i].block_paddr = CMDQ_BASE_PADDR(cmdq_pages, &wq[i]);
err = alloc_wq_pages(&wq[i], cmdq_pages->hwif,
CMDQ_WQ_MAX_PAGES);
if (err) {
dev_err(&pdev->dev, "Failed to alloc CMDQ blocks\n");
goto err_cmdq_block;
}
atomic_set(&wq[i].cons_idx, 0);
atomic_set(&wq[i].prod_idx, 0);
atomic_set(&wq[i].delta, q_depth);
wq[i].mask = q_depth - 1;
}
return 0;
err_cmdq_block:
for (j = 0; j < i; j++)
free_wq_pages(&wq[j], cmdq_pages->hwif, wq[j].num_q_pages);
cmdq_free_page(cmdq_pages);
return err;
}
/**
* hinic_wqs_cmdq_free - Free wqs from cmdqs
* @cmdq_pages: hold the pages of the cmdq
* @wq: wqs to free
* @cmdq_blocks: number of wqs to free
**/
void hinic_wqs_cmdq_free(struct hinic_cmdq_pages *cmdq_pages,
struct hinic_wq *wq, int cmdq_blocks)
{
int i;
for (i = 0; i < cmdq_blocks; i++)
free_wq_pages(&wq[i], cmdq_pages->hwif, wq[i].num_q_pages);
cmdq_free_page(cmdq_pages);
}
static void copy_wqe_to_shadow(struct hinic_wq *wq, void *shadow_addr,
int num_wqebbs, u16 idx)
{
void *wqebb_addr;
int i;
for (i = 0; i < num_wqebbs; i++, idx++) {
idx = MASKED_WQE_IDX(wq, idx);
wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
WQE_PAGE_OFF(wq, idx);
memcpy(shadow_addr, wqebb_addr, wq->wqebb_size);
shadow_addr += wq->wqebb_size;
}
}
static void copy_wqe_from_shadow(struct hinic_wq *wq, void *shadow_addr,
int num_wqebbs, u16 idx)
{
void *wqebb_addr;
int i;
for (i = 0; i < num_wqebbs; i++, idx++) {
idx = MASKED_WQE_IDX(wq, idx);
wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
WQE_PAGE_OFF(wq, idx);
memcpy(wqebb_addr, shadow_addr, wq->wqebb_size);
shadow_addr += wq->wqebb_size;
}
}
/**
* hinic_get_wqe - get wqe ptr in the current pi and update the pi
* @wq: wq to get wqe from
* @wqe_size: wqe size
* @prod_idx: returned pi
*
* Return wqe pointer
**/
struct hinic_hw_wqe *hinic_get_wqe(struct hinic_wq *wq, unsigned int wqe_size,
u16 *prod_idx)
{
int curr_pg, end_pg, num_wqebbs;
u16 curr_prod_idx, end_prod_idx;
*prod_idx = MASKED_WQE_IDX(wq, atomic_read(&wq->prod_idx));
num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) >> wq->wqebb_size_shift;
if (atomic_sub_return(num_wqebbs, &wq->delta) <= 0) {
atomic_add(num_wqebbs, &wq->delta);
return ERR_PTR(-EBUSY);
}
end_prod_idx = atomic_add_return(num_wqebbs, &wq->prod_idx);
end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx);
curr_prod_idx = end_prod_idx - num_wqebbs;
curr_prod_idx = MASKED_WQE_IDX(wq, curr_prod_idx);
/* end prod index points to the next wqebb, therefore minus 1 */
end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx - 1);
curr_pg = WQE_PAGE_NUM(wq, curr_prod_idx);
end_pg = WQE_PAGE_NUM(wq, end_prod_idx);
*prod_idx = curr_prod_idx;
/* If we only have one page, still need to get shadown wqe when
* wqe rolling-over page
*/
if (curr_pg != end_pg || end_prod_idx < *prod_idx) {
void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *prod_idx);
wq->shadow_idx[curr_pg] = *prod_idx;
return shadow_addr;
}
return WQ_PAGE_ADDR(wq, *prod_idx) + WQE_PAGE_OFF(wq, *prod_idx);
}
/**
* hinic_return_wqe - return the wqe when transmit failed
* @wq: wq to return wqe
* @wqe_size: wqe size
**/
void hinic_return_wqe(struct hinic_wq *wq, unsigned int wqe_size)
{
int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
atomic_sub(num_wqebbs, &wq->prod_idx);
atomic_add(num_wqebbs, &wq->delta);
}
/**
* hinic_put_wqe - return the wqe place to use for a new wqe
* @wq: wq to return wqe
* @wqe_size: wqe size
**/
void hinic_put_wqe(struct hinic_wq *wq, unsigned int wqe_size)
{
int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
>> wq->wqebb_size_shift;
atomic_add(num_wqebbs, &wq->cons_idx);
atomic_add(num_wqebbs, &wq->delta);
}
/**
* hinic_read_wqe - read wqe ptr in the current ci
* @wq: wq to get read from
* @wqe_size: wqe size
* @cons_idx: returned ci
*
* Return wqe pointer
**/
struct hinic_hw_wqe *hinic_read_wqe(struct hinic_wq *wq, unsigned int wqe_size,
u16 *cons_idx)
{
int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
>> wq->wqebb_size_shift;
u16 curr_cons_idx, end_cons_idx;
int curr_pg, end_pg;
if ((atomic_read(&wq->delta) + num_wqebbs) > wq->q_depth)
return ERR_PTR(-EBUSY);
curr_cons_idx = atomic_read(&wq->cons_idx);
curr_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx);
end_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx + num_wqebbs - 1);
curr_pg = WQE_PAGE_NUM(wq, curr_cons_idx);
end_pg = WQE_PAGE_NUM(wq, end_cons_idx);
*cons_idx = curr_cons_idx;
/* If we only have one page, still need to get shadown wqe when
* wqe rolling-over page
*/
if (curr_pg != end_pg || end_cons_idx < curr_cons_idx) {
void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *cons_idx);
return shadow_addr;
}
return WQ_PAGE_ADDR(wq, *cons_idx) + WQE_PAGE_OFF(wq, *cons_idx);
}
/**
* hinic_read_wqe_direct - read wqe directly from ci position
* @wq: wq
* @cons_idx: ci position
*
* Return wqe
**/
struct hinic_hw_wqe *hinic_read_wqe_direct(struct hinic_wq *wq, u16 cons_idx)
{
return WQ_PAGE_ADDR(wq, cons_idx) + WQE_PAGE_OFF(wq, cons_idx);
}
/**
* wqe_shadow - check if a wqe is shadow
* @wq: wq of the wqe
* @wqe: the wqe for shadow checking
*
* Return true - shadow, false - Not shadow
**/
static inline bool wqe_shadow(struct hinic_wq *wq, struct hinic_hw_wqe *wqe)
{
size_t wqe_shadow_size = wq->num_q_pages * wq->max_wqe_size;
return WQE_IN_RANGE(wqe, wq->shadow_wqe,
&wq->shadow_wqe[wqe_shadow_size]);
}
/**
* hinic_write_wqe - write the wqe to the wq
* @wq: wq to write wqe to
* @wqe: wqe to write
* @wqe_size: wqe size
**/
void hinic_write_wqe(struct hinic_wq *wq, struct hinic_hw_wqe *wqe,
unsigned int wqe_size)
{
int curr_pg, num_wqebbs;
void *shadow_addr;
u16 prod_idx;
if (wqe_shadow(wq, wqe)) {
curr_pg = WQE_SHADOW_PAGE(wq, wqe);
prod_idx = wq->shadow_idx[curr_pg];
num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
copy_wqe_from_shadow(wq, shadow_addr, num_wqebbs, prod_idx);
}
}